

Leaflet Tips and Tricks
Interactive Maps Made Easy

Malcolm Maclean

This book is for sale at http://leanpub.com/leaflet-tips-and-tricks

This version was published on 2014-02-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2013 - 2014 Malcolm Maclean

http://leanpub.com/leaflet-tips-and-tricks
http://leanpub.com
http://leanpub.com/manifesto

Also By Malcolm Maclean
D3 Tips and Tricks

http://leanpub.com/u/d3noob
http://leanpub.com/D3-Tips-and-Tricks

Contents

Acknowledgements . 1
Make sure you get the most up to date copy of Leaflet Tips and Tricks 1

Introduction . 2

What is leaflet.js? . 4

What do you need to get started? . 5
HTML . 5
JavaScript . 5
Cascading Style Sheets (CSS) . 6
Web Servers . 7
PHP . 7
Other Useful Stuff . 8

Text Editor . 8
Getting Leaflet . 9
Where to get information on leaflet.js . 10

leafletjs.com . 10
Google Groups . 11
Stack Overflow . 11
Github . 11
bl.ocks.org . 12
Twitter . 12
Books . 12

Start With a Simple Map . 13
HTML . 15
JavaScript . 17

Declaring the starting parameters for the map . 17
Declaring the source for the map tiles . 18

And there’s your map! . 19

Leaflet Features . 20
Adding a marker to our map . 20

Adding a popup to our marker . 21
Marker options . 22

Drag a marker . 22
Add a title to a marker . 23

CONTENTS

Adjust the markers transparency . 23
Adding multiple markers to our map . 25
Adding a line to our map . 28

Adding options to our polyline . 29
Using multiple tile layers on your map . 31
Overlaying information interactively on your map . 34

Leaflet Plugins . 38
Leaflet.draw . 38

Leaflet.draw code description . 39
Leaflet.draw configuration options . 43

Object colours . 43
Polygon line intersection . 45
Show and measure an area . 46
Repeating a drawing option automatically 47
Place an alternative marker . 48
Place the Leaflet.draw toolbar in another position 49

OSMGeocoder Search . 51
OSMGeocoder code description . 51
OSMGeocoder configuration options . 54

Leaflet.FileLayer load local GPX, KML, GeoJSON files 56
Leaflet.FileLayer code description . 56

Generate a heatmap with Leaflet.heat . 60
Leaflet.heat code description . 60
radius configuration option . 62
blur configuration option . 63
maxZoom configuration option . 64

Assorted Leaflet Tips and Tricks . 66
Make your map full screen . 66
Importing external data into leaflet.js . 70

Importing data as a JavaScript file . 71
Importing data from MySQL via php . 73

Extracting data from MySQL with php . 75
Making maps with d3.js and leaflet.js combined . 80

d3.js Overview . 80
Leaflet map with d3.js objects that scale with the map 81
Leaflet map with d3.js elements that are overlaid on a map 89

Tile servers that can be used with Leaflet . 95
URL Template . 95
Usage Policy . 95
Attribution . 95
Open Street Map OSM Mapnik . 96

URL Template . 96
Usage policy . 96
Attribution . 96

CONTENTS

Usage example . 96
Open Street Map Black and White . 97

URL Template . 97
Usage policy . 97
Attribution . 97
Usage example . 98

Open Cycle Map . 98
URL Template . 98
Usage policy . 99
Attribution . 99
Usage example . 99

Outdoors . 100
URL Template . 100
Usage policy . 100
Attribution . 100
Usage example . 100

Transport . 101
URL Template . 101
Usage policy . 101
Attribution . 101
Usage example . 102

Landscape . 102
URL Template . 102
Usage policy . 103
Attribution . 103
Usage example . 103

MapQuest Open Aerial . 104
URL Template . 104
Usage policy . 104
Attribution . 104
Usage example . 104

MapQuest-OSM . 105
URL Template . 105
Usage policy . 106
Attribution . 106
Usage example . 106

Stamen.Watercolor . 107
URL Template . 107
Usage policy . 107
Attribution . 107
Usage example . 108

Esri World Imagery . 108
URL Template . 109
Usage policy . 109
Attribution . 109
Usage example . 109

CONTENTS

Map Tips and Tricks . 111
How do maps get presented on a web page? . 111

Vectors and bitmaps. 111
Vector graphics . 111
Bitmap graphics . 113
Vectors and bitmaps for maps. 115

Map tiles and zoom levels . 116
How are the tiles on a map server organised? . 119

MySQL Tips and Tricks for leaflet.js . 121
Using a MySQL database as a source of data. 121

PHP is our friend . 121
phpMyAdmin . 121
Create your database . 122
Importing your data into MySQL . 125
Querying the Database . 129
Using php to extract json from MySQL . 131
Getting the data into leaflet.js . 136

Working with GitHub, Gist and bl.ocks.org . 140
General stuff about bl.ocks.org . 140
Installing the plug-in for bl.ocks.org for easy block viewing 141
Loading a thumbnail into Gist for bl.ocks.org thumbnails 142

Setting the scene: . 142
Enough of the scene setting. Let’s git going :-). 144
Wrap up. 147

Appendices . 149
A Simple Map . 149
Full Screen Map . 150
Map with Marker and Features . 151
Map with polyline and options . 152
A Leaflet map with base layer (tile selection) controls 154
A Leaflet map with overlay layer (and base layer) controls 156
Leaflet.draw plugin with options. 158
OSMGeocoder plugin with options. 161

Acknowledgements
First and foremost I would like to express my thanks to Vladimir Agafonkin. He is the driving
force behind leaflet.js. His efforts in bringing Leaflet to the World and constantly improving it
are tireless and his altruism in making his work open and available to the masses is inspiring.

Vladimir has worked with a large collection of like-minded individuals in bringing Leaflet to the
World. These contributors also deserve honours for the work on leaflet.js. At the time of writing
there are over 100 contributors listed on GitHub¹.

Those who write the plugins also deserve a special thanks. In the same way that Leaflet provides
an excellent framework to work on, the diversity and ingenuity of the available plugins is
staggering. There are so many that I am not going to attempt to single any one out for individual
praise. Instead, please accept my heartfelt thanks as a group of dedicated individuals.

I don’t want to forget to mention a special group that could be easily overlooked in receiving
thanks here. The tile makers. If you’re not entirely sure what I mean by this, don’t worry, it
will all become clearer as you read on. Without the map tiles, there would be no maps. These
organisations provide a valuable resource that Leaflet leverages and I would like to recognise
them as well.

Lastly, I want to pay homage to Leanpub² who have made the publishing of this document
possible. They offer an outstanding service for self-publishing and have made the task of
providing and distributing content achievable.

Make sure you get the most up to date copy of
Leaflet Tips and Tricks

If you’ve received a copy of this book from any location other than Leanpub³ then it’s possible
that you haven’t got the latest version. Go to https://leanpub.com/leaflet-tips-and-tricks and
download the most recent version. After all, it won’t cost you anything :-). If you find some
value in the work, please consider contributing 99 cents when you download it so that Leanpub
get something for hosting the book (and I’ll think of you fondly while I have a beer :-D).

¹https://github.com/Leaflet/Leaflet/graphs/contributors
²https://leanpub.com/
³https://leanpub.com/leaflet-tips-and-tricks

https://github.com/Leaflet/Leaflet/graphs/contributors
https://leanpub.com/
https://leanpub.com/leaflet-tips-and-tricks
https://github.com/Leaflet/Leaflet/graphs/contributors
https://leanpub.com/
https://leanpub.com/leaflet-tips-and-tricks

Introduction
The idea of writing a book on Leaflet came about pretty much as soon as I first used it. It seemed
so easy to use and I went looking for some books to help me through some of the more advanced
topics. Since they are fairly scarce on the subject, I thought it would be a neat project to write
one!

This decision has been supported mainly by the success of publishing my first book on d3.js
called D3 Tips and Tricks . When I started writing D3 Tips and Tricks at the end of 2012 I had a
desire to put out some documentation, but the method was a bit sketchy. I was lucky to stumble
upon Leanpub while I was putting information together and it ticked all the boxes I was looking
for in terms of being able to publish easily and distribute for free while providing the ability for
people to get updates to the book when it gets improved. I tend to be a bit evangelical about
Leanpub but the bottom line is that they provide a great service for people who want to publish
a book in a flexible way.

Full disclosure: I am a simple user of this extraordinary framework and when I say simple,
I really mean that there has been a lot of learning by trial-and-error (emphasis on the errors
which were entirely mine). So to get from the point of having no knowledge on how to use
Leaflet whatsoever to the point where I could begin to code up something to display data in a
way I wanted, I had to capture the information as I went. The really cool thing about this sort of
process is that it doesn’t need to occur all at once. You can start with no knowledge whatsoever
(or pretty close) and by standing on the shoulders of others work, you can add building blocks
to improve what you’re seeing and then change the blocks to adapt and improve. Another point
to make is there there is a considerable amount of cross-over between this book and D3 Tips and
Tricks. So when you see portions that you think “Hey, that looks like it was cut and pasted from
his other book”, There’s a good chance that you’ll be right and for good reason. Each book has
common features and each should be able to be read in isolation.

The point to take away from all of this is that any online map is just a collection of lots of
blocks of code, each block designed to carry out a specific function. Pick the blocks you want
and implement them. Leaflet makes this easy and in particular their support for plugins actively
encourages it. I found it was much simpler to work on one thing (block) at a time, and this
helped greatly to reduce the uncertainty factor when things didn’t work as anticipated. I’m not
going to pretend that everything I’ve done while trying to build maps employs the most elegant
or efficient mechanism, but in the end, if it all works on the screen, I walk away happy :-).
That’s not to say I have deliberately ignored any best practices – I just never knew what they
were. Likewise, wherever possible, I have tried to make things as extensible as possible. You
will find that I have typically eschewed a simple “Use this code” approach for more of a story
telling exercise. This means that some explanations are longer and more flowery than might be
to everyone’s liking, but there you go, try to be brave :-).

http://d3js.org/
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/

http://d3js.org/
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/
http://d3js.org/
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/

Introduction 3

I’m sure most authors try to be as accessible as possible. I’d like to do the same, but be warned…
There’s a good chance that if you ask me a technical question I may not know the answer. So
please be gentle with your emails :-).

Email: d3noobmail+leaflet@gmail.com

What is leaflet.js?
Leaflet.js is an Open Source JavaScript library that makes deploying maps on a web page easy.
Being Open Source means that the code can be easily viewed to see how it works, anyone can
use it and more importantly anyone can contribute back to the project with improvements to the
code.

To provide all this mapping goodness it uses a paltry 34kB (at time of writing) JavaScript file
that loads with your web page and provides access to a range of functions that will allow you
to present a map. There is support for modern browsers in desktop and mobile platforms so you
can deploy your map pretty much anywhere.

Its goals are to be simple to use while focussing on performance and usability, but it’s also built
to be extended using plugins that extend its functionality. It has an excellent API which is well
documented, so there are nomysteries to using it successfully in a range of situations. Companies
who are already touted as using Leaflet include Flickr , foursquare , craigslist , Data.gov¹⁰, IGN¹¹,
Wikimedia¹², OSM¹³, Meetup¹ , WSJ¹ , MapBox¹ , CloudMade¹ , CartoDB¹ and GIS Cloud¹ .
Now I’m picking that you’ll agree that that’s a list of significant players on the Internet. However,
with Leaflet, you can make and deploy maps in much that same way that these organisations
do.

Out of the box Leaflet provides the functionality to add markers, popups, overlay lines and
shapes, use multiple layers, zoom, pan and generally have a good time :-). But these are just the
the core features of Leaflet. One of the significant strengths of Leaflet is the ability to extend
the functionality of the script with plugins from third parties. At the time of writing there are
over 80 separate plugins that allow features such as overlaying a heatmap, animating markers,
loading csv files of data, drawing complex shapes, measuring distance, manipulating layers and
displaying coordinates.

Leaflet is truly a jewel of Open Source software. Simple, elegant, functional but powerful. There’s
a good chance that even if you don’t present maps with Leaflet, you’ll be using ones that someone
else made with it at some stage on the Internet.

http://flickr.com/map
https://foursquare.com/
http://t.co/V4EiURIA

¹⁰http://data.gov/
¹¹http://www.ign.com/wikis/the-elder-scrolls-5-skyrim/interactive-maps/Skyrim
¹²http://blog.wikimedia.org/2012/04/05/new-wikipedia-app-for-ios-and-an-update-for-our-android-app/
¹³http://openstreetmap.org/
¹ http://www.meetup.com/
¹ http://projects.wsj.com/campaign2012/maps/
¹ http://mapbox.com/
¹ http://cloudmade.com/
¹ http://cartodb.com/
¹ http://www.giscloud.com/

http://flickr.com/map
https://foursquare.com/
http://t.co/V4EiURIA
http://data.gov/
http://www.ign.com/wikis/the-elder-scrolls-5-skyrim/interactive-maps/Skyrim
http://blog.wikimedia.org/2012/04/05/new-wikipedia-app-for-ios-and-an-update-for-our-android-app/
http://openstreetmap.org/
http://www.meetup.com/
http://projects.wsj.com/campaign2012/maps/
http://mapbox.com/
http://cloudmade.com/
http://cartodb.com/
http://www.giscloud.com/
http://flickr.com/map
https://foursquare.com/
http://t.co/V4EiURIA
http://data.gov/
http://www.ign.com/wikis/the-elder-scrolls-5-skyrim/interactive-maps/Skyrim
http://blog.wikimedia.org/2012/04/05/new-wikipedia-app-for-ios-and-an-update-for-our-android-app/
http://openstreetmap.org/
http://www.meetup.com/
http://projects.wsj.com/campaign2012/maps/
http://mapbox.com/
http://cloudmade.com/
http://cartodb.com/
http://www.giscloud.com/

What do you need to get started?
To be perfectly honest, my grandmother will never publish a map on a web page.

However, that doesn’t mean that it’s beyond those with a little computer savy and a willingness
to have a play. Remember failure is your friend (I am fairly sure that I am also related by blood).
Just learn from your mistakes and it’ll all work out.

So, here in no particular order is a list of good things to know. None of which are essential, but
any one (or more) of which will make your life slightly easier.

• HyperText Markup Language (HTML)
• JavaScript
• Cascading Style Sheets (CSS)
• Web Servers
• PHP

DON’T FREAK OUT!
First things first. This isn’t rocket science. It’s just teh interwebs. We’ll take it gently,
and I’ll be a little more specific in the following sections.

HTML

This stands for HyperText Markup Language and is the stuff that web pages are made of. Check
out the definition and other information on Wikipedia²⁰ for a great overview. Just remember
that all you’re going to use HTML for is to hold the code that you will use to present your
information. This will be as a .html (or .htm) file and they can be pretty simple (we’ll look at
some in a moment).

JavaScript

JavaScript²¹ is what’s called a ‘scripting language’. It is the code that will be contained inside the
HTML file that will make Leaflet do all its fanciness. In fact, leaflet.js is a JavaScript Library, it’s
the native language for using Leaflet.

Knowing a little bit about this would be really good, but to be perfectly honest, I didn’t know
anything about it before I started using d3.js. I read a book along the way (JavaScript: TheMissing

²⁰http://en.wikipedia.org/wiki/HTML
²¹http://en.wikipedia.org/wiki/JavaScript

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/JavaScript
http://shop.oreilly.com/product/9780596515898.do
http://shop.oreilly.com/product/9780596515898.do
http://en.wikipedia.org/wiki/JavaScript

What do you need to get started? 6

Manual²² from O’Reilly) and that helped with context, but the examples and tutorials that are
available for Leaflet are understandable, and with a bit of trial and error, you can figure out
what’s going on.

In fact, most of what this collection of information’s about is providing examples and explana-
tions for the JavaScript components of Leaflet.

Cascading Style Sheets (CSS)

Cascading Style Sheets²³ (everyone appears to call them ‘Style Sheets’ or ‘CSS’) is a language used
to describe the formatting (or “look and feel”) of a document written in a markup language. The
job of CSS is to make the presentation of the components you will draw with Leaflet simpler
by assigning specific styles to specific objects. One of the cool things about CSS is that it is
an enormously flexible and efficient method for making everything on the screen look more
consistent and when you want to change the format of something you can just change the CSS
component and the whole look and feel of your maps will change.

The wonderful World of Cascading Style Sheets

Full disclosure
I know CSS is a ridiculously powerful tool that would make my life easier, but I use it
in a very basic (and probably painful) way. Don’t judge me, just accept that the way
I’ve learnt was what I needed to get the job done (this probably means that noob’s like
myself will find it easier, but where possible try and use examples that include what
look like logical CSS structures)

²²http://shop.oreilly.com/product/9780596515898.do
²³http://en.wikipedia.org/wiki/Css

http://en.wikipedia.org/wiki/Css
http://shop.oreilly.com/product/9780596515898.do
http://en.wikipedia.org/wiki/Css

What do you need to get started? 7

Web Servers

Ok, this can go one of two ways. If you have access to a web server and know where to put the
files so that you can access them with your browser, you’re on fire. If you’re not quite sure, read
on…

Aweb server will allow you to access your HTML files and will provide the structure that allows
it to be displayed on a web browser. I can thoroughly recommend WampServer as a free and
simple way to set up a local web server that includes PHP and a MySQL database (more on
those later). Go to the WampServer web page (http://www.wampserver.com/en/) and see if it
suits you.

Throughout this document I will be describing the files and how they’re laid out in a way that
has suited my efforts while using WAMP, but they will work equally well on a remote server. I
will explain a little more about how I arrange the files later in the ‘Getting Leaflet’ section.

WAMP = Windows + Apache + MySQL + PHP

There are other options of course. You could host code on GitHub² and present the resulting
graphics on bl.ocks.org² . This is a great way to make sure that your code is available for peer
review and sharing with the wider community.

PHP

PHP is a scripting language for the web. That is to say that it is a programming language which
is executed when you load web pages and it helps web pages do dynamic things.

You might think that this sounds familiar and that JavaScript does the same thing. But not quite.

JavaScript is designed so that it travels with the web page when it is downloaded by a browser
(the client). However, PHP is executed remotely on the server that supplies the web page. This
might sound a bit redundant, but it’s a big deal. This means that the PHP which is executed
doesn’t form part of the web page, but it can form the web page. The implication here is that the
web page you are viewing can be altered by the PHP code that runs on a remote server. This is
the dynamic aspect of it.

In practice, PHP could be analogous to the glue that binds web pages together. Allowing different
portions of the web page to respond to directions from the end user.

² https://github.com/about
² http://bl.ocks.org/

https://github.com/about
http://bl.ocks.org/
https://github.com/about
http://bl.ocks.org/

What do you need to get started? 8

It is widely recognised as both a relatively simple language to learn, but also a fairly powerful
one. At the same time it comes into criticism for being somewhat fragmented and sometimes
contradictory or confusing. But in spite of any perceived shortcomings, it is a very widely used
and implemented language and one for which there is no obvious better option.

Other Useful Stuff

Text Editor

A good text editor for writing up your code will be a real boost. Don’t make the fatal mistake
of using an office word processor or similar. THEY WILL DOOM YOU TO A LIFE OF MISERY.
They add in crazy stuff that you can’t even see and never save the files in a way that can be used
properly.

Preferably, you should get an editor that will provide some assistance in the form of syntax
highlighting which is where the editor knows what language you are writing in (JavaScript for
example) and highlights the text in a way that helps you read it. For example, it will change text
that might appear as this;

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

Into something like this;

// Get the data

d3.tsv("data/data.tsv", function(error, data) {

data.forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

Infinity easier to use. Trust me.

There are plenty of editors that will do the trick. I have a preference for Geany² , mainly because
it’s what I started with and it grew on me :-).

² http://www.geany.org/

http://www.geany.org/
http://www.geany.org/

What do you need to get started? 9

Getting Leaflet

Luckily this is pretty easy.

You can either get it directly from leafletjs.com off their downloads² page (this would be the
best method IMHO) or even go to the Leaflet repository on github² and download it by clicking
on the ‘ZIP’ button (slightly trickier for the uninitiated).

Download the repository as a zip file

What you do with it from here depends on how you’re hosting your web pages. If you’re working
on them on your local PC, then you will want to have the leaflet.js and leaflet.css files in paths
that can be seen by the browser. Again, I would recommendWAMP (a local web server) to access
your files locally. If you’re using WAMP, then you just have to make sure that it knows to use a
directory that will contain the appropriate files and you will be away.

The following image is intended to provide a very crude overview of how you can set up the
directories and files.

A potential directory structure for your files

² http://leafletjs.com/download.html
² https://github.com/Leaflet/Leaflet

http://leafletjs.com/download.html
https://github.com/Leaflet/Leaflet
http://leafletjs.com/download.html
https://github.com/Leaflet/Leaflet

What do you need to get started? 10

• webserver: Use this as your ‘base’ directory where you put your files that you create. That
way when you open your browser you point to this directory and it allows you to access
the files like a normal web site.

• css: this will be your directory that will house all the Cascading Style Sheet files you will
use. and you will want to have at least one in the form of leaflet.css. You will notice in
the code examples that follow there is a line like the following; <link rel="stylesheet"

href="css/leaflet.css" />. This tells your browser that from the file it is running (one
of the leaflet html files) if it goes into the ‘css’ folder it will find the leaflet.css file that
it can load.

• data: I use this directory to hold any data files that I would use for processing. For example,
if we have a file of latitude and longitude pairs that we want to load to present to a map,
they may be in a file called latlong.csv. we can logically group all similar data files to
keep our directory structure tidy and when we want to load a data file we will always
know where to get it.

• js: this will be your directory that will house all the JavaScript files you will use.
and you will certainly want to have at least one in the form of leaflet.js. You will
notice in the code examples that follow there is a line like the following; <script
src="js/leaflet.js"></script>. This tells your browser that from the file it is running
(one of the leaflet html files) if it goes into the ‘js’ folder it will find the leaflet.js file
that it can load.

• php: whenwe start to use PHP scripts tomanipulate our data ormanage interactive loading
of information from the URL, we will want to do so using PHP scripts. Don’t be phased if
this sounds like ‘jibber-jabber’. All you need to know at this stage is that we will be using
some clever tools to load data into our web page and we’ll use PHP scripts that will live
in the php directory to do it.

Where to get information on leaflet.js

Leaflet already has a great home page where you can find an awesome range of support
information, but there are other useful places to go. The following is a far from exhaustive list
of sources, but from my own experience it represents a handy subset of knowledge.

leafletjs.com

leafletjs.com² would be the first port of call for people wanting to know something about
leaflet.js.

From here you can; - Access the features³⁰ list to get an overview of the strengths of Leaflet. -
Check out some tutorials³¹ on common things that you will want to do with Leaflet. - Read the
extensive API documentation³² that will be a treasure trove of information as you use Leaflet.
- Find links to an extensive list of plugins³³ that you can use with Leaflet. - Get updates on the
progress of Leaflet development on the developer blog³ .

² http://leafletjs.com/
³⁰http://leafletjs.com/features.html
³¹http://leafletjs.com/examples.html
³²http://leafletjs.com/reference.html
³³http://leafletjs.com/plugins.html
³ http://leafletjs.com/blog.html

http://leafletjs.com/
http://leafletjs.com/features.html
http://leafletjs.com/examples.html
http://leafletjs.com/reference.html
http://leafletjs.com/plugins.html
http://leafletjs.com/blog.html
http://leafletjs.com/
http://leafletjs.com/features.html
http://leafletjs.com/examples.html
http://leafletjs.com/reference.html
http://leafletjs.com/plugins.html
http://leafletjs.com/blog.html

What do you need to get started? 11

It is difficult to overstate the volume of available information that can be accessed from
leafletjs.com. It stands alone as the one location that anyone interested in Leaflet should visit.

Google Groups

There is a Google Group dedicated to discussions on leaflet.js³ . This serves as the official Leaflet
community forum.

In theory this forum is for discussion of any Leaflet-related topics that go beyond the scope of a
simple GitHub issue report — ideas, questions, troubleshooting, feedback, etc.

So, by all means add this group as a favourite and this will provide you with the opportunity to
receive emailed summaries of postings or just an opportunity to easily browse recent goings-on.

Stack Overflow

Stack Overflow is a question and answer site whose stated desire is “to build a library of detailed
answers to every question about programming”. Ambitious. So how are they doing? Actually
really well. Stack overflow is a fantastic place to get help and information. It’s also a great place
to help people out if you have some knowledge on a topic.

They have a funny scheme for rewarding users that encourages providing good answers based
on readers voting. It’s a great example of gamification working well. If you want to know a little
more about how it works, check out this page; http://stackoverflow.com/about.

They have a leaflet tag (http://stackoverflow.com/questions/tagged/leaflet) and like Google
Groups there is a running list of different topics that are an excellent source of information.

Github

Github³ is predominantly a code repository and version control site. It is highly regarded for its
technical acumen and provide a fantastic service that is broadly used for many purposes.

Whilst not strictly a site that specialises in providing a Q & A function, there is a significant
number of repositories (785 at last count) which mention leaflet. With the help from an astute
search phrase, there is potentially a solution to be found there.

The other associated feature of Github is Gist. Gist is a pastebin service (a place where you can
copy and past code) that can provide a ‘wiki like’ feature for individual repositories and web
pages that can be edited through a Git repository. Gist plays a role in providing the hub for the
bl.ocks.org example hosting service set up by Mike Bostock.

For a new user, Github / Gist can be slightly daunting. It’s an area where you almost need to
know what’s going on to know before you dive in. This is certainly true if you want to make
use of it’s incredible features that are available for hosting code. However, if you want to browse
other peoples code it’s an easier introduction. Have a look through what’s available and if you
feel so inclined, I recommend that you learn enough to use their service. It’s time well spent.

³ https://groups.google.com/forum/#!forum/leaflet-js
³ https://github.com/

https://groups.google.com/forum/#!forum/leaflet-js
https://github.com/
https://groups.google.com/forum/#!forum/leaflet-js
https://github.com/

What do you need to get started? 12

bl.ocks.org

bl.ocks.org³ is a viewer for code examples which are hosted on Gist. You are able to load your
code into Gist, and then from bl.ocks.org you can view them.

This is a really great way for people to provide examples of their work and there are many who
do. However, it’s slightly tricky to know what is there. It is my intention as I write this book to
host examples here, so hopefully I don’ have to come back and edit this sentence :-).

I would describe the process of getting your own code hosted and displaying as something that
will be slightly challenging for people who are not familiar with Github / Gist, but again, in
terms of visibility of the code and providing an external hosing solution, it is excellent and well
worth the time to get to grips with.

Twitter

Twitter provides a great alerting service to inform a large disparate group of people about stuff.

It’s certainly a great way to keep in touch on a hour by hour basis with people who are involved
with Leaflet and this can be accomplished in a fewways. First, there is the official Leaflet Twitter
identity³ hosted by Vladimir (AKA @mourner). Second, find as many people from the various
Leaflet sites around the web who you consider to be influential in areas you want to follow
(different aspects such as development, practical output, educational etc) and follow them. Even
better, I found it useful to find a small subset who I considered to be influential people and I
noted who they followed. It’s a bit ‘stalky’ if you’re unfamiliar with it, but the end result should
be a useful collection of people with something useful to say.

Books

There are only two books that I am currently aware of on Leaflet.

There is “[Instant Interactive Map designs with Leaflet JavaScript Library How-to)” by Jonathan
Derrough (Packt Publishing, May 2013). This is available via Amazon³ .

And “[Learn.js #3: Making maps with Leaflet.js)” by Seth Vincent, (http://learnjs.io/, November
2013). This has only been released incrementally and is part of a larger series on JavaScript which
can be found at learnjs.io ⁰.

³ http://bl.ocks.org/
³ https://twitter.com/LeafletJS
³ http://www.amazon.com/Instant-Interactive-designs-Leaflet-JavaScript/dp/1782165207
⁰http://learnjs.io/#introduction

http://bl.ocks.org/
https://twitter.com/LeafletJS
https://twitter.com/LeafletJS
http://www.amazon.com/Instant-Interactive-designs-Leaflet-JavaScript/dp/1782165207
http://learnjs.io/#introduction
http://bl.ocks.org/
https://twitter.com/LeafletJS
http://www.amazon.com/Instant-Interactive-designs-Leaflet-JavaScript/dp/1782165207
http://learnjs.io/#introduction

Start With a Simple Map
We will walk through the building of a simple web page using an HTML file. The page will host
a Leaflet map so that we can understand all the different portions of the file and the processes
that needs to be gone through to make it happen.

This wont be an exact template for building on, since there are some liberties that are
taken, but it will do the job and provides a base for explanation of the process and it
will demonstrate how easy it can be.

The following is the full code listing of the file simple-map.html that we will be examining;

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

</script>

</body>

</html>

Start With a Simple Map 14

The output that it will produce on a web page will look like this;

A Simple Leaflet Map

You can access an electronic version from bl.ocks.org ¹, GitHub ² there is a copy in the appendices
and there is a copy of all the files that appear in the book that can be downloaded (in a zip file)
when you download the book from Leanpub ³.

You can pan the map by pressing an holding the left mouse button and waving it about and you
can zoom in and out of the map by either clicking on the + or - buttons or using a scroll wheel.

As you can tell from the code listing, there’s not much there, so what you can take from that is
that there is a significant amount of cleverness going on inside leaflet.js.

Once we’ve finished explaining the different parts of the code, we’ll start looking at what we
need to add in and adjust so that we can incorporate other useful functions.

The two parts to the code that we in our example to consider are;

• HTML
• JavaScript

Technically we could also consider some CSS, but the way that this example loads our
styles is configured for simplicity, not flexibility as we will check out soon.

¹http://bl.ocks.org/d3noob/7644920
²https://gist.github.com/d3noob/7644920
³https://leanpub.com/leaflet-tips-and-tricks

http://bl.ocks.org/d3noob/7644920
https://gist.github.com/d3noob/7644920
https://leanpub.com/leaflet-tips-and-tricks
http://bl.ocks.org/d3noob/7644920
https://gist.github.com/d3noob/7644920
https://leanpub.com/leaflet-tips-and-tricks

Start With a Simple Map 15

HTML

Here’s the HTML portions of the code;

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

The D3 JavaScript code is here

</script>

</body>

</html>

Compare it with the full file. It obviously comprises most of the code for the web page which
should tell you two things.

1. The JavaScript portion that draws the map is really small (and therefore it should hopefully
be pretty easy to understand (Spoiler alert: It is)).

2. The heavy lifting done by leaflet.js must be pretty clever.

There are plenty of good options for adding additional HTML stuff into this very basic part for
the file, but for what we’re going to be doing, we really don’t need to make things too difficult.

HTML works its magic by enclosing instructions for the browser in specific ‘tags’ A tag will
begin with a descriptive word inside the greater-than and less-than signs and end with the same
thing except the closing tag includes a backslash. There are also tags that allow including the
contents inside a single tag that is closed off with a backslash. This appears to be connected with
XHTML and sometimes with browser variants. To be perfectly honest I have trouble keeping up
with it all.

Start With a Simple Map 16

For example, the title of our web page is ‘Simple Leaflet Map’. This is enclosed by an opening
title tag (<title>) and a closing title tag (</title>). So that the whole thing looks like this;
<title>Simple Leaflet Map</title>.

Each tag has a function and the browser will know how to execute the contents of a tag by virtue
of standards for web browsers that builders of browsers implement. Tags can also be nested so
hierarchies can be established to create complex instructions.

For example contained within our <head> tags;

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

We can see the <title>, a <meta> tag and a <link> tag.

The title tag simply provides identification for the page. The <meta> tag defines the character
set that is used for the page. But the link tag is a little different.

In this case we need to load a set of styles for Leaflet to use. We could have loaded these
from a local file (stored in the css directory for instance), but in order to make the sample
file a bit more transportable (we don’t need to ship it with a separate css file) the file reaches
out with a link and pulls in the appropriate css file (leaflet.css) from an official location
(http://cdn.leafletjs.com/leaflet-0.7/).

Inside the <body> tags we have two interesting sections.

The first is…

<div id="map" style="width: 600px; height: 400px"></div>

A <div> tag defines a division or a section in an HTML document. As well as creating a section
we use an ID selector (id="map") as a way of naming the division as an anchor point on an
HTML page. ID selectors can be defined as “a unique identifier to an element”. Which means
that we can name a position on our web page and then we can assign our map to that position.
Lastly for our division, we specify the size with a style declaration of width: 600px; height:

400px.

The second is…

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

Start With a Simple Map 17

This tells the browser that we are loading a script (hence the <script> tags) and in this case,
the script is leaflet.js which we get from http://cdn.leafletjs.com/leaflet-0.7/. This is
using the same idea as we used for the css file. We are loading the leaflet.js script from the
original authorised location when the file is loaded. We could have loaded this from a local file
(stored in the js directory for instance), but again, in order to make the sample file a bit more
transportable (we don’t need to ship it with a separate js file) we load it from an external source.

JavaScript

The JavaScript portion of our code looks like this;

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

Firstly I have to apologise since it should look slightly simpler, but in order to make the code
appear ideal for the book I have made it slightly less simple (but only slightly). But the main
thing that we can take away from this piece of code is that there’s not very much there. The
process of presenting a map on a web page has been rendered to a very few lines of code.

The heart of the process in the code above consists of two actions;

1. Declare the starting parameters for the map.
2. Declare the source of the map tiles.

Declaring the starting parameters for the map

The L.map statement is the key function to create a map on a page and manipulate it.

var map = L.map('map').setView([-41.2858, 174.78682], 14);

It takes the form;

L.map(<HTMLElement|String> *id*, <Map options> *options*?)

Where the map object is instantiated given an appropriate div element or its id and (optional)
map state options.

In our example it is declared as a variable using var map =. The id is set as map (recall that we
declared a div with the id map in our HTML section).

Start With a Simple Map 18

The .setView method is used specifically to modify our map state. In this case setView sets the
geographical centre of the map ([-41.2858, 174.78682] is the latitude and longitude of the
centre point) and the zoom level (14).

If this all seems a bit rushed in terms of an explanation, never fear as we will go over as many
mysteries of maps as possible in other sections of the book.

Declaring the source for the map tiles

The L.tileLayer function is used to load and display tile layers on the map.

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

It takes the form;

L.tileLayer(<String> *urlTemplate*, <TileLayer options> *options*?)

The urlTemplate is a string in the form http://{s}.mapdomain.org/{z}/{x}/{y}.png, where
the {s} will allow one of the subdomains of the main domain to be used. These are typically
used sequentially to make loading the map faster by allowing multiple parallel requests. The {z}
declares the zoom level and the {x} and {y} define the tile coordinates. We will look closely at
how these urls are formed in a future section of the book since they are an interesting feature in
themselves and it is useful to understand their working in relation to the map being displayed.

The TileLayer options provides scope for a range of different options when loading or
displaying the tiles. We will go over all of them in a later section.

In our example we are retrieving our tiles from openstreetmap.org and setting options for
attribution and maxZoom.

attribution is the placing of appropriate reference to the source of the tiles. The idea is to ensure
that credit (and copyright acknowledgement) is provided to the tile provider as is reasonable. In
the example used here we place the words ‘Map Data’ and then a copyright symbol (which is
produced by the text ©) followed by the variable mapLink which is declared slightly earlier
in the JavaScript code and is set to OpenStreetMap

which provides the text OpenStreetMap and a link to openstreetmap.org. The end result looks
like this;

Map Attribution

maxZoom sets the maximum zoom level of the map.

The .addTo method adds the tiles to the map.

http://www.openstreetmap.org/

http://www.openstreetmap.org/
http://www.openstreetmap.org/

Start With a Simple Map 19

And there’s your map!

Too easy right?

Now, there is a strong possibility that the information I have laid out here is at best borderline
useful and at worst laden with evil practices and gross inaccuracies. But look on the bright side.
Irrespective of the nastiness of the way that any of it was accomplished or the inelegance of the
code, if the map drawn on the screen is effective, you can walk away with a smile. :-)

This section concludes a very basic description of one way of presenting a map on a web page.
We will look as adding value to it in subsequent chapters.

I’ve said it before and I’ll say it again. This is not strictly a how-to for learning how to implement
leaflet.js. This is how I have managed to muddle through in a bumbling way to try and put maps
on a screen. If some small part of it helps you. All good. Those with a smattering of knowledge
of any of the topics I have butchered above (or below) are fully justified in feeling a large degree
of righteous indignation. To those I say, please feel free to amend where practical and possible,
but please bear in mind this was written from the point of view of someone with little to no
experience in the topic and therefore try to keep any instructions at a level where a new entrant
can step in.

Leaflet Features
Adding a marker to our map

At some stage we will most likely want to add a marker to our map to pinpoint something.
Leaflet makes the process nice and easy by including a marker function with several options ;

In its most simple form the following is the full code to show a map with a marker;

<!DOCTYPE html>

<html>

<head>

<title>Marker Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

var marker = L.marker([-41.29042, 174.78219])

.addTo(map);

</script>

</body>

</html>

http://leafletjs.com/reference.html#marker

http://leafletjs.com/reference.html#marker
http://leafletjs.com/reference.html#marker

Leaflet Features 21

The only difference between this code and the simple map code is the addition of a single line at
the bottom of the JavaScript portion;

var marker = L.marker([-41.29042, 174.78219])

.addTo(map);

Here we are declaring a variable with the L.marker method at a point of latitude -41.29042 and
longitude 174.78219. Then we simply add that to our map by adding .addTo(map).

And here’s our map complete with marker…

Map with marker

Adding a popup to our marker

Adding a marker couldn’t be any easier, but it’s also not terribly informative in this context.
After all, we have no information on what our marker is pointing to. However we can add this
context in the form of a popup which is a small text bubble associated with the marker. To do
this the code for our marker should look like this;

var marker = L.marker([-41.29042, 174.78219])

.addTo(map)

.bindPopup("Te Papa
Museum of New Zealand.")

.openPopup();

Here our additional lines bind a popup to our marker using .bindPopup with the text Te
Papa
Museum of New Zealand. (where the tags will make the text bold and the

tag will insert a line break). Then we open the popup with .openPopup().

Leaflet Features 22

The end result is…

Map with marker

But wait! The coolness doesn’t end there. You can click on the marker and the popup will
alternately disappear and return. If you omit the .openPopup() portion the popup won’t be open
when your map loads, but if you click on the marker it will open up.

Marker options

As well as the standard marker functions shown thus far there are several options that can be
utilised when displaying a marker. These are enabled by including an array of the appropriate
options and their desired values in a section contained in curly braces after the latitude, longitude
declaration. Below there is some sample code for the marker function with three different options
demonstrating use for a boolean value (true / false) a string and a number.

var marker = L.marker([-41.29042, 174.78219],

{option1: true, // a boolean value

option2: 'a string lives here', // a string

option3: 1234} // a number

)

.addTo(map);

Drag a marker

The draggable option is a boolean which is set to false by default, but when set to true, the
marker can be repositioned by clicking on it with the mouse and moving it.

The following is a code example;

Leaflet Features 23

var marker = L.marker([-41.29042, 174.78219],

{draggable: true}

)

.addTo(map);

Add a title to a marker

The title option is a string which will be displayed in a small rectangle beside the pointer when
a users mouse is hovered over the marker.

The following is a code example;

var marker = L.marker([-41.29042, 174.78219],

{title: 'Hover Text'}

)

.addTo(map);

And this is what it looks like…

Marker with a title as hover text

Adjust the markers transparency

The opacity option will vary the transparency of the marker from 0 (transparent) to 1 (opaque).

The following is a code example;

var marker = L.marker([-41.29042, 174.78219],

{opacity: 0.5}

)

.addTo(map);

And this is what it looks like…

Leaflet Features 24

Semi transparent marker

The full code of a live example of a map incorporating a marker with a popup, draggability, a
title and opacity are available online at bl.ocks.org or GitHub . A copy is also in the appendices
and a copy of all the files that appear in the book can be downloaded (in a zip file) when you
download the book from Leanpub .

http://bl.ocks.org/d3noob/7678758
https://gist.github.com/d3noob/7678758
https://leanpub.com/leaflet-tips-and-tricks

http://bl.ocks.org/d3noob/7678758
https://gist.github.com/d3noob/7678758
https://leanpub.com/leaflet-tips-and-tricks
http://bl.ocks.org/d3noob/7678758
https://gist.github.com/d3noob/7678758
https://leanpub.com/leaflet-tips-and-tricks

Leaflet Features 25

Adding multiple markers to our map

At some stage we will most likely want to add multiple markers to our map to pinpoint several
things. While we could do this one by one following the previous example, we could also do it
programmatically with an array of data.

The following is the full code to show multiple markers on a map;

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var planes = [

["7C6B07",-40.99497,174.50808],

["7C6B38",-41.30269,173.63696],

["7C6CA1",-41.49413,173.5421],

["7C6CA2",-40.98585,174.50659],

["C81D9D",-40.93163,173.81726],

["C82009",-41.5183,174.78081],

["C82081",-41.42079,173.5783],

["C820AB",-42.08414,173.96632],

["C820B6",-41.51285,173.53274]

];

var map = L.map('map').setView([-41.3058, 174.82082], 8);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

Leaflet Features 26

maxZoom: 18,

}).addTo(map);

for (var i = 0; i < planes.length; i++) {

marker = new L.marker([planes[i][1],planes[i][2]])

.bindPopup(planes[i][0])

.addTo(map);

}

</script>

</body>

</html>

The full code of a live example of a map incorporating multiple markers is available online at
bl.ocks.org or GitHub ⁰. A copy can also be downloaded (in a zip file) when you download the
book from Leanpub ¹. It’s called multiple-markers.html.

There are two differences between this code and the code to add a single marker. Firstly we have
declared an array (planes) which has a range of values with each row including an identifier
(the first column) and latitude and longitude values.

var planes = [

["7C6B07",-40.99497,174.50808],

["7C6B38",-41.30269,173.63696],

["7C6CA1",-41.49413,173.5421],

["7C6CA2",-40.98585,174.50659],

["C81D9D",-40.93163,173.81726],

["C82009",-41.5183,174.78081],

["C82081",-41.42079,173.5783],

["C820AB",-42.08414,173.96632],

["C820B6",-41.51285,173.53274]

];

Secondly we include a for loop that contains our marker adding line.

for (var i = 0; i < planes.length; i++) {

marker = new L.marker([planes[i][1],planes[i][2]])

.bindPopup(planes[i][0])

.addTo(map);

}

In the for loop we go from 0 to the end of the planes array (planes.length). For each row in our
array, we add a marker where the latitude corresponds to planes[i][1] (in the planes array at

http://bl.ocks.org/d3noob/9150014
⁰https://gist.github.com/d3noob/9150014
¹https://leanpub.com/leaflet-tips-and-tricks

http://bl.ocks.org/d3noob/9150014
https://gist.github.com/d3noob/9150014
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
http://bl.ocks.org/d3noob/9150014
https://gist.github.com/d3noob/9150014
https://leanpub.com/leaflet-tips-and-tricks

Leaflet Features 27

row i and column 1 (remembering that the first column is 0)) and the longitude is planes[i][2].
We also add a popup to our marker with the identifier (planes[i][0]) before adding eachmarker
to the map (.addTo(map)).

And here’s our map complete with markers…

Multiple markers on a map

Leaflet Features 28

Adding a line to our map

Adding a line ² to our map is a great way to provide an indication of a path or border. Leaflet
provides the polyline function to do this;

The following is the full code to show a simple map with a line drawn with 4 lines;

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

var polyline = L.polyline([

[-41.286, 174.796],

[-41.281, 174.786],

[-41.279, 174.776],

[-41.290, 174.775],

[-41.292, 174.788]]

).addTo(map);

</script>

</body>

</html>

²http://leafletjs.com/reference.html#polyline

http://leafletjs.com/reference.html#polyline
http://leafletjs.com/reference.html#polyline

Leaflet Features 29

The only difference between this code and the simple map code is the addition of the var

polyline = section at the bottom of the JavaScript portion;

var polyline = L.polyline([

[-41.286, 174.796],

[-41.281, 174.786],

[-41.279, 174.776],

[-41.290, 174.775],

[-41.292, 174.788]]

).addTo(map);

Here we are defining a path going from one lat/long point to another. We declare a variable with
the L.polyline method and step through our points in the array. Then we simply add that to
our map by adding .addTo(map).

And here’s our map complete with path…

Map with polyline

Obviously this hasn’t been set to follow any logical route :-).

Adding options to our polyline

There are a range of options that can be incorporated into our path and these are added after the
array (separated by a comma) and contained in curly braces. The following is an example of the
same line but with the colour changed to red, the width (weight) of the line set to 10 pixels, the
opacity (transparency) set to 0.7 (on a scale of 0 (transparent) to 1 (opaque)), drawn with dashes
of 20 pixels followed by a space of 15 pixels (dashArray) and with rounded corners where the
lines join.

Leaflet Features 30

var polyline = L.polyline([

[-41.286, 174.796],

[-41.281, 174.786],

[-41.279, 174.776],

[-41.290, 174.775],

[-41.292, 174.788]

],

{

color: 'red',

weight: 10,

opacity: .7,

dashArray: '20,15',

lineJoin: 'round'

}

).addTo(map);

And here’s our path with options…

Map with polyline

The full code of a live example of a map incorporating a the polyline and options is available
online at bl.ocks.org ³ or GitHub . A copy is also in the appendices and a copy of all the files
that appear in the book can be downloaded (in a zip file) when you download the book from
Leanpub .

³http://bl.ocks.org/d3noob/7688787
https://gist.github.com/d3noob/7688787
https://leanpub.com/leaflet-tips-and-tricks

http://bl.ocks.org/d3noob/7688787
https://gist.github.com/d3noob/7688787
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
http://bl.ocks.org/d3noob/7688787
https://gist.github.com/d3noob/7688787
https://leanpub.com/leaflet-tips-and-tricks

Leaflet Features 31

Using multiple tile layers on your map

Leaflet has a great feature that allows you to easily switch between tile layers when viewing
your map. It’s built right in to leaflet.js and (as usual) it’s simple to implement.

What we’re going to do is define the locations and appropriate attributions for two different sets
of tiles and then tell leaflet to place a control on the map that allows us to switch. These different
sets of tiles are referred to as ‘base layers’ and as such only one can be visible at any one time.

The end result is a small icon in the top right hand corner that looks like this…

Layers icon

And when we hover over it with our mouse it changes to show the different tile layers that we
have defined for use.

Layers control with mouse over

There is no change to the HTML part of our code from the simple map example. The full code
for this example can be found here on GitHub (and there’s a copy in the appendices) and a
working example is here on bl.ocks.org . The only change is in the JavaScript portion. and that
looks like the following;

var osmLink = 'OpenStreetMap',

thunLink = 'Thunderforest';

var osmUrl = 'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',

osmAttrib = '© ' + osmLink + ' Contributors',

landUrl = 'http://{s}.tile.thunderforest.com/landscape/{z}/{x}/{y}.png',

thunAttrib = '© '+osmLink+' Contributors & '+thunLink;

var osmMap = L.tileLayer(osmUrl, {attribution: osmAttrib}),

https://gist.github.com/d3noob/7828823
http://bl.ocks.org/d3noob/7828823

https://gist.github.com/d3noob/7828823
http://bl.ocks.org/d3noob/7828823
https://gist.github.com/d3noob/7828823
http://bl.ocks.org/d3noob/7828823

Leaflet Features 32

landMap = L.tileLayer(landUrl, {attribution: thunAttrib});

var map = L.map('map', {

layers: [osmMap] // only add one!

})

.setView([-41.2858, 174.78682], 14);

var baseLayers = {

"OSM Mapnik": osmMap,

"Landscape": landMap

};

L.control.layers(baseLayers).addTo(map);

(There are a few lines in this printed example which may word wrap, so if you want a version
to copy/paste from, I recommend that you use the on-line copy or the copy downloaded in the
zip file with the book.)

The first block of code sets up the links that we will use for attribution;

var osmLink = 'OpenStreetMap',

thunLink = 'Thunderforest';

This just makes it easier to add later when juggling multiple layers.

The we declare the URLs for the tiles and the attributions to display;

var osmUrl = 'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',

osmAttrib = '© ' + osmLink + ' Contributors',

landUrl = 'http://{s}.tile.thunderforest.com/landscape/{z}/{x}/{y}.png',

thunAttrib = '© '+osmLink+' Contributors & '+thunLink;

Again, by declaring these as variables, the process of defining the distinct layers is simplified.

Which is what we do in the next block of code;

var osmMap = L.tileLayer(osmUrl, {attribution: osmAttrib}),

landMap = L.tileLayer(landUrl, {attribution: thunAttrib});

Declaring the layers like this is pretty handy since now we have a single variable for each layer
that has all the information associated with it that is required to display the tiles for that layer.

Now we add the map with the following lines of code;

https://gist.github.com/d3noob/7828823

https://gist.github.com/d3noob/7828823
https://gist.github.com/d3noob/7828823

Leaflet Features 33

var map = L.map('map', {

layers: [osmMap] // only add one!

})

.setView([-41.2858, 174.78682], 14);

It looks a lot like our simple map example, but in this case we have added in an option called
layers and set that to the osmMap layer. This will be the initial layer that is shown on the map/ I
have a note there to say that it’s a good idea to only have one of your base layers in there. That’s
because if you put more than two it will load both layers when the map first loads and we don’t
need to do that unnecessarily.

The second last section of the code declares what our base layers are (there are other sorts of
layers, but we’ll get to that later) and gives them appropriate text to display in the layers selection
box.

var baseLayers = {

"OSM Mapnik": osmMap,

"Landscape": landMap

};

Then the last line adds the control for the baseLayers to the map

L.control.layers(baseLayers).addTo(map);

As I write this I am seriously considering creating a page and just adding as many layers as I
have described in the tile layers section. Hmm… I’ll give that some thought.

As I mentioned earlier, the full code for this example can be found here on GitHub (and there’s
a copy in the appendices) and a working example is here on bl.ocks.org ⁰.

https://gist.github.com/d3noob/7828823
⁰http://bl.ocks.org/d3noob/7828823

https://gist.github.com/d3noob/7828823
http://bl.ocks.org/d3noob/7828823
https://gist.github.com/d3noob/7828823
http://bl.ocks.org/d3noob/7828823

Leaflet Features 34

Overlaying information interactively on your map

In the previous section we described how to declare and switch between more than one tile layer.
Tile layers are described as ‘base layers’ in the sense that only one of them will be visible at a
time and they will form the ‘base’ of the map.

However, it is obvious that a really useful thing to be able to do would be to add information to
our map so that different features or areas can be highlighted. These features or areas will exist
on top of the base layer so that they have context. In Leaflet these can be set up as ‘overlays’
where an object or group of elements can be added to a map.

Overlays are treated in much the same way as base layers. In the sense that they are declared and
controlled using similar methods but Leaflet is clever enough to recognise that more as many
overlays as desired can exist on an individual base layer.

What we aim to do in setting out an example map using an overlay is to add one to our previous
base layer switching example. The end result will be the same icon in the top right corner of the
map;

Layers icon

But this time when we move our mouse over it, it will present an option to select ‘Interesting
places’.

Overlay selection

And when selected it will show a series of markers with a connecting line.

Leaflet Features 35

Overlay on a map

As with the base layer switching example, there is no change to the HTML part of our code
from the simple map example. The full code for this example can be found here on GitHub ¹
(and there’s a copy in the appendices) and a working example is here on bl.ocks.org ². The only
change is in the JavaScript portion. and that looks like the following;

var coolPlaces = new L.LayerGroup();

L.marker([-41.29042, 174.78219])

.bindPopup('Te Papa').addTo(coolPlaces),

L.marker([-41.29437, 174.78405])

.bindPopup('Embassy Theatre').addTo(coolPlaces),

L.marker([-41.2895, 174.77803])

.bindPopup('Michael Fowler Centre').addTo(coolPlaces),

L.marker([-41.28313, 174.77736])

.bindPopup('Leuven Belgin Beer Cafe').addTo(coolPlaces),

L.polyline([

[-41.28313, 174.77736],

[-41.2895, 174.77803],

[-41.29042, 174.78219],

[-41.29437, 174.78405]

]

).addTo(coolPlaces);

var osmLink = 'OpenStreetMap',

thunLink = 'Thunderforest';

¹https://gist.github.com/d3noob/7845954
²http://bl.ocks.org/d3noob/7845954

https://gist.github.com/d3noob/7845954
http://bl.ocks.org/d3noob/7845954
https://gist.github.com/d3noob/7845954
http://bl.ocks.org/d3noob/7845954

Leaflet Features 36

var osmUrl = 'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',

osmAttrib = '© ' + osmLink + ' Contributors',

landUrl = 'http://{s}.tile.thunderforest.com/landscape/{z}/{x}/{y}.png',

thunAttrib = '© '+osmLink+' Contributors & '+thunLink;

var osmMap = L.tileLayer(osmUrl, {attribution: osmAttrib}),

landMap = L.tileLayer(landUrl, {attribution: thunAttrib});

var map = L.map('map', {

layers: [osmMap] // only add one!

})

.setView([-41.2858, 174.78682], 14);

var baseLayers = {

"OSM Mapnik": osmMap,

"Landscape": landMap

};

var overlays = {

"Interesting places": coolPlaces

};

L.control.layers(baseLayers,overlays).addTo(map);

(There are a few lines in this printed example which may word wrap, so if you want a version
to copy/paste from, I recommend that you use the on-line copy ³.)

There are only really two differences between this block of script and that for the base layers
example.

The first is where we define what our overlay will be made up of.

var coolPlaces = new L.LayerGroup();

L.marker([-41.29042, 174.78219])

.bindPopup('Te Papa').addTo(coolPlaces),

L.marker([-41.29437, 174.78405])

.bindPopup('Embassy Theatre').addTo(coolPlaces),

L.marker([-41.2895, 174.77803])

.bindPopup('Michael Fowler Centre').addTo(coolPlaces),

L.marker([-41.28313, 174.77736])

.bindPopup('Leuven Belgin Beer Cafe').addTo(coolPlaces),

L.polyline([

[-41.28313, 174.77736],

³https://gist.github.com/d3noob/7845954

https://gist.github.com/d3noob/7845954
https://gist.github.com/d3noob/7845954

Leaflet Features 37

[-41.2895, 174.77803],

[-41.29042, 174.78219],

[-41.29437, 174.78405]

]

).addTo(coolPlaces);

Herewe declare a new LayerGroup called coolPlaces (var coolPlaces = new L.LayerGroup();).
Then we simply define a set of markers and a polyline (see the earlier sections on these two
elements for a fuller description) and add them to our coolPlaces layer.

The second change to our code is right at the end of the block of code.

var overlays = {

"Interesting places": coolPlaces

};

L.control.layers(baseLayers,overlays).addTo(map);

Here we declare our overlays (there is only one (coolPlaces), but you can add as many as you
want) using var overlays = {<put overlays here>}. Then we add overlays to our layers
control so that it knows to include the layer in the screen widget.

And that’s all there is to it!

As stated earlier, the full code for this example can be found here on GitHub (and there’s a
copy in the appendices) an online example is here on bl.ocks.org and there is a copy of all the
files that appear in the book that can be downloaded (in a zip file) when you download the book
from Leanpub .

https://gist.github.com/d3noob/7845954
http://bl.ocks.org/d3noob/7845954
https://leanpub.com/leaflet-tips-and-tricks

https://gist.github.com/d3noob/7845954
http://bl.ocks.org/d3noob/7845954
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
https://gist.github.com/d3noob/7845954
http://bl.ocks.org/d3noob/7845954
https://leanpub.com/leaflet-tips-and-tricks

Leaflet Plugins
Since the stated aim of leaflet.js is to provide a JavaScript library for drawing maps that is simple,
with good performance and usability, there are many features that it could include which it
doesn’t. The idea being that not everyone is going to use those features, therefore there is no
benefit to increasing the size of leaflet and impacting performance.

Instead the awesomeness of Leaflet is increased by encouraging third party contributors to craft
their own plugins that can leverage the core library capabilities to expand functionality on a
feature by feature basis.

At time of writing (December 2013) there are almost exactly 100 different plugins covering a
huge range of options.

Leaflet.draw

Leaflet.draw adds support for drawing and editing vectors and markers overlaid onto Leaflet
maps. Its driving force is Jacob Toye (a good Hamilton lad, so he gets a special shout-out :-)).

It is a comprehensive plugin that can add polylines, polygons, rectangles, circles and markers to
a map and then edit or delete those objects as desired. It has an extensive range of options for
configuring the drawing objects ‘look and feel’. It’s code is supported on GitHub and it can
be downloaded from there. There is also some great documentation on function and use for the
plugin that should be the authority for use.

Leaflet.draw is less of an endpoint, than an enabler of additional functionality. I say this because
while it gives us the ability to draw to our hearts content on amap, it also provides the framework
to take those drawn objects and push them to a database or similar (which we won’t cover in
this overview sorry).

What we will go over though is how to add Leaflet.draw to our simple base map and how to
configure some of the wide range of options.

Here’s what we are aiming to show in terms of the range of controls and options on the left hand
side of our map.

http://leafletjs.com/plugins.html
https://github.com/Leaflet/Leaflet.draw
https://github.com/Leaflet/Leaflet.draw

http://leafletjs.com/plugins.html
https://github.com/Leaflet/Leaflet.draw
https://github.com/Leaflet/Leaflet.draw
http://leafletjs.com/plugins.html
https://github.com/Leaflet/Leaflet.draw
https://github.com/Leaflet/Leaflet.draw

Leaflet Plugins 39

Leaflet.draw toolbar

And here’s some example objects produced with the plugin.

Leaflet.draw sample objects

The colours are configurable as we shall see in the coming pages.

Leaflet.draw code description

The following code listing is the bare minimum that should be considered for use with
Leaflet.draw. I even hesitate to say that, because the following is really only suitable for

Leaflet Plugins 40

demonstrating that you have it running correctly. The configuration options that we will work
through in the coming pages will add considerable functionality and will be captured in a
separate example that will be available in the Appendices and online on GitHub.

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<link

rel="stylesheet"

href="http://leaflet.github.io/Leaflet.draw/leaflet.draw.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script

src="http://leaflet.github.io/Leaflet.draw/leaflet.draw.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var drawnItems = new L.FeatureGroup();

map.addLayer(drawnItems);

var drawControl = new L.Control.Draw({

edit: {

featureGroup: drawnItems

}

});

Leaflet Plugins 41

map.addControl(drawControl);

map.on('draw:created', function (e) {

var type = e.layerType,

layer = e.layer;

drawnItems.addLayer(layer);

});

</script>

</body>

</html>

There are only three ‘blocks’ that have changed in the code from our simple map example.

The first is an additional link to load more CSS code;

<link

rel="stylesheet"

href="http://leaflet.github.io/Leaflet.draw/leaflet.draw.css"

/>

(As with the leaflet.css file which is loaded before hand, I have taken some small formatting
liberties to make the code appear more readable on the page.)

This loads the file directly from the Leaflet.draw repository on GitHub, so if you are loading
from a local file you will need to adjust the path appropriately.

The second is the block that loads the leaflet.draw.js script.

<script

src="http://leaflet.github.io/Leaflet.draw/leaflet.draw.js">

</script>

Leaflet.draw exists as a separate block of JavaScript code and again, here we are loading the file
directly from the Leaflet.draw repository on GitHub (as per the earlier advice, if you are loading
from a local file you will need to adjust the path appropriately).

The last change to the file is the block of code that runs and configures Leaflet.draw.

Leaflet Plugins 42

var drawnItems = new L.FeatureGroup();

map.addLayer(drawnItems);

var drawControl = new L.Control.Draw({

edit: {

featureGroup: drawnItems

}

});

map.addControl(drawControl);

map.on('draw:created', function (e) {

var type = e.layerType,

layer = e.layer;

drawnItems.addLayer(layer);

});

The var drawnItems = new L.FeatureGroup(); line adds a new extended layer group ⁰ to the
map called drawnItems. This is the layer that the elements we create will be stored on.

Then the map.addLayer(drawnItems); line adds the layer with our drawn items to the map.

Next we get to the first of the true Leaflet.draw commands when we initialize the draw control
and pass it the feature group of editable layers;

var drawControl = new L.Control.Draw({

edit: {

featureGroup: drawnItems

}

});

map.addControl(drawControl);

This is required when adding the edit toolbar and tells the Leaflet.draw plugin which layer
(drawnItems) should be editable. Then the controls are added to themap (map.addControl(drawControl);).

Finally when we add a new vector or marker we need prompt a trigger that captures the type of
item ¹ we have created (polyline, rectangle etc) and adds it to the drawn items layer on the map.

map.on('draw:created', function (e) {

var type = e.layerType,

layer = e.layer;

drawnItems.addLayer(layer);

});

This is alto the part of the code where you could store the information that described the element
in a database or similar.

⁰http://leafletjs.com/reference.html#featuregroup
¹https://github.com/Leaflet/Leaflet.draw#events

http://leafletjs.com/reference.html#featuregroup
https://github.com/Leaflet/Leaflet.draw#events
https://github.com/Leaflet/Leaflet.draw#events
http://leafletjs.com/reference.html#featuregroup
https://github.com/Leaflet/Leaflet.draw#events

Leaflet Plugins 43

Leaflet.draw configuration options

As I mentioned earlier, the sample code described above is extremely cut down and should be
extended using the wide range of options available to Leaflet.draw.

Object colours

As our first change, if we use the simple example, all of the elements we generate have the same
colour, so lets change that first.

Leaflet.draw map with common colours

Changing the options is a simple matter of declaring them when we initialize the draw controls
by adding them as required by the documentation on the Leaflet.draw GitHub page ². For
example in the following code snippet we have added in the draw: option which in turn has
options for each of the shapes. We have entered the polygon: option which has it’s own options
of which we have added shapeOptions: as an option. And as if that wasn’t enough we select
the option for color: from this and finally declare it as purple.

var drawControl = new L.Control.Draw({

draw: {

polygon: {

shapeOptions: {

color: 'purple'

},

},

},

edit: {

²https://github.com/Leaflet/Leaflet.draw#draw-handler-options

https://github.com/Leaflet/Leaflet.draw#draw-handler-options
https://github.com/Leaflet/Leaflet.draw#draw-handler-options

Leaflet Plugins 44

featureGroup: drawnItems

}

});

map.addControl(drawControl);

This might seem slightly confusing, but it’s just a simple hierarchy which we can flesh out by
doing the same thing for each of the remaining shapes (polyline, rectangle and circle). The code
snippet would then look as follows;

var drawControl = new L.Control.Draw({

draw: {

polygon: {

shapeOptions: {

color: 'purple'

},

},

polyline: {

shapeOptions: {

color: 'red'

},

},

rect: {

shapeOptions: {

color: 'green'

},

},

circle: {

shapeOptions: {

color: 'steelblue'

},

},

},

edit: {

featureGroup: drawnItems

}

});

map.addControl(drawControl);

And our new colours look like this…

Leaflet Plugins 45

Leaflet.draw map with various colours

Polygon line intersection

When drawing a polygon it is very easy to cross the lines when describing our object on the
screen, and while this may be a desired action, in general it is probably not. However as our
code stands, if we tell the script to cross the lines and draw a polygon it will do it with a (perhaps
unintended) result looking something like the following…

Leaflet.draw polygon with crossed lines

Luckily there is an option that will provide a warning that this is happening while drawing and

Leaflet Plugins 46

will allow you to correct and carry on. The following screen shot shows the results when trying
to place a point that allows boundary lines to cross;

Leaflet.draw polygon with crossed lines

We can see that not only is a warning raised, but the shape colour changes.

This is accomplished by alteration of the polygon options as follows;

polygon: {

shapeOptions: {

color: 'purple'

},

allowIntersection: false,

drawError: {

color: 'orange',

timeout: 1000

},

},

This has introduced the allowIntersection option and set it to false and provided the drawError
option with the instructions to change the colour of the object to orange for 1000 milliseconds.

This option will also work with polyline objects.

Show and measure an area

While tracing a polygon we can get Leaflet.draw to report the total area spanned by the shape
by setting the showArea option to true.

Leaflet Plugins 47

Leaflet.draw polygon showing area

You can see from the screen shot that the area is in hectares, but we can set the measurement
units to not be metric (to show acres instead) by setting the metric option to false. The code
for the polygon now looks like this;

polygon: {

shapeOptions: {

color: 'purple'

},

allowIntersection: false,

drawError: {

color: 'orange',

timeout: 1000

},

showArea: true,

metric: false

},

Repeating a drawing option automatically

By default once we have finished drawing a polygon, if we wanted to draw another, we would
need to click on the polygon tool on the toolbar to start again. But we can use the repeatMode
set to true to continue to dray polygons until we select another object to draw or until we press
the escape key.

Our polygon option code will now look like this;

Leaflet Plugins 48

polygon: {

shapeOptions: {

color: 'purple'

},

allowIntersection: false,

drawError: {

color: 'orange',

timeout: 1000

},

showArea: true,

metric: false,

repeatMode: true

},

This option will work with all the other drawing objects.

Place an alternative marker

If an alternative marker has been declared (see section on setting up different markers) it can be
specified under the marker option as an alternative icon.

The code to set up an alternative icon duplicates is covered elsewhere, but consists of the
following;

var LeafIcon = L.Icon.extend({

options: {

shadowUrl:

'http://leafletjs.com/docs/images/leaf-shadow.png',

iconSize: [38, 95],

shadowSize: [50, 64],

iconAnchor: [22, 94],

shadowAnchor: [4, 62],

popupAnchor: [-3, -76]

}

});

var greenIcon = new LeafIcon({

iconUrl: 'http://leafletjs.com/docs/images/leaf-green.png'

});

Here we are using one of the markers (the green leaf) set up as part of the custom icons tutorial ³
on GitHub.

And the option code to be added to include an alternative marker is;

³http://leafletjs.com/examples/custom-icons.html

http://leafletjs.com/examples/custom-icons.html
http://leafletjs.com/examples/custom-icons.html

Leaflet Plugins 49

marker: {

icon: greenIcon

},

And here’s a pretty picture of the green marker.

Add a custom marker

Place the Leaflet.draw toolbar in another position

The toolbar position can also be changed. This is configured via an option that is quite high up
the hierarchy (in parallel with the draw and edit options). So this should be added directly under
the drawControl declaration per the following code snippet;

var drawControl = new L.Control.Draw({

position: 'topright',

This will place the toolbar in the top right hand corner of the map as follows;

Leaflet Plugins 50

Moving the Leaflet.draw toolbar

The other options for positioning are bottomright, bottomleft and the default of topleft.

The full code and a live example of the use of the Leaflet.draw plugin with the options described
here in the appendices and is available online at bl.ocks.org or GitHub . A copy of all the files
that appear in the book can be downloaded (in a zip file) when you download the book from
Leanpub .

http://bl.ocks.org/d3noob/7730264
https://gist.github.com/d3noob/7730264
https://leanpub.com/leaflet-tips-and-tricks

http://bl.ocks.org/d3noob/7730264
https://gist.github.com/d3noob/7730264
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
http://bl.ocks.org/d3noob/7730264
https://gist.github.com/d3noob/7730264
https://leanpub.com/leaflet-tips-and-tricks

Leaflet Plugins 51

OSMGeocoder Search

The OSMGeocoder plugin adds a search facility to a leaflet map that uses the OpenStreetMap
tool ‘Nominatim’ to search for a location and provide a reverse geolocation on the search term
to pinpoint the position on the map.

The plugin was developed by ‘kartenkarsten’ and is hosted on GitHub where it can be
downloaded from.

There are a number of configurable options which we shall describe in a moment.

OSMGeocoder code description

The following code is a ‘bare bones’ listing which we will flesh out with some options. The
version with the added options will be in the appendices and there will be a link to a live version
on bl.ocks.org.

<!DOCTYPE html>

<html>

<head>

<title>osmGeocoder Search Plugin for Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<link

rel="stylesheet"

href="http://k4r573n.github.io/leaflet-control-osm-geocoder/Control.OS\

MGeocoder.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script

src="http://k4r573n.github.io/leaflet-control-osm-geocoder/Control.OSM\

Geocoder.js">

</script>

https://github.com/k4r573n/leaflet-control-osm-geocoder
https://github.com/k4r573n/leaflet-control-osm-geocoder/archive/master.zip

https://github.com/k4r573n/leaflet-control-osm-geocoder
https://github.com/k4r573n/leaflet-control-osm-geocoder/archive/master.zip
https://github.com/k4r573n/leaflet-control-osm-geocoder
https://github.com/k4r573n/leaflet-control-osm-geocoder/archive/master.zip

Leaflet Plugins 52

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var osmGeocoder = new L.Control.OSMGeocoder();

map.addControl(osmGeocoder);

</script>

</body>

</html>

There are only three ‘blocks’ that have changed in the code from our simple map example.

The first is an additional link to load more CSS code;

<link

rel="stylesheet"

href="http://k4r573n.github.io/leaflet-control-osm-geocoder/Control.OSMGeo\

coder.css"

/>

(Because of the length of the URL for the file, the formatting may make cutting and pasting
from the ebook problematic. For a more reliable snippet of code, download the live version from
GitHub)

This loads the file directly from the OSMGeocoder repository on GitHub ⁰, so if you are loading
from a local file you will need to adjust the path appropriately.

The second is the block that loads the Control.OSMGeocoder.js script.

<script

src="http://k4r573n.github.io/leaflet-control-osm-geocoder/Control.OSMGeoc\

oder.js">

</script>

(Again because of the length of the URL for the file, the formatting maymake cutting and pasting
from the ebook problematic. For a more reliable snippet of code, download the live version from
GitHub ¹).

https://gist.github.com/d3noob/7746162
⁰https://github.com/k4r573n/leaflet-control-osm-geocoder
¹https://gist.github.com/d3noob/7746162

https://gist.github.com/d3noob/7746162
https://gist.github.com/d3noob/7746162
https://github.com/k4r573n/leaflet-control-osm-geocoder
https://gist.github.com/d3noob/7746162
https://gist.github.com/d3noob/7746162
https://gist.github.com/d3noob/7746162
https://github.com/k4r573n/leaflet-control-osm-geocoder
https://gist.github.com/d3noob/7746162

Leaflet Plugins 53

Control.OSMGeocoder.js exists as a separate block of JavaScript code and again, here we are
loading the file directly from the OSMGeocoder repository on GitHub (as per the earlier advice,
if you are loading from a local file you will need to adjust the path appropriately).

The last change to the file is the block of code that runs and configures Leaflet.draw.

var osmGeocoder = new L.Control.OSMGeocoder();

map.addControl(osmGeocoder);

The fist line (var osmGeocoder = new L.Control.OSMGeocoder();) initializes the osmGeocoder
control and the second (map.addControl(osmGeocoder);) adds the search controls to the map.

There is not a lot of additional code required to get this plugin up and running and the following
is what we see on the screen;

OSMGeocoder plugin

The only noticeable addition is a svelte magnifying glass in the top left hand corner. If we hover
our mouse over the magnifying glass a search box appears.

OSMGeocoder plugin

If we then type in an address and click on ‘locate’…

Leaflet Plugins 54

OSMGeocoder plugin

… we are taken to a view of the location of our search.

OSMGeocoder plugin

OSMGeocoder configuration options

As I mentioned earlier, the sample code described above is in it’s most basic form and it can be
extended using a range of options available to OSMGeocoder.

Adding in options is a simple matter of declaring them when we initialize the OSMGeocoder
control. The three options we are going to introduce (there are more, but I’m opting for the
simple ones) are to leave the search box up on the screen (no need to hover over the magnifying
glass), we will position the search box in the bottom right corner (I’m not advocating this, it’s
just for the sake of demonstration) and we will change the text for the button to ‘Find!’. The
following are the options added to the OSMGeocoder control that will accomplish this;

Leaflet Plugins 55

var osmGeocoder = new L.Control.OSMGeocoder({

collapsed: false,

position: 'bottomright',

text: 'Find!',

});

Resulting in a map that looks a little like this…

OSMGeocoder plugin

A copy of this file and all the files that appear in the book can be downloaded (in a zip file) when
you download the book from Leanpub ²

²https://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

Leaflet Plugins 56

Leaflet.FileLayer load local GPX, KML, GeoJSON files

The Leaflet.FileLayer plugin ³ adds the ability to load a gps trace in the form of a KML, GPX or
GeoJSON file to a Leaflet map. The idea being that if you have gone on a journey and captured
the trip using a gps it can be loaded easily onto a map for viewing.

The plugin was developed by Mathieu Leplatre and is hosted on GitHub where it can be
downloaded from.

Leaflet.FileLayer code description

The following is a code listing that we will use to describe the required changes from our simple-
map.html example to enable Leaflet.FileLayer. There is also an online version on bl.ocks.org and
GitHub .

<!DOCTYPE html>

<html>

<head>

<title>LeafletFileLayer Plugin</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<link

rel="stylesheet"

href="http://makinacorpus.github.io/Leaflet.FileLayer/Font-Awesome/css\

/font-awesome.min.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script

src="http://makinacorpus.github.io/Leaflet.FileLayer/leaflet.filelayer\

.js">

</script>

<script

src="http://makinacorpus.github.io/Leaflet.FileLayer/togeojson/togeojs\

³https://github.com/makinacorpus/Leaflet.FileLayer
https://github.com/makinacorpus/Leaflet.FileLayer/archive/master.zip
http://bl.ocks.org/d3noob/7752523
https://gist.github.com/d3noob/7752523

https://github.com/makinacorpus/Leaflet.FileLayer
https://github.com/makinacorpus/Leaflet.FileLayer/archive/master.zip
http://bl.ocks.org/d3noob/7752523
https://gist.github.com/d3noob/7752523
https://github.com/makinacorpus/Leaflet.FileLayer
https://github.com/makinacorpus/Leaflet.FileLayer/archive/master.zip
http://bl.ocks.org/d3noob/7752523
https://gist.github.com/d3noob/7752523

Leaflet Plugins 57

on.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var style = {color:'red', opacity: 1.0, fillOpacity: 1.0, weight: 2, c\

lickable: false};

L.Control.FileLayerLoad.LABEL = '<i class="fa fa-folder-open"></i>';

L.Control.fileLayerLoad({

fitBounds: true,

layerOptions: {style: style,

pointToLayer: function (data, latlng) {

return L.circleMarker(latlng, {style: style});

}},

}).addTo(map);

</script>

</body>

</html>

There are three ‘blocks’ that have changed in the code from our simple map example.

The first is an additional link to load more CSS code;

<link

rel="stylesheet"

href="http://makinacorpus.github.io/Leaflet.FileLayer/Font-Awesome/css/fon\

t-awesome.min.css"

/>

(Because of the length of the URL for the file, the formatting may make cutting and pasting
from the ebook problematic. For a more reliable snippet of code, download the live version from
GitHub)

This loads the css file directly from the Leaflet.FileLayer repository on GitHub , so if you are
loading from a local file you will need to adjust the path appropriately.

https://gist.github.com/d3noob/7752523
https://github.com/makinacorpus/Leaflet.FileLayer

https://gist.github.com/d3noob/7752523
https://gist.github.com/d3noob/7752523
https://github.com/makinacorpus/Leaflet.FileLayer
https://gist.github.com/d3noob/7752523
https://github.com/makinacorpus/Leaflet.FileLayer

Leaflet Plugins 58

The second is the block that loads the leaflet.filelayer.js script and an additional script togeojson.js
that was written by Tom MacWright to perform the internal conversion of the GPX and KML
traces to GeoJSON.

<script

src="http://makinacorpus.github.io/Leaflet.FileLayer/leaflet.filelayer.js">

</script>

<script

src="http://makinacorpus.github.io/Leaflet.FileLayer/togeojson/togeojson.j\

s">

</script>

(Again because of the length of the URL for the file, the formatting maymake cutting and pasting
from the ebook problematic. For a more reliable snippet of code, download the live version from
GitHub ⁰).

leaflet.filelayer.js exists as a separate block of JavaScript code and we are loading the file
directly from the Leaflet.FileLayer repository on GitHub (as per the earlier advice, if you are
loading from a local file you will need to adjust the path appropriately). Likewise we are also
loading the togeojson.js file from GitHub.

The last change to the file is the block of code that runs and configures Leaflet.FileLayer.

var style = {color:'red', opacity: 1.0, fillOpacity: 1.0, weight: 2, clickable\

: false};

L.Control.FileLayerLoad.LABEL = '<i class="fa fa-folder-open"></i>';

L.Control.fileLayerLoad({

fitBounds: true,

layerOptions: {style: style,

pointToLayer: function (data, latlng) {

return L.circleMarker(latlng, {style: style});

}},

}).addTo(map);

The fist line (starting with var style =) sets the styles for the control and the loaded gps traces.
Then the icon to initiate the file opening process is declared (L.Control.FileLayerLoad.LABEL
= '<i class="fa fa-folder-open"></i>';).

The script then sets the options for Leaflet.FileLayer. The first is the fitBounds option which will
present a loaded gps trace in a window that is zoomed to show its full extent. The second is the
layerOptions option which will apply the styling to the trace based on our previously declared
values (this included the short pointToLayer function that makes circles from point values in
the traces).

Lastly we add the layer to our map with .addTo(map).

https://github.com/mapbox/togeojson
⁰https://gist.github.com/d3noob/7752523

https://github.com/mapbox/togeojson
https://gist.github.com/d3noob/7752523
https://gist.github.com/d3noob/7752523
https://github.com/mapbox/togeojson
https://gist.github.com/d3noob/7752523

Leaflet Plugins 59

So when we load our page we can see the folder icon in the top left hand corner.

Leaflet.FileLayer plugin

If we click on this folder we will be presented with a dialogue box where we can select a file to
load and when we do…

Leaflet.FileLayer plugin with gps trace from Hanmer Springs

Our gps trace is automatically zoomed and panned to present our trace to its full extent.

A copy of this file and a copy of all the files that appear in the book can be downloaded (in a zip
file) when you download the book from Leanpub ¹

¹https://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

Leaflet Plugins 60

Generate a heatmap with Leaflet.heat

A heatmap is a two dimensional representation of values encodes as colours. In our case these
colours are superimposed over a map generated using leaflet.js.

The example here represents seismic activity in July / August of 2013 in central New Zealand,
when they were unfortunate enough to experience a series of earthquakes.

Leaflet.heat representation of earthquakes in central New Zealand

In areas of greater intensity and density, the heatmap produces a gradient that varies from blue
to red. This example shows a definite region of increased activity over the time in question.

There are several variations on heatmap plugins for Leaflet. The one we are going to examine
is called Leaflet.heat ². It is fairly new (at time of writing), and it builds on a separate JavaScript
library called simpleheat ³. Both of these have been developed by Vladimir Agafonkin (yes, the
developer of Leaflet), so they come with a considerable pedigree.

Leaflet.heat code description

The following is a code listing that we will use to describe the required changes from our
simple-map.html example to enable Leaflet.heat. There is also an online version on bl.ocks.org ,
GitHub and can be downloaded along with the data file (in a zip file) when you download the
book from Leanpub .

²https://github.com/Leaflet/Leaflet.heat
³https://github.com/mourner/simpleheat
http://bl.ocks.org/d3noob/8973028
https://gist.github.com/d3noob/8973028
https://leanpub.com/leaflet-tips-and-tricks

https://github.com/Leaflet/Leaflet.heat
https://github.com/mourner/simpleheat
http://bl.ocks.org/d3noob/8973028
https://gist.github.com/d3noob/8973028
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
https://github.com/Leaflet/Leaflet.heat
https://github.com/mourner/simpleheat
http://bl.ocks.org/d3noob/8973028
https://gist.github.com/d3noob/8973028
https://leanpub.com/leaflet-tips-and-tricks

Leaflet Plugins 61

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map with Heatmap </title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script

src="http://leaflet.github.io/Leaflet.heat/dist/leaflet-heat.js">

</script>

<script src="2013-earthquake.js"></script>

<script>

var map = L.map('map').setView([-41.5546,174.146], 10);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var heat = L.heatLayer(quakePoints,{

radius: 20,

blur: 15,

maxZoom: 17,

}).addTo(map);

</script>

</body>

</html>

Wewill be loading our data from a separate JavaScript file called 2013-earthquake.js. The data
has been sourced from New Zealand’s Geonet site over a date range that covers a period of
reasonable seismic activity in July / August 2013.

http://geonet.org.nz/

http://geonet.org.nz/
http://geonet.org.nz/

Leaflet Plugins 62

Loading the file from a separate JavaScript file is purely for conveniences sake and the format of
the data is as follows;

var quakePoints = [

[-41.5396,174.1242,1.7345],

[-38.8725,175.9561,2.6901],

[-41.8992,174.3117,4.6968],

[-41.7495,174.02,1.8642],

[-41.7008,174.0876,2.1629],

[-41.7371,174.0682,2.0408],

[-41.372,173.3502,2.7565],

[-41.7511,174.0623,2.4531],

[-41.7557,174.3391,2.1871],

[-41.6881,174.2726,3.1336],

[-41.7463,174.1194,2.7113],

[-41.6966,174.1238,2.4168],

...

];

There are only two ‘blocks’ that have changed in the code from our simple map example.

The first is an additional two links to external JavaScript files;

<script

src="http://leaflet.github.io/Leaflet.heat/dist/leaflet-heat.js">

</script>

<script src="2013-earthquake.js"></script>

The first link loads the Leaflet.heat plugin and the second loads our data from 2013-earthquake.js.

The second change from our simple map example adds and configures our heatmap layer;

var heat = L.heatLayer(quakePoints,{

radius: 20,

blur: 15,

maxZoom: 17,

}).addTo(map);

In this block we load the data as the variable quakePoints then set our radius, blur andmaxZoom
values for the plugin.

radius configuration option

The radius option sets the radius (duh) of the circles that correspond to a single data point on
the map. If we remove the blur effect we can clearly see the effect on the map.

Leaflet Plugins 63

Radii of points

As we zoom in and out of the map, the radii of the points remains constant on the screen, but
the representation that they create on the screen changes as there are subsequently more or less
points to generate an effect.

Radii of points zoomed in

blur configuration option

Blurring the points results in a smoothing and dispersing of the data. The previous section
demonstrated the effect of removing the blurring (set to 1), but it can also be increased to the
point where they can run the risk of fading away a bit too much. For example this is the effect
when blurring is set to 50;

Leaflet Plugins 64

Points with blur set to 50

maxZoom configuration option

The maxZoom configuration option designates the level where the points reach their maximum
intensity. Therefore if we were to set the maxZoom value to the initial zoom level (10) of our map,
we should expect to see each point represented by a full spectrum of blue to green;

Zoom level and maxZoom both on 10

Obviously this is something that you will want to consider as you plan how to set the
configuration options on your maps :-).

Leaflet Plugins 65

A copy of this file and a copy of all the files that appear in the book can be downloaded (in a zip
file) when you download the book from Leanpub

https://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

Assorted Leaflet Tips and Tricks
Make your map full screen

In the simple map example that we developed in the initial chapter we set the size of our map to
be 600 pixels wide and 400 pixels high when we were declaring the section of the page (the div
with the id map) that would contain the map.

<div id="map" style="width: 600px; height: 400px"></div>

That’s a fine size for embedding somewhere in a page, but There will come a time when you will
want to make your map expand to fill the web page.

The astute reader will immediately notice that with our current size declaration using fixed units
(pixels) unless all browser windows were the same size we won’t be able to accurately have a
map the full size of the web page. It would be too large or too small most of the time.

To remedy this we need to declare a map size that is referenced to the browser, not a fixed unit.

We can do this by declaring our map size as a percentage of the browser window in the <style>
section using CSS.

The full code will look like this;

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<style>

body {

padding: 0;

margin: 0;

}

html, body, #map {

height: 100%;

width: 100%;

}

</style>

Assorted Leaflet Tips and Tricks 67

</head>

<body>

<div id="map"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

</script>

</body>

</html>

There are two differences between this example and the simple-map example.

The first is the <style> section;

<style>

body {

padding: 0;

margin: 0;

}

html, body, #map {

height: 100%;

width: 100%;

}

</style>

The body of the page is essentially the entire contents of the web page. You can see in the HTML
file that anything that gets drawn on the screen is contained in the <body> tags. So our styling
here ensures that there is no padding or margin for our body in the browser and then we set the
html, the body and the element with the id map (which we declared in a <div>) to 100 percent of
the height and width of the browser.

The only other change we need to make is to remove the fixed size declarations that we had
made in the div. So that line ends up looking like this;

Assorted Leaflet Tips and Tricks 68

<div id="map"></div>

The final result is a map that will fill a browser window no matter what shape you make it.

For example;

Full Screen Map Vertical

Or even…

Full Screen Map Vertical

Notice that there are no scroll bars and no borders. The contents of the page fit the browser
exactly.

Assorted Leaflet Tips and Tricks 69

The full code and a live example are available online at bl.ocks.org or GitHub¹⁰⁰. A a copy of
all the files that appear in the book can be downloaded (in a zip file) when you download the
book from Leanpub¹⁰¹

http://bl.ocks.org/d3noob/7654694
¹⁰⁰https://gist.github.com/d3noob/7654694
¹⁰¹https://leanpub.com/leaflet-tips-and-tricks

http://bl.ocks.org/d3noob/7654694
https://gist.github.com/d3noob/7654694
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
http://bl.ocks.org/d3noob/7654694
https://gist.github.com/d3noob/7654694
https://leanpub.com/leaflet-tips-and-tricks

Assorted Leaflet Tips and Tricks 70

Importing external data into leaflet.js

While I am not the most experienced person to be giving advice on different ways of importing
data into leaflet.js, I have come across a few ways of accomplishing the task which work pretty
well and hopefully you will get something out of it too.

Why would you want to do this in the first place?

If we use the example of a simple map that is going to display a line on the map that represents
a series of connected coordinates, we are going to have to load the array that represents those
coordinates at some point in the script. In the following example we declare our array named
planelatlong with a range of data;

<?php ?>

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map with line</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

var map = L.map('map').setView([-41.3058, 174.82082], 12);

mapLink =

'OpenStreetMap';

L.tileLayer(

Assorted Leaflet Tips and Tricks 71

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var polyline = L.polyline(planelatlong).addTo(map);

</script>

</body>

</html>

… and then later in the script we access the data by adding it as a polyline with the line;

var polyline = L.polyline(planelatlong).addTo(map);

The end result is a line on our map that looks like this;

Map with a simple polyline

We will look at two ways of loading the data from an outside source. The first is a bit of a cheat
in that it still relies on hard coded data in a JavaScript file, but the second is more flexible and
allows for the importing of dynamic data from a MySQL database via php.

Importing data as a JavaScript file

As mentioned earlier in the section this technique is more of a cheat than anything since the data
is still hard coded in a file somewhere, however, it may provide a degree of flexibility for selecting
one of several files depending on different circumstances. We will examine a solution where we
simply load a single array of data points (the same one as shown in the previous section).

Assorted Leaflet Tips and Tricks 72

I describe this technique as cheating because it’s just a matter of adding another JavaScript (.js)
file to the web page and loading the data in the added file.

Here is the web page (php file) that will display our map;

<?php ?>

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map with line</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script

src="load-js-data.js">

</script>

<script>

var map = L.map('map').setView([-41.3058, 174.82082], 12);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var polyline = L.polyline(planelatlong).addTo(map);

</script>

</body>

</html>

This is exactly the same as our example from earlier in the section except the declared array
(planelatlong) has been replaced by a piece of script that adds in an additional piece of
JavaScript code;

Assorted Leaflet Tips and Tricks 73

<script

src="load-js-data.js">

</script>

The file that is being loaded (load-js-data.js) contains our data. Here it is in full;

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

The best way I have of thinking of this solution is to imagine that it is simply one file that imports
part of itself (in this case the data) from another file.

Importing data from MySQL via php

A variant of the explanation to follow is in the MySQL section of this book, But I will explain
the steps here in a slightly different way (just in case you’re comparing them).

We’ll start with the assumption that we have created a database and populated it with
information. Now we need to work out how to extract a subset of that information and how
to do it in a format that is valid (won’t cause an error) JavaScript.

What we’re going to do is to achieve the same result that we attained in the previous section
where we used a line in the main web file to pull in the data in the format that we want.

To recap, we want to have the following array declaration imported from an external source;

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

In this example we are going to run a php script in the position where that data would normally
be placed and the php script will import the array declaration. Our web file looks almost exactly
the same as our ‘import with a JavaScript file’ effort from the previous section, but in this case
the importing line is different;

Assorted Leaflet Tips and Tricks 74

<?php ?>

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

<?php include 'planelatlong.php'; ?>

var map = L.map('map').setView([-41.3058, 174.82082], 12);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var polyline = L.polyline(planelatlong).addTo(map);

</script>

</body>

</html>

Hopefully you can see it there in the middle. It is the following line;

<?php include 'planelatlong.php'; ?>

When the web file gets to that line it will run the script planelatlong.php and that script will
import our declared data array.

Assorted Leaflet Tips and Tricks 75

Extracting data from MySQL with php

Our php script is going to exist as a separate file which we will name planelatlong.php (ideally
we would place this in a separate directory called php which will be in our web’s root directory
(alongside the data directory) but for the sake of simplicity we will have our ‘calling’ file (the
one with the leaflet.js script) and this php script in the same directory).

The database that we’re going to access is one that contains a range of values. Two of which are
the latitude and longitude of a plane in flight. The database is organised as follows;

planedb database

In our example we will pull out only the rows with the latitude and longitude and return only
them in a format that the script will recognise as follows;

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

Here’s the contents of our planelatlong.php file (This is also available in electronic form in
the zip file of example scripts that can be downloaded when you download the book from
Leanpub¹⁰²);

¹⁰²https://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

Assorted Leaflet Tips and Tricks 76

<?php

$username = "planeuser";

$password = "planeuser";

$host = "localhost";

$database="planedb";

$server = mysql_connect($host, $username, $password);

$connection = mysql_select_db($database, $server);

$myquery = "

SELECT `lat`, `long` FROM `test01`

WHERE `lat` <> 0

";

$query = mysql_query($myquery);

if (! $query) {

echo mysql_error();

die;

}

$data = array();

echo "var planelatlong = [";

for ($x = 0; $x < mysql_num_rows($query); $x++) {

$data[] = mysql_fetch_assoc($query);

echo "[",$data[$x]['lat'],",",$data[$x]['long'],"]";

if ($x <= (mysql_num_rows($query)-2)) {

echo ",";

}

}

echo "];";

mysql_close($server);

?>

It’s pretty short, but it packs a punch. Let’s go through it and see what it does.

The <?php line at the start and the ?> line at the end form the wrappers that allow the requesting
page to recognise the contents as php and to execute the code rather than downloading it for
display.

The following lines set up a range of important variables;

Assorted Leaflet Tips and Tricks 77

$username = "planeuser";

$password = "planeuser";

$host = "localhost";

$database="planedb";

These are configuration details for theMySQL database. There’s user and password (don’t worry,
because the script isn’t returned to the browser, the browser doesn’t get to see the password).
There’s the host location of our database (in this case it’s local, but if it was on a remote server,
we would just include its address) and there’s the database we’re going to access.

Then we use those variables to connect to the server…

$server = mysql_connect($host, $username, $password);

â€¦ and then we connect to the specific database;

$connection = mysql_select_db($database, $server);

Then we have our query in a form that we can paste into the right spot and it’s easy to use.

$myquery = "

SELECT `lat`, `long` FROM `test01`

WHERE `lat` <> 0

";

I have it like this so all I need to do to change the query I use is to paste it into the middle line
there between the speech-marks and I’m done. It’s just a convenience thing.

The query itself is a fairly simple affair. We return lat and long from our table called test01

but only if the lat value on the row is not equal to zero (WHERE lat <> 0) (this will allow us to
ignore the rows which do not contain a latitude (and typically a longitude in this case) value.

The query is then run against the database with the following command;

$query = mysql_query($myquery);

…and then we check to see if it was successful. If it wasn’t, we output the MySQL error code;

if (! $query) {

echo mysql_error();

die;

}

Then we declare the $data variable as an array;

Assorted Leaflet Tips and Tricks 78

$data = array();

Now we begin to echo, or print out the values for our piece of code that we expect to have
inserted into our leaflet.js code;

First of all we print out the start of the declaration of our array;

echo "var planelatlong = [";

Then we start up a for loop that goes from 0 ($x = 0;) to the number of returned rows in our
query ($x < mysql_num_rows($query)) one step at a time ($x++)

for ($x = 0; $x < mysql_num_rows($query); $x++) {

We place our rows into our $data array…

$data[] = mysql_fetch_assoc($query);

… and then echo each row as a latitude and longitude value enclosed by square brackets and
separated by a comma;

echo "[",$data[$x]['lat'],",",$data[$x]['long'],"]";

So that each line looks a little like this

[-41.31825,174.80768]

Because we need to separate our lat/long values that are enclosed with brackets from each other
with a comma like this…

[-41.31825,174.80768],

[-41.31606,174.80774]

… but we don’t want a comma after the last lat/long pair. We can use an if statement to evaluate
each row to see if it’s the last and print a comma if its not;

if ($x <= (mysql_num_rows($query)-2)) {

echo ",";

}

After the our rows have finished being produced by our loop we need to close it off with another
square bracket;

Assorted Leaflet Tips and Tricks 79

echo "];";

And all that remains is to close the connection to our MySQL database;

mysql_close($server);

That’s it.

We can actually test the script directly by opening the file in our browser.

If you navigate using your browser to this file and click on it to run it (WAMP should be your
friend here again) this is what you should see printed out on your screen (at least the information,
but probably not formatted as nicely);

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

There it is! A nicely declared array of latitude / longitude points!

It looks a bit unusual on the printed page, but it’s bread and butter for JavaScript.

I have included the planelatlong.php file with the files available when you download the Leaflet
Tips and Tricks¹⁰³ book.

To reiterate, our main web page file that is presenting our map gets to the point in its script
where it is going to get the data. At this point it calls a script called planelatlong.php and this
script gets the data from a MySQL database, formats it properly and includes it in the web page’s
JavaScript.

It is a slightly complex concept if you’re a beginner to the world of databases and php scripts,
but if you persevere and get it working, the understanding of what you will have achieved is
worth its weight in gold.

¹⁰³https://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

Assorted Leaflet Tips and Tricks 80

Making maps with d3.js and leaflet.js combined

If you’ve read to this point in Leaflet Tips and Tricks, you may be aware that I have also
written another book called ‘D3 Tips and Tricks¹⁰ ’. I haven’t written both books because they
are integrated with each other or because they seem made to compliment each other. I wrote
them because both libraries are the best of breed (IMHO) at what they do. It should come as little
surprise that they can have a lot to offer users whowant to combine the incredible scope of d3.js’s
data manipulation functions and the elegance of leaflet.js’s tile map presentation capabilities.

d3.js Overview

d3.js¹⁰ is “a JavaScript library for manipulating documents based on data”.

D3 is all about helping you to take information and make it more accessible to others via a web
browser.

It’s a JavaScript library implemented as an open framework built to leverage web standards that
allows you to associate data and what appears on the screen in a way that directly links the two.
Change the data and you change the object on the screen.

It was (and still is being) developed by Mike Bostock¹⁰ who has not just spent time writing
the code, but writing the documentation¹⁰ for D3 as well. There is an extensive community of
supporters who also contribute to the code, provide technical support¹⁰ online¹⁰ and generally
have fun creating amazing visualizations¹¹⁰.

Why use d3.js when leaflet.js can include objects on maps too?

Good question. I can see you’ve been paying attention.

There is a difference in the scope of flexibility between how d3.js and leaflet.js can manipulate
added objects (think markers and ploygons). D3.js predominantly focusses on vector based
graphics when drawing maps and leaflet.js leverages the huge range of bitmap based map
tiles that are available for use around the world. Both bitmap and vector based solutions have
strengths and weaknesses depending on the application. Combining both allows the use of the
best of both worlds.

¹⁰ https://leanpub.com/D3-Tips-and-Tricks
¹⁰ http://d3js.org/
¹⁰ http://bost.ocks.org/mike/
¹⁰ https://github.com/mbostock/d3/wiki
¹⁰ https://groups.google.com/forum/?fromgroups#!forum/d3-js
¹⁰ http://stackoverflow.com/questions/tagged/d3.js
¹¹⁰https://github.com/mbostock/d3/wiki/Gallery

https://leanpub.com/D3-Tips-and-Tricks
http://d3js.org/
http://bost.ocks.org/mike/
https://github.com/mbostock/d3/wiki
https://groups.google.com/forum/?fromgroups#!forum/d3-js
http://stackoverflow.com/questions/tagged/d3.js
https://github.com/mbostock/d3/wiki/Gallery
https://leanpub.com/D3-Tips-and-Tricks
http://d3js.org/
http://bost.ocks.org/mike/
https://github.com/mbostock/d3/wiki
https://groups.google.com/forum/?fromgroups#!forum/d3-js
http://stackoverflow.com/questions/tagged/d3.js
https://github.com/mbostock/d3/wiki/Gallery

Assorted Leaflet Tips and Tricks 81

Leaflet map with d3.js objects that scale with the map

The first example we’ll look at will project a leaflet.js map on the screen with a d3.js object (in
this case a simple rectangle) onto the map.

The rectangle will be bound to a set of geographic coordinates so that as the map is panned and
zoomed the rectangle will shrink and grow. For example the following diagram shows a rectangle
(made with d3.js) superimposed over a leaflet.js map;

Rectangular d3 area on leaflet map

If we then zoom in…

Assorted Leaflet Tips and Tricks 82

Zoomed rectangular d3 area on leaflet map

…the rectangle zooms in as well.

For an excellent example of this please visit Mike Bostock’s tutorial¹¹¹ where he demonstrates
superimposing a map of the United States separated by state (which react individually to the
mouse being hovered over them). My following explanation is a humble derivation of his code.

Speaking of code, here is a full listing of the code that we will be using;

<!DOCTYPE html>

<html>

<head>

<title>Leaflet and D3 Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script src="http://d3js.org/d3.v3.min.js"></script>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

¹¹¹http://bost.ocks.org/mike/leaflet/

http://bost.ocks.org/mike/leaflet/
http://bost.ocks.org/mike/leaflet/

Assorted Leaflet Tips and Tricks 83

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.7868], 13);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

// Add an SVG element to Leafletâ€™s overlay pane

var svg = d3.select(map.getPanes().overlayPane).append("svg"),

g = svg.append("g").attr("class", "leaflet-zoom-hide");

d3.json("rectangle.json", function(geoShape) {

// create a d3.geo.path to convert GeoJSON to SVG

var transform = d3.geo.transform({point: projectPoint}),

path = d3.geo.path().projection(transform);

// create path elements for each of the features

d3_features = g.selectAll("path")

.data(geoShape.features)

.enter().append("path");

map.on("viewreset", reset);

reset();

// fit the SVG element to leaflet's map layer

function reset() {

bounds = path.bounds(geoShape);

var topLeft = bounds[0],

bottomRight = bounds[1];

svg .attr("width", bottomRight[0] - topLeft[0])

.attr("height", bottomRight[1] - topLeft[1])

.style("left", topLeft[0] + "px")

.style("top", topLeft[1] + "px");

g .attr("transform", "translate(" + -topLeft[0] + ","

Assorted Leaflet Tips and Tricks 84

+ -topLeft[1] + ")");

// initialize the path data

d3_features.attr("d", path)

.style("fill-opacity", 0.7)

.attr('fill','blue');

}

// Use Leaflet to implement a D3 geometric transformation.

function projectPoint(x, y) {

var point = map.latLngToLayerPoint(new L.LatLng(y, x));

this.stream.point(point.x, point.y);

}

})

</script>

</body>

</html>

There is also an associated json data file (called rectangle.json) that has the following contents;

{

"type": "FeatureCollection",

"features": [{

"type": "Feature",

"geometry": {

"type": "Polygon",

"coordinates": [[

[174.78, -41.29],

[174.79, -41.29],

[174.79, -41.28],

[174.78, -41.28],

[174.78, -41.29]

]]

}

}

]

}

The full code and a live example are available online at bl.ocks.org¹¹² or GitHub¹¹³. They are
also available as the files ‘leaflet-d3-combined.html’ and ‘rectangle.json’ as a separate download

¹¹²http://bl.ocks.org/d3noob/9211665
¹¹³https://gist.github.com/d3noob/9211665

http://bl.ocks.org/d3noob/9211665
https://gist.github.com/d3noob/9211665
http://bl.ocks.org/d3noob/9211665
https://gist.github.com/d3noob/9211665

Assorted Leaflet Tips and Tricks 85

with Leaflet Tips and Tricks. A a copy of all the files that appear in the book can be downloaded
(in a zip file) when you download the book from Leanpub¹¹

While I will explain the code below, please be aware that I will gloss over some of the simpler
sections that are covered in other sections of either books and will instead focus on the portions
that are important to understand the combination of D3 and Leaflet.

Our code begins by setting up the html document in a fairly standard way.

<!DOCTYPE html>

<html>

<head>

<title>Leaflet and D3 Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script src="http://d3js.org/d3.v3.min.js"></script>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

Here we’re getting some css styling and loading our leaflet.js / d3.js libraries. The only
configuration item is where we set up the size of the map (in the <style> section and as part of
the map div).

Then we break into the JavaScript code. The first thing we do is to project our Leaflet map;

var map = L.map('map').setView([-41.2858, 174.7868], 13);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

¹¹ https://leanpub.com/D3-Tips-and-Tricks

https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/D3-Tips-and-Tricks

Assorted Leaflet Tips and Tricks 86

This is exactly the same as we have done in any of the simple map explanations in Leaflet Tips
and Tricks¹¹ and in this case we are using the OpenStreetMap tiles.

Then we start on the d3.js part of the code.

The first part of that involves making sure that Leaflet and D3 are synchronised in the view that
they’re projecting. This synchronisation needs to occur in zooming and panning so we add an
SVG element to Leaflet’s overlayPlane

var svg = d3.select(map.getPanes().overlayPane).append("svg"),

g = svg.append("g").attr("class", "leaflet-zoom-hide");

Then we add a g element that ensures that the SVG element and the Leaflet layer have the same
common point of reference. Otherwise when they zoomed and panned it could be offset. The
leaflet-zoom-hide affects the presentation of themapwhen zooming.Without it the underlying
map zooms to a new size, but the d3.js elements remain as they are until the zoom effect has taken
place and then they adjust. It still works fine, but it ‘looks’ odd.

Then we load our data file with the line…

d3.json("rectangle.json", function(geoShape) {

This is pretty standard fare for d3.js but it’s worth being mindful that while the type of data file
is .json this is a GeoJSON file and they have particular features (literally) that allow them to do
their magic. There is a good explanation of how they are structured at geojson.org¹¹ for those
who are unfamiliar with the differences.

Using our data we need to ensure that it is correctly transformed from our latitude/longitude
coordinates as supplied to coordinates on the screen.We do this by implementing d3’s geographic
transformation features (d3.geo¹¹).

var transform = d3.geo.transform({point: projectPoint}),

path = d3.geo.path().projection(transform);

Here the path that we want to create in SVG is generated from the points that are supplied from
the data file which are converted by the function projectPoint This function (which is placed
at the end of the file) takes our latitude and longitudes and transforms them to screen (layer)
coordinates¹¹ .

¹¹ https://leanpub.com/leaflet-tips-and-tricks/
¹¹ http://geojson.org/geojson-spec.html
¹¹ https://github.com/mbostock/d3/wiki/API-Reference#wiki-d3geo-geography
¹¹ http://leafletjs.com/reference.html#map-conversion-methods

https://leanpub.com/leaflet-tips-and-tricks/
https://leanpub.com/leaflet-tips-and-tricks/
http://geojson.org/geojson-spec.html
https://github.com/mbostock/d3/wiki/API-Reference#wiki-d3geo-geography
http://leafletjs.com/reference.html#map-conversion-methods
http://leafletjs.com/reference.html#map-conversion-methods
https://leanpub.com/leaflet-tips-and-tricks/
http://geojson.org/geojson-spec.html
https://github.com/mbostock/d3/wiki/API-Reference#wiki-d3geo-geography
http://leafletjs.com/reference.html#map-conversion-methods

Assorted Leaflet Tips and Tricks 87

function projectPoint(x, y) {

var point = map.latLngToLayerPoint(new L.LatLng(y, x));

this.stream.point(point.x, point.y);

}

With the transformations now all taken care of we can generate our path in the traditional d3.js
way and append it to our g group.

d3_features = g.selectAll("path")

.data(geoShape.features)

.enter().append("path");

The last ‘main’ part of our JavaScript makes sure that when our view of what we’re looking at
changes (we zoom or pan) that our d3 elements change as well;

map.on("viewreset", reset);

reset();

Obviously when our view changes we call the function reset. It’s the job of the reset function
to ensure that whatever the leaflet layer does, the SVG (d3.js) layer follows;

function reset() {

bounds = path.bounds(geoShape);

var topLeft = bounds[0],

bottomRight = bounds[1];

svg .attr("width", bottomRight[0] - topLeft[0])

.attr("height", bottomRight[1] - topLeft[1])

.style("left", topLeft[0] + "px")

.style("top", topLeft[1] + "px");

g .attr("transform", "translate(" + -topLeft[0] + ","

+ -topLeft[1] + ")");

// initialize the path data

d3_features.attr("d", path)

.style("fill-opacity", 0.7)

.attr('fill','blue');

}

Assorted Leaflet Tips and Tricks 88

It does this by establishing the topLeft and bottomRightcorners of the desired area and then
it applies the width, height, top and bottom attributes to the svg element and translates the g

element to the right spot. Last, but not least it redraws the path.

The end result being a fine combination of leaflet.js map and ds.js element;

Rectangular d3 area on leaflet map

Assorted Leaflet Tips and Tricks 89

Leaflet map with d3.js elements that are overlaid on a map

The next example of a combination of d3.js and leaflet.js is onewherewewant to have an element
overlaid on our map at a specific location, but have it remain a specific size over the map. For
example, here we will display 5 circles which are centred at specific geographic locations.

d3.js circles fixed in geographic location on leaflet map but constant size

When we zoom out of the map, those circles remain over the geographic location, but the same
size on the screen.

Zoomed d3.js circles fixed in geographic location on leaflet map but constant size

Assorted Leaflet Tips and Tricks 90

You may (justifiably) ask yourself why we would want to do this with d3.js when Leaflet could
do the same job with a marker? The answer is that as cool as leaflet.js’s markers are, d3 elements
have a wider range of features that make their use advantageous in some situations. For instance
if you want to animate or rotate the icons or dynamically adjust some of their attributes, d3.js
would have a greater scope for adjustments.

The following code draws circles at geographic locations;

<!DOCTYPE html>

<html>

<head>

<title>d3.js with leaflet.js</title>

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<script src="http://d3js.org/d3.v3.min.js"></script>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script type="text/javascript">

var map = L.map('map').setView([-41.2858, 174.7868], 13);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

// Initialize the SVG layer

map._initPathRoot()

// We pick up the SVG from the map object

var svg = d3.select("#map").select("svg"),

g = svg.append("g");

d3.json("circles.json", function(collection) {

Assorted Leaflet Tips and Tricks 91

// Add a LatLng object to each item in the dataset

collection.objects.forEach(function(d) {

d.LatLng = new L.LatLng(d.circle.coordinates[0],

d.circle.coordinates[1])

})

var feature = g.selectAll("circle")

.data(collection.objects)

.enter().append("circle")

.style("stroke", "black")

.style("opacity", .6)

.style("fill", "red")

.attr("r", 20);

map.on("viewreset", update);

update();

function update() {

feature.attr("transform",

function(d) {

return "translate("+

map.latLngToLayerPoint(d.LatLng).x +","+

map.latLngToLayerPoint(d.LatLng).y +")";

}

)

}

})

</script>

</body>

</html>

There is also an associated json data file (called circles.json) that has the following contents;

{"objects":[

{"circle":{"coordinates":[-41.28,174.77]}},

{"circle":{"coordinates":[-41.29,174.76]}},

{"circle":{"coordinates":[-41.30,174.79]}},

{"circle":{"coordinates":[-41.27,174.80]}},

{"circle":{"coordinates":[-41.29,174.78]}}

]}

The full code and a live example are available online at bl.ocks.org¹¹ or GitHub¹²⁰. They are
also available as the files ‘leaflet-d3-linked.html’ and ‘circles.json’ as a separate download with

¹¹ http://bl.ocks.org/d3noob/9267535
¹²⁰https://gist.github.com/d3noob/9267535

http://bl.ocks.org/d3noob/9267535
https://gist.github.com/d3noob/9267535
http://bl.ocks.org/d3noob/9267535
https://gist.github.com/d3noob/9267535

Assorted Leaflet Tips and Tricks 92

Leaflet Tips and Tricks. A a copy of all the files that appear in the book can be downloaded (in
a zip file) when you download the book from Leanpub¹²¹

While I will explain the code below, as with the previous example (which is similar, but different)
please be aware that I will gloss over some of the simpler sections that are covered in other
sections of either books and will instead focus on the portions that are important to understand
the combination of D3 and Leaflet.

Our code begins by setting up the html document in a fairly standard way.

<!DOCTYPE html>

<html>

<head>

<title>d3.js with leaflet.js</title>

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<script src="http://d3js.org/d3.v3.min.js"></script>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

Here we’re getting some css styling and loading our leaflet.js / d3.js libraries. The only
configuration item is where we set up the size of the map (in the <div> section and as part
of the map div).

Then we break into the JavaScript code. The first thing we do is to project our Leaflet map;

var map = L.map('map').setView([-41.2858, 174.7868], 13);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

¹²¹https://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

Assorted Leaflet Tips and Tricks 93

This is exactly the same as we have done in any of the simple map explanations in Leaflet Tips
and Tricks¹²² and in this case we are using the OpenStreetMap tiles.

Then we start on the d3.js part of the code.

Firstly the Leaflet map is initiated as SVG using map._initPathRoot().

// Initialize the SVG layer

map._initPathRoot()

// We pick up the SVG from the map object

var svg = d3.select("#map").select("svg"),

g = svg.append("g");

Then we select the svg layer and append a g element to give a common reference point g =

svg.append("g").

Then we load the json file with the coordinates for the circles;

d3.json("circles.json", function(collection) {

Then for each of the coordinates in the objects section of the json data we declare a new latitude
/ longitude pair from the associated coordinates;

collection.objects.forEach(function(d) {

d.LatLng = new L.LatLng(d.circle.coordinates[0],

d.circle.coordinates[1])

})

Then we use a simple d3.js routine to add and place our circles based on the coordinates of each
of our objects.

var feature = g.selectAll("circle")

.data(collection.objects)

.enter().append("circle")

.style("stroke", "black")

.style("opacity", .6)

.style("fill", "red")

.attr("r", 20);

We declare each as a feature and add a bit of styling just to make them stand out.

The last ‘main’ part of our JavaScript makes sure that when our view of what we’re looking at
changes (we zoom or pan) that our d3 elements change as well;

¹²²https://leanpub.com/leaflet-tips-and-tricks/

https://leanpub.com/leaflet-tips-and-tricks/
https://leanpub.com/leaflet-tips-and-tricks/
https://leanpub.com/leaflet-tips-and-tricks/

Assorted Leaflet Tips and Tricks 94

map.on("viewreset", update);

update();

Obviously when our view changes we call the function update. It’s the job of the update function
to ensure that whenever the leaflet layer moves, the SVG layer with the d3.js elements follows
and the points that designate the locations of those objects move appropriately;

function update() {

feature.attr("transform",

function(d) {

return "translate("+

map.latLngToLayerPoint(d.LatLng).x +","+

map.latLngToLayerPoint(d.LatLng).y +")";

}

)

}

Here we are using the transform function on each feature to adjust the coordinates on our
LatLng coordinates. We only need to adjust our coordinates since the size, shape, rotation and
any other attribute or style is dictated by the objects themselves.

And there we have it!

d3.js circles fixed in geographic location on leaflet map but constant size

Tile servers that can be used with
Leaflet
A tile server is a source of the tiles that leaflet.js uses to present a map. Because there are many
unique requirements for maps there are a large number of variations of tile servers that apply
different formatting and styling to the geographic information.

In this chapter we will present the different services available and the different requirements for
use in terms of the URL template, terms of use and attribution where appropriate.

URL Template

The URL template is the format required when specifying the link to the tiles on the server.
Typically this will be in the form of a server name (which may have sub-domains) followed by
the zoom level and then x/y values for the tiles. For example, the following is the URL template
for the standard OSM server.

http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png

The http://{s}.tile.openstreetmap.org is the server name with the {s} part representing a
variation in possible sub-domains. {z} is the zoom level and {x}/{y} is the tile location.

Usage Policy

Because there is an overhead involved in generating and providing tiles to make maps with, it
is expected (and entirely reasonable) that providers will have a usage policy to avoid placing an
undue strain on their equipment and bandwidth.

Attribution

Attribution is about providing credit where credit is due and acknowledging the copyright of
the originator of a work. It is significant effort to style and produce map tiles and that should be
recognised and noted appropriately. Typically this would be in the form of a note in the bottom
right hand corner of the map being presented. Some of the attribution requirements might sound
a little formal, but they need to be that way so that their message is clear in a legal sense. To
ordinary people, we need to recognise that we are using a work created by someone else and
that we make sure we recognise that appropriately :-).

Tile servers that can be used with Leaflet 96

Open Street Map OSM Mapnik

This is the standard tile server in use for Open Street Map¹²³.

URL Template

http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png

Usage policy

The best place to view the detail on the usage policy for Open Street Maps tiles is from their
tile usage policy wiki page¹² . The main concern with usage is the load placed on their resources
which are finite considering their position as a volunteer run service. So be gentle and when in
doubt, check out the wiki¹² .

Attribution

Open Street Map provides open data, licensed under the Open Data Commons Open Database
License¹² (ODbL). The cartography in their map tiles is licensed under the Creative Commons
Attribution-ShareAlike 2.0 license (CC BY-SA). They require that you use the credit “ ©
OpenStreetMap contributors” and that the cartography is licensed as CC BY-SA. You may do
this by linking to the copyright page at http://www.openstreetmap.org/copyright¹² .

Usage example

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

¹²³http://openstreetmap.org/
¹² http://wiki.openstreetmap.org/wiki/Tile_usage_policy
¹² http://wiki.openstreetmap.org/wiki/Tile_usage_policy
¹² http://opendatacommons.org/licenses/odbl/
¹² http://www.openstreetmap.org/copyright

http://openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://opendatacommons.org/licenses/odbl/
http://opendatacommons.org/licenses/odbl/
http://www.openstreetmap.org/copyright
http://openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://opendatacommons.org/licenses/odbl/
http://www.openstreetmap.org/copyright

Tile servers that can be used with Leaflet 97

OSM Mapnik tile server map

Open Street Map Black and White

This is variation on the standard tile server in use for Open Street Map¹² but in black and white
/ grey-scale.

URL Template

http://{s}.www.toolserver.org/tiles/bw-mapnik/{z}/{x}/{y}.png

Usage policy

The best place to view the detail on the usage policy for Open Street Maps tiles is from their
tile usage policy wiki page¹² . The main concern with usage is the load placed on their resources
which are finite considering their position as a volunteer run service. So be gentle and when in
doubt, check out the wiki¹³⁰.

Attribution

Open Street Map provides open data, licensed under the Open Data Commons Open Database
License¹³¹ (ODbL). The cartography in their map tiles is licensed under the Creative Commons
Attribution-ShareAlike 2.0 license (CC BY-SA). They require that you use the credit “ ©

¹² http://openstreetmap.org/
¹² http://wiki.openstreetmap.org/wiki/Tile_usage_policy
¹³⁰http://wiki.openstreetmap.org/wiki/Tile_usage_policy
¹³¹http://opendatacommons.org/licenses/odbl/

http://openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://opendatacommons.org/licenses/odbl/
http://opendatacommons.org/licenses/odbl/
http://openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://opendatacommons.org/licenses/odbl/

Tile servers that can be used with Leaflet 98

OpenStreetMap contributors” and that the cartography is licensed as CC BY-SA. You may do
this by linking to the copyright page at http://www.openstreetmap.org/copyright¹³².

Usage example

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.www.toolserver.org/tiles/bw-mapnik/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

OSM Black and White tile server map

Open Cycle Map

OpenCycleMap¹³³ is a global map for cyclists, based on data from the OpenStreetMap project. At
low zoom levels it is intended for overviews of national cycling networks; at higher zoom levels
it should help with planning which streets to cycle on, where you can park your bike and so
on. The maps are provided by Thunderforest¹³ who also provide other mapping options as well.
Additional documentation on OpenCycle Map can be found on their documentation page¹³ .

URL Template

¹³²http://www.openstreetmap.org/copyright
¹³³http://www.opencyclemap.org/
¹³ http://thunderforest.com/
¹³ http://www.opencyclemap.org/docs/

http://www.openstreetmap.org/copyright
http://www.opencyclemap.org/
http://thunderforest.com/
http://www.opencyclemap.org/docs/
http://www.openstreetmap.org/copyright
http://www.opencyclemap.org/
http://thunderforest.com/
http://www.opencyclemap.org/docs/

Tile servers that can be used with Leaflet 99

http://{s}.tile.thunderforest.com/cycle/{z}/{x}/{y}.png

Usage policy

There are some simple guidelines on the Thunderforest terms and conditions page¹³ . The main
concern with usage is the load placed on resources. So be gentle.

Attribution

Thunderforest provides open data, under a Creative Commons licence, specifically CC-BY-SA
2.0. The full details are available on their terms and conditions page¹³ . Attribution must be
given to both “Thunderforest” and “OpenStreetMap contributors”. Users of your map must have
a working link to www.thunderforest.com.

Usage example

mapLink = 'OpenStreetMap';

ocmlink = 'Thunderforest';

L.tileLayer(

'http://{s}.tile.thunderforest.com/cycle/{z}/{x}/{y}.png', {

attribution: '© '+mapLink+' Contributors & '+ocmlink,

maxZoom: 18,

}).addTo(map);

Open Cycle Map tile server map

¹³ http://thunderforest.com/terms/
¹³ http://thunderforest.com/terms/

http://thunderforest.com/terms/
http://thunderforest.com/terms/
http://thunderforest.com/terms/
http://thunderforest.com/terms/

Tile servers that can be used with Leaflet 100

Outdoors

The ‘Outdoors’ set of map tiles is distributed by the good folks at Thunderforest¹³ who brought
you OpenCycleMap¹³ . The tiles are aimed towards outdoor enthusiasts - for hiking, skiing and
other activities. They are based on data from the OpenStreetMap¹ ⁰ project.

URL Template

http://{s}.tile.thunderforest.com/outdoors/{z}/{x}/{y}.png

Usage policy

There are some simple guidelines on the Thunderforest terms and conditions page¹ ¹. The main
concern with usage is the load placed on resources. So be gentle.

Attribution

Thunderforest provides open data, under a Creative Commons licence, specifically CC-BY-SA
2.0. The full details are available on their terms and conditions page¹ ². Attribution must be
given to both “Thunderforest” and “OpenStreetMap contributors”. Users of your map must have
a working link to www.thunderforest.com.

Usage example

mapLink = 'OpenStreetMap';

outlink = 'Thunderforest';

L.tileLayer(

'http://{s}.tile.thunderforest.com/outdoors/{z}/{x}/{y}.png', {

attribution: '© '+mapLink+' Contributors & '+outlink,

maxZoom: 18,

}).addTo(map);

¹³ http://thunderforest.com/
¹³ http://www.opencyclemap.org/
¹ ⁰http://openstreetmap.org/
¹ ¹http://thunderforest.com/terms/
¹ ²http://thunderforest.com/terms/

http://thunderforest.com/
http://www.opencyclemap.org/
http://openstreetmap.org/
http://thunderforest.com/terms/
http://thunderforest.com/terms/
http://thunderforest.com/
http://www.opencyclemap.org/
http://openstreetmap.org/
http://thunderforest.com/terms/
http://thunderforest.com/terms/

Tile servers that can be used with Leaflet 101

Outdoors tile server map

Transport

The ‘Transport’ set of map tiles is distributed by the good folks at Thunderforest¹ ³ who brought
you OpenCycleMap¹ . The tiles are designed to show a high level of detail of available public
transport. They are based on data from the OpenStreetMap¹ project.

URL Template

http://{s}.tile.thunderforest.com/transport/{z}/{x}/{y}.png

Usage policy

There are some simple guidelines on the Thunderforest terms and conditions page¹ . The main
concern with usage is the load placed on resources. So be gentle.

Attribution

Thunderforest provides open data, under a Creative Commons licence, specifically CC-BY-SA
2.0. The full details are available on their terms and conditions page¹ . Attribution must be
given to both “Thunderforest” and “OpenStreetMap contributors”. Users of your map must have
a working link to www.thunderforest.com.

¹ ³http://thunderforest.com/
¹ http://www.opencyclemap.org/
¹ http://openstreetmap.org/
¹ http://thunderforest.com/terms/
¹ http://thunderforest.com/terms/

http://thunderforest.com/
http://www.opencyclemap.org/
http://openstreetmap.org/
http://thunderforest.com/terms/
http://thunderforest.com/terms/
http://thunderforest.com/
http://www.opencyclemap.org/
http://openstreetmap.org/
http://thunderforest.com/terms/
http://thunderforest.com/terms/

Tile servers that can be used with Leaflet 102

Usage example

mapLink = 'OpenStreetMap';

translink = 'Thunderforest';

L.tileLayer(

'http://{s}.tile.thunderforest.com/transport/{z}/{x}/{y}.png', {

attribution: '© '+mapLink+' Contributors & '+translink,

maxZoom: 18,

}).addTo(map);

Transport tile server map

Landscape

The ‘Landscape’ set of map tiles is distributed by the good folks at Thunderforest¹ who brought
you OpenCycleMap¹ . The tiles have a global style focussed on information about the natural
world - ideal for rural context. They are based on data from the OpenStreetMap¹ ⁰ project.

URL Template

http://{s}.tile.thunderforest.com/landscape/{z}/{x}/{y}.png

¹ http://thunderforest.com/
¹ http://www.opencyclemap.org/
¹ ⁰http://openstreetmap.org/

http://thunderforest.com/
http://www.opencyclemap.org/
http://openstreetmap.org/
http://thunderforest.com/
http://www.opencyclemap.org/
http://openstreetmap.org/

Tile servers that can be used with Leaflet 103

Usage policy

There are some simple guidelines on the Thunderforest terms and conditions page¹ ¹. The main
concern with usage is the load placed on resources. So be gentle.

Attribution

Thunderforest provides open data, under a Creative Commons licence, specifically CC-BY-SA
2.0. The full details are available on their terms and conditions page¹ ². Attribution must be
given to both “Thunderforest” and “OpenStreetMap contributors”. Users of your map must have
a working link to www.thunderforest.com.

Usage example

mapLink = 'OpenStreetMap';

landlink = 'Thunderforest';

L.tileLayer(

'http://{s}.tile.thunderforest.com/landscape/{z}/{x}/{y}.png', {

attribution: '© '+mapLink+' Contributors & '+landlink,

maxZoom: 18,

}).addTo(map);

Landscape tile server map

¹ ¹http://thunderforest.com/terms/
¹ ²http://thunderforest.com/terms/

http://thunderforest.com/terms/
http://thunderforest.com/terms/
http://thunderforest.com/terms/
http://thunderforest.com/terms/

Tile servers that can be used with Leaflet 104

MapQuest Open Aerial

The ‘MapQuest Open Aerial’ tiles are a collection of aerial imagery that covers the globe at
varying levels of detail depending on location. The imagery originated from NASA/JPL-Caltech
and U.S. Depart. of Agriculture, Farm Service Agency.

The tiles are distributed by the good folks at MapQuest¹ ³ who also distribute a set of OSM tiles
called MapQuest-OSM. Global coverage is provided at zoom levels 0-11. Zoom Levels 12+ are
provided only in the United States (lower 48).

URL Template

http://otile{s}.mqcdn.com/tiles/1.0.0/sat/{z}/{x}/{y}.png

Usage policy

There are some generalised direction (and lots of other good stuff) on theMapQuest-OSM Tiles +
MapQuest Open Aerial Tiles page¹ . They are all very reasonable and sensible and are concerned
with making sure that the load on the service is not unduly onerous. There is also a link to
their official ‘Terms of use¹ ’ page which is a more formal wording of their common sense
instructions.

Attribution

If using the MapQuest Open Aerial Tiles, attribution is required to read; “Portions Courtesy
NASA/JPL-Caltech and U.S. Depart. of Agriculture, Farm Service Agency” (which is quite
long and on the example picture used later in the section results in a serious word-wrapping).
Additionally they ask that “Tiles Courtesy of MapQuest” be placed on the map along with their
logo and a link from the ‘MapQuest’ portion that goes to ‘http://www.mapquest.com/’.

Usage example

This usage example is slightly more complex in that it involves a slightly different approach to
including the subdomains. Leaflet will normally operate with subdomains of the form a, b and c,
but in this example we find otile1, otile2, otile3 and otile4. To accommodate this the otile
portion is included in the URL and the variable parts of the subdomain are declared in a separate
option called subdomains.

¹ ³http://www.mapquest.com/
¹ http://developer.mapquest.com/web/products/open/map
¹ http://developer.mapquest.com/web/info/terms-of-use

http://www.mapquest.com/
http://developer.mapquest.com/web/products/open/map
http://developer.mapquest.com/web/products/open/map
http://developer.mapquest.com/web/info/terms-of-use
http://www.mapquest.com/
http://developer.mapquest.com/web/products/open/map
http://developer.mapquest.com/web/info/terms-of-use

Tile servers that can be used with Leaflet 105

mapquestLink = 'MapQuest';

mapquestPic = '<img src="http://developer.mapquest.com/content/osm/mq_logo.png\

">';

L.tileLayer(

'http://otile{s}.mqcdn.com/tiles/1.0.0/sat/{z}/{x}/{y}.png', {

attribution: 'Portions Courtesy NASA/JPL-Caltech and U.S. Depart. of Agric\

ulture, Farm Service Agency. Tiles courtesy of '+mapquestLink+mapquestPic,

maxZoom: 18,

subdomains: '1234',

}).addTo(map);

MapQuest Open Aerial map

MapQuest-OSM

The ‘MapQuest-OSM’ tiles are a MapQuest styled variation on the OSM dataset.

The tiles are distributed by the good folks at MapQuest¹ who also distribute a set of OSM tiles
called MapQuest Open Aerial with satellite imagery.

URL Template

http://otile{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.png

¹ http://www.mapquest.com/

http://www.mapquest.com/
http://www.mapquest.com/

Tile servers that can be used with Leaflet 106

Usage policy

There are some generalised direction (and lots of other good stuff) on theMapQuest-OSM Tiles +
MapQuest Open Aerial Tiles page¹ . They are all very reasonable and sensible and are concerned
with making sure that the load on the service is not unduly onerous. There is also a link to
their official ‘Terms of use¹ ’ page which is a more formal wording of their common sense
instructions.

Attribution

If using the MapQuest-OSM tiles, appropriate copyright attribution¹ is required to Open-
StreetMap. Additionally they ask that “Tiles Courtesy of MapQuest” be placed on the map along
with their logo and a link from the ‘MapQuest’ portion that goes to ‘http://www.mapquest.com/’.

Usage example

This usage example is slightly more complex in that it involves a slightly different approach to
including the subdomains. Leaflet will normally operate with subdomains of the form a, b and c,
but in this example we find otile1, otile2, otile3 and otile4. To accommodate this the otile
portion is included in the URL and the variable parts of the subdomain are declared in a separate
option called subdomains.

mapLink = 'OpenStreetMap';

mapquestLink = 'MapQuest';

mapquestPic = '<img src="http://developer.mapquest.com/content/osm/mq_logo.png\

">';

L.tileLayer(

'http://otile{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.png', {

attribution: '© '+mapLink+'. Tiles courtesy of '+mapquestLink+mapques\

tPic,

maxZoom: 18,

subdomains: '1234',

}).addTo(map);

¹ http://developer.mapquest.com/web/products/open/map
¹ http://developer.mapquest.com/web/info/terms-of-use
¹ http://wiki.openstreetmap.org/wiki/Legal_FAQ

http://developer.mapquest.com/web/products/open/map
http://developer.mapquest.com/web/products/open/map
http://developer.mapquest.com/web/info/terms-of-use
http://wiki.openstreetmap.org/wiki/Legal_FAQ
http://developer.mapquest.com/web/products/open/map
http://developer.mapquest.com/web/info/terms-of-use
http://wiki.openstreetmap.org/wiki/Legal_FAQ

Tile servers that can be used with Leaflet 107

MapQuest-OSM map

Stamen.Watercolor

The ‘Stamen.Watercolor’ tiles are a beautiful watercolor themed series of maps based on (I
believe) OpenStreetMap data.

The tiles are distributed by the good folks at Stamen¹ ⁰ who also support a mapping solution /
thingy called Map Stack¹ ¹ and do some astonishing design work¹ ².

URL Template

http://{s}.tile.stamen.com/watercolor/{z}/{x}/{y}.jpg

Usage policy

I couldn’t locate any official guidance on usage, so I’m going to make the assumption that any
use should fall into the ‘reasonable’ category and advise that if you are thinking of using their
maps for anything remotely ‘substantial’ or commercial that you contact them¹ ³.

Attribution

If using the Stamen.Watercolor tiles, appropriate copyright attribution¹ is required to Open-
StreetMap. Additionally in spite of not finding any official guidance on their web site, it would

¹ ⁰http://stamen.com/
¹ ¹http://stamen.com/whatwedo/mapstack
¹ ²http://stamen.com/whatwedo
¹ ³http://stamen.com/contact
¹ http://wiki.openstreetmap.org/wiki/Legal_FAQ

http://stamen.com/
http://stamen.com/whatwedo/mapstack
http://stamen.com/whatwedo
http://stamen.com/contact
http://wiki.openstreetmap.org/wiki/Legal_FAQ
http://stamen.com/
http://stamen.com/whatwedo/mapstack
http://stamen.com/whatwedo
http://stamen.com/contact
http://wiki.openstreetmap.org/wiki/Legal_FAQ

Tile servers that can be used with Leaflet 108

seem appropriate (at a minimum) that recognition of the source as ‘Stamen Design’ with a link
would be required. Again, if you are considering using their tiles for any kind of commercial
project, you should contact them¹ .

Usage example

mapLink =

'OpenStreetMap';

wholink =

'Stamen Design';

L.tileLayer(

'http://{s}.tile.stamen.com/watercolor/{z}/{x}/{y}.jpg', {

attribution: '© '+mapLink+' Contributors & '+wholink,

maxZoom: 18,

}).addTo(map);

Stamen.Watercolor map

Esri World Imagery

The Esri World Imagery tiles are an outstanding set of maps that are made up of a combination
of photo imagery sets of the Earth at different scales.

The tiles are distributed by the good folks at Esri¹ who also support a range of other excellent
tile sets¹ .

¹ http://stamen.com/contact
¹ http://www.esri.com/
¹ http://www.esri.com/software/arcgis/arcgisonline/maps/maps-and-map-layers

http://stamen.com/contact
http://www.esri.com/
http://www.esri.com/software/arcgis/arcgisonline/maps/maps-and-map-layers
http://www.esri.com/software/arcgis/arcgisonline/maps/maps-and-map-layers
http://stamen.com/contact
http://www.esri.com/
http://www.esri.com/software/arcgis/arcgisonline/maps/maps-and-map-layers

Tile servers that can be used with Leaflet 109

URL Template

The following URL template may suffer from word wrapping in your electronic publication
format. It may therefore be better to get a more accurate copy from an online version which can
be found here in Github¹ or from the visual version on bl.ocks.org¹ .

http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/ti\

le/{z}/{y}/{x}

Usage policy

Esri has a full terms of use¹ ⁰ statement here and a human readable version here¹ ¹. It boils down
to making sure that you understand the typical usage of the tiles as well and the organisation
that is using them (there are different conditions for Government, Education, and NGO users).
There are also good common sense rules on bulk downloading and redistribution (don’t do it).

Attribution

Because there is a wide range of imagery used in the tile set¹ ², there are a lot of organisations that
require attribution. This includes Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX,
Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Of course if you’re
going to make a small map, that list is going to wrap at the bottom (as in the example picture
below), so if you don’t want that, you will want to come up with an alternative arrangement.

Usage example

The following script may suffer from word wrapping in your electronic publication format. It
may therefore be better to get a more accurate copy from an online version which can be found
here in Github¹ ³ or from the visual version on bl.ocks.org¹ .

¹ https://gist.github.com/d3noob/8663620
¹ http://bl.ocks.org/d3noob/8663620
¹ ⁰http://links.esri.com/agol_tou
¹ ¹http://downloads2.esri.com/ArcGISOnline/docs/tou_summary.pdf
¹ ²http://services.arcgisonline.com/arcgis/rest/services/World_Imagery/MapServer/layers
¹ ³https://gist.github.com/d3noob/8663620
¹ http://bl.ocks.org/d3noob/8663620

https://gist.github.com/d3noob/8663620
http://bl.ocks.org/d3noob/8663620
http://links.esri.com/agol_tou
http://downloads2.esri.com/ArcGISOnline/docs/tou_summary.pdf
http://services.arcgisonline.com/arcgis/rest/services/World_Imagery/MapServer/layers
https://gist.github.com/d3noob/8663620
http://bl.ocks.org/d3noob/8663620
https://gist.github.com/d3noob/8663620
http://bl.ocks.org/d3noob/8663620
http://links.esri.com/agol_tou
http://downloads2.esri.com/ArcGISOnline/docs/tou_summary.pdf
http://services.arcgisonline.com/arcgis/rest/services/World_Imagery/MapServer/layers
https://gist.github.com/d3noob/8663620
http://bl.ocks.org/d3noob/8663620

Tile servers that can be used with Leaflet 110

mapLink =

'Esri';

wholink =

'i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, \

and the GIS User Community';

L.tileLayer(

'http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer\

/tile/{z}/{y}/{x}', {

attribution: '© '+mapLink+', '+wholink,

maxZoom: 18,

}).addTo(map);

Esri World Imagery map

Map Tips and Tricks
How do maps get presented on a web page?

Vectors and bitmaps.

This is a pretty large topic and as you will probable know, there are a lot of alternatives for
viewing maps on the internet. But ultimately they all need to put a picture on a screen. There is
more than one way to do this, with the largest difference being the presentation of the image on
the screen being either a vector image or a bitmap.

Vector graphics

Vector graphics use a technique of drawing an image that relies more on a description of an
image than the final representation that a user sees. Instead of arranging individual pixels, an
image is created by describing theway the image is created. For instance, drawing a line would be
accomplished by defining two sets of coordinates and specifying a line of a particular width and
colour be drawn between the points. This might sound a little long winded, and it does create a
sense of abstraction, but it is a powerful mechanism for drawing as there is no loss of detail with
increasing scale. Changes to the image can be simply carried out by adjusting the coordinates,
colour description, line width or curve diameter. This is the technique that is commonly used
with d3.js¹ when generating a map from geojson or topojson data.

As a demonstration of the difference, here is a vector image (from a d3.js example) which I have
saved at varying zoom levels.

A SVG image at a normal zoom level

Enlarged by doubling it’s size (x 2) everything looks smooth.

¹ http://bost.ocks.org/mike/map/

http://bost.ocks.org/mike/map/
http://bost.ocks.org/mike/map/

Map Tips and Tricks 112

A SVG at 200%

If we enlarge it by doubling again (x 4) , it still looks good.

A SVG at 400%

Doubling again (x 8) and we can see that the text ‘James’ is actually composed of a fill colour
and a border.

A SVG at 800%

Doubling again for the last time (x 16) everything still retains it’s clear sharp edges.

Map Tips and Tricks 113

A SVG at 1600%

Bitmap graphics

A bitmap (or raster) image is one that is composed of lots of discrete individual dots (let’s call
them pixels) which, when joined together (and zoomed out a bit) give the impression of an image.
Bitmaps can be saved in a wide range of formats depending on users requirements including
compression, colour depth, transparency and a host of other attributes. Typically they can be
identified by the file suffix .jpg, .png or .bmp (and there are an equally large number of other
suffixes). This is what will be presented by by most of the major online map service providers
such as Google¹ , Microsoft¹ , Open Street Map¹ and others when a map appears in your
browser.

If we use the same image as demonstrated in the description of vectors, and look at a screen shot
(and it’s important to remember that this is a screen shot) of the image we see a picture that
looks fairly benign.

A bitmap at a normal zoom level

However, as we enlarge the image by doubling it’s size (x 2) we begin to see some rough edges
appear.

¹ https://maps.google.com/maps
¹ http://bing.com/maps/
¹ http://www.openstreetmap.org/

https://maps.google.com/maps
http://bing.com/maps/
http://www.openstreetmap.org/
https://maps.google.com/maps
http://bing.com/maps/
http://www.openstreetmap.org/

Map Tips and Tricks 114

A bitmap at 200%

And if we enlarge it by doubling again (x 4) , it starts to look decidedly rough.

A bitmap at 400%

Doubling again (x 8), starts to show the pixels pretty clearly.

A bitmap at 800%

Doubling again for the last time (x 16) and the pixels are plainly evident.

Map Tips and Tricks 115

A bitmap at 1600%

Vectors and bitmaps for maps.

Setting aside satellite / aerial imagery (which is the result of a photograph being taken of a
geographic location), maps are not made by users drawing bitmaps of locations. The information
is stored as data that is more akin to vector information. A road will be an array of geographic
points that are joined up and given a name and other descriptive data. But presenting that
information on a web page in that format can be slightly problematic. There are browser
compatibility and formatting issues that can make the process difficult and the end result
inconsistent. However, pretty much every browser will render a bitmap on the screen without
any trouble. So online map providers generate bitmaps from their vector data which they can
use to provide a simple consistent interface for presentation.

The only problem with supplying bitmaps of geographical information is that to get a high level
of resolution for an area, you have to have a really large image. This would be difficult to handle
in a browser and a tremendous burden on download time. The solution to this is to break up the
bitmap into smaller sections called tiles.

Map Tips and Tricks 116

Map tiles and zoom levels

Before we get serious about showing you some tile goodness, please be aware that the
reproduction of Open Street Map data is made possible under the Open Database License, and
if using their map tiles, the cartography is licensed as CC BY-SA. For more information on the
Copyright and License obligations please visit their page here¹ .

To break a picture of a map up into small manageable sections (tiles) the tile server that produces
the tiles will distinguish between different levels of zoom and for each level they will have a
different set of tiles that correspond to different locations on themap. Since the (almost universal)
standard for tile size is 256 x 256 pixels, at zoom level 0 the entire world is encapsulated in a single
256 x 256 pixel tile.

Zoom Level 0. © OpenStreetMap contributors

With every subsequent increase in zoom level there is a doubling of the resolution available and
therefore an increase in the number of tiles by a factor of four.

So at zoom level 1 there are four tiles…

¹ http://www.openstreetmap.org/copyright

http://www.openstreetmap.org/copyright
http://www.openstreetmap.org/copyright

Map Tips and Tricks 117

Zoom Level 1. © OpenStreetMap contributors

At zoom level 2 there are 16 tiles…

Map Tips and Tricks 118

Zoom Level 2. © OpenStreetMap contributors

Etc, etc.

I’m sure you can appreciate that each increases in zoom level has the consequence of substantially
increasing the number of tiles required. When we get to zoom level 18 there would be a
requirement to have over 68 billion tiles (actually 68,719,476,736). The good news is that at the
higher zoom levels there are a significant number of tiles that show nothing of interest (I would
be interested in knowing how many 256 x 256 tiles of blue sea there would be) and because tiles
are only rendered when someone actually views them, the number of tiles that are produced at
the higher zoom levels is a lot less than the theoretical number required. In fact as of 2011 there
were only just over 617 million tiles at zoom level 18 rendered meaning that less than 1% of the
potential viewable tiles at that level had ever been requested.

Calculations on the Open Street Map wiki¹ ⁰ give the theoretical volume of data required if
all tiles up to zoom level 18 were rendered as 54 Terabytes of storage. But by judicious use of
rendering only those required tiles, they report the volume required for storage as of January
2012 as just over 1.2 Terabytes.

¹ ⁰http://wiki.openstreetmap.org/wiki/Tile_Disk_Usage

http://wiki.openstreetmap.org/wiki/Tile_Disk_Usage
http://wiki.openstreetmap.org/wiki/Tile_Disk_Usage

Map Tips and Tricks 119

How are the tiles on a map server organised?

There are a few different ways that this section could be titled. It could be “What are the names
of the pictures used for tiles?” or “How does leaflet.js know what tiles to load?” and I’m sure that
there are other variations.

We’ve established that maps are broken down by zoom levels and varying numbers of tiles for
these zoom levels. In order for leaflet.js to use these tiles in the right way there needs to be a
pattern that can be followed to make sure that the correct ones get from the tile server to the
client’s (that’s you) machine.

If you’re generally familiar with the URL templates used for including tile servers to be used
with leaflet.js, you will recall that they are formatted something like;

http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png

The {z}/{x}/{y} portion of the path to the png file is the description of how the files are stored.

• The {z} directory denotes the zoom level being loaded.
• The {x} directory denotes the position on the x axis of the tile.
• The {y} designator is the name of the tile which describes its position on the y axis.

For example, the lowest zoom level (the one with the greatest view of area per tile) is stored as
0/0/0.png.

Zoom Level 0. © OpenStreetMap contributors

The full URL (if you want to check) is http://a.tile.openstreetmap.org/0/0/0.png¹ ¹.

Then at zoom level 1 the tiles are arranged as follows;

¹ ¹http://a.tile.openstreetmap.org/0/0/0.png

http://a.tile.openstreetmap.org/0/0/0.png
http://a.tile.openstreetmap.org/0/0/0.png

Map Tips and Tricks 120

Zoom Level 1. © OpenStreetMap contributors

MySQL Tips and Tricks for leaflet.js
Using a MySQL database as a source of data.

Dear reader… If you’re lucky enough to have read “D3 Tips and Tricks” you will know that
there’s a chapter in it that deals with installing and using MySQL to store and access data for
use with d3.js. If you have used this technique before, you will not be surprised to learn that
the same options apply for leaflet.js. The following is therefore a reprint of the instructions for
installing MySQL and creating a database. There are some slight editing differences, but don’t
be surprised if it looks similar. It is :-). The example at the end for loading the data into a web
page uses a leaflet.js map, so there are some relevant changes. Likewise we will be going over
different methods for loading external sources in a separate chapter and that will include loading
from a MySQL database.

PHP is our friend

As outlined at the start of the book, PHP is commonly used to make web content dynamic. We
are going to use it to do exactly that by getting it to glue together our leaflet.js JavaScript and a
MySQL Database. The end result should be a web page that will leverage the significant storage
capability of a MySQL database and the ability to vary different aspects of returned data.

If you’re wondering what level we’re going to approach this at, let me reassure (or
horrify) you that it will be in the same vein as the rest of this book. I am no expert
in MySQL databases, but through a bit of trial and error I have been able to achieve
a small measure of success. Hopefully the explanation is sufficient for beginners like
myself and doesn’t offend any best practices :-).

phpMyAdmin

I’m not one to dwell on the command line for too long if it can be avoided (sorry). So in this
section you’ll see me delving into a really neat program for managing your MySQL database
called phpMyAdmin (http://www.phpmyadmin.net/home_page/index.php).

As the name would suggest, it’s been written in PHP and as we know, that’s a sign that we’re
talking about a web based application. In this case phpMyAdmin is intended to allow a wide
range of administrative operations with MySQL databases via a web browser. You can find a
huge amount of information about it on the web as it is a freely available robust platform that
has been around for well over a decade.

If you have followed my suggestion earlier in the book to install WAMP¹ ² or you have
phpMyAdmin installed already you’re in luck. If not, I’m afraid that I won’t be able to provide
any guidance on its installation. I just don’t have the experience to provide that level of support.

¹ ²http://www.wampserver.com/en/

http://www.wampserver.com/en/
http://www.wampserver.com/en/

MySQL Tips and Tricks for leaflet.js 122

Create your database

Assuming that you do have WAMP installed, you will be able to access a subset of its functions
from the icon on your system tray in the lower right hand corner of your screen.

The WAMP server icon

Clicking on this icon will provide you with a range of options, including opening phpMyAdmin.

Opening phpMyAdmin

Go ahead and do this and the phpMyAdmin page will open in your browser.

The page you’re presented with has a range of tabs, and we want to select the ‘Databases’ tab.

MySQL Tips and Tricks for leaflet.js 123

The Databases tab

From here we can create ourselves a new database simply by giving it a name and selecting
‘Create’. I will create one called ‘homedb’.

Give our new database a name

That was simple!

On the panel on the left hand side of the screen is our new database. Go on and click on it.

Open the homedb database

Cool, now we get to create a table. What’s a table? Didn’t we create our database already?

MySQL Tips and Tricks for leaflet.js 124

Databases and Tables
Ahh yes… Think of databases as large collections of data (yes, I can smell the irony).
Databases can have awide range of different information stored in them, but sometimes
the data isn’t strictly connected. For instance, a business might want to store its
inventory and personnel records in a database. Trying to mash all that together would
be a bit of a nightmare to manage. Instead, we can create two different tables of
information. Think of a table as a spreadsheet with rows of data for specific columns. If
we want to connect the data at some point we can do that via the process of querying
the database.

So, lets create a table called data2 with three columns.

Create a table

I’ve chosen data2 as a name since we will put the same data as we have in a file called data2.csv.
That’s why there are three columns for the date, close and open columns that we have in the
data2.csv file.

So, after clicking on the ‘Go’ button, I get the following screenwhere I get to enter all the pertinent
details about what I will have in my table.

Format the table’s columns

I’m keeping it really simple by setting the ‘date’ column to be plain text (It could be set as a
‘DATE’ format, but we’ll keep it simple for the time being), and the two numeric columns to be
decimals with 8 digits overall and 2 of those places for the digits to the right of the decimal point.

The selection of the most efficient data type to maximise space or speed is something
of an obsession (as it sometimes needs to be) where databases are large and need to
have fast access times, but in this case we’re more concerned with getting a result than
perfection.

Once entered, you can scroll down to the bottom of that window and select the ‘Save’ button.

MySQL Tips and Tricks for leaflet.js 125

Cool, now you are presented with your table (click on the table name in the left hand panel) and
the details of it in the main panel.

The details of the ‘data2’ table

Sure it looks snazzy, but there’s something missing….. Hmm…..

Ah Ha! Data!

Importing your data into MySQL

So, you’ve got a perfectly good database and an impeccably set up table looking for some data.

It’s time we did something about that.

In the vein of “Here’s one I prepared earlier”, what we will do is import a csv (Comma Separated
Value) file into our database. To do this I prepared our data2.csv file by removing the header line
(with date, close and open on it), so it looks like this;

1-May-12,58.13,34.12

30-Apr-12,53.98,45.56

27-Apr-12,67.00,67.89

26-Apr-12,89.70,78.54

25-Apr-12,99.00,89.23

24-Apr-12,130.28,99.23

23-Apr-12,166.70,101.34

20-Apr-12,234.98,122.34

19-Apr-12,345.44,134.56

18-Apr-12,443.34,160.45

17-Apr-12,543.70,180.34

MySQL Tips and Tricks for leaflet.js 126

16-Apr-12,580.13,210.23

13-Apr-12,605.23,223.45

12-Apr-12,622.77,201.56

11-Apr-12,626.20,212.67

10-Apr-12,628.44,310.45

9-Apr-12,636.23,350.45

5-Apr-12,633.68,410.23

4-Apr-12,624.31,430.56

3-Apr-12,629.32,460.34

2-Apr-12,618.63,510.34

30-Mar-12,599.55,534.23

29-Mar-12,609.86,578.23

28-Mar-12,617.62,590.12

27-Mar-12,614.48,560.34

26-Mar-12,606.98,580.12

I know it doesn’t look quite as pretty, but csv files are pretty ubiquitous which is why so many
different programs support them as an input and output file type. (To save everyone some time
and trouble I have saved the data.csv file into the Leaflet Tips and Tricks example files folder
which is available when you download the book from Leanpub).

So armed with this file, click on the ‘Import’ tab in our phpMyAdmin window and choose your
file.

Importing csv data into your table

MySQL Tips and Tricks for leaflet.js 127

The format should be automatically recognised and the format specific options at the bottom of
the window should provide sensible defaults for the input. Let’s click on the ‘Go’ button and give
it a try.

Successful import!

Woo Hoo!

Now if you click on the browse tab, there’s your data in your table!

All the data successfully imported

Sweet!

The last thing that we should do is add a user to our database so that we don’t end up accessing
it as the root user (not too much of a good look).

So select the ‘homedb’ reference at the top of the window (between ‘localhost’ and ‘data2’).

Select the ‘homedb’ database

Then click on the ‘Privileges’ tab to show all the users who have access to ‘homedb’ and select
‘Add a new user’

MySQL Tips and Tricks for leaflet.js 128

The ‘Privileges’ tab

Then on the new user create a user, use the ‘Local’ host and put in an appropriate password.

Enter the user information

In this case, the user name is ‘homedbuser’ and the password is ‘homedbuser’ (don’t tell).

The other thing to do is restrict what this untrusted user can do with the database. In this case
we can fairly comfortably restrict them to ‘SELECT’ only;

Restrict privileges to ‘SELECT’

Click on ‘Go’ and you have yourself a new user.

New user added!

MySQL Tips and Tricks for leaflet.js 129

Yay!

Believe it or not, that’s pretty much it. There were a few steps involved, but they’re hopefully
fairly explanatory and I don’t imagine there’s anything too confusing that a quick Googling can’t
fix.

Querying the Database

OK, are you starting to get excited yet? We’re just about at the point where we can actually use
our MySQL database for something useful!

To do that we have to ask the database for some information and have it return that information
in a format we can work with.

The process of getting information from a database is called ‘querying’ the database, or
performing a ‘query’.

Now this is something of an art form in itself and believe me, you can dig some pretty deep holes
performing queries. However, we’re going to keep it simple. All we’re going to do is query our
database so that it returns the ‘date’ and the ‘close’ values.

We’ll start by selecting our ‘data2’ table and going to the ‘Browse’ tab.

To the ‘Browse’ tab

We actually already have a query operating on our table. It’s the bit in the middle that looks like;

MySQL Tips and Tricks for leaflet.js 130

SELECT *

FROM `data2`

LIMIT 0, 30

This particular query is telling the database homedb (since that’s where the query was run from)
to SELECT everything (*) FROM the table data2 and when we return the data, to LIMIT the returned
information to those starting at record 0 and to only show 30 at a time.

You should also be able to see the data in the main body of the window.

So, let’s write our own query. We can ask our query in a couple of different ways. Either click on
the ‘SQL’ tab and you can enter it there, or click on the menu link that says ‘Edit’ in the current
window. I prefer the ‘Edit’ link since it opens a separate little window which let’s you look at
the returned data and your query at the same time.

Enter your query

So here’s our window and in it I’ve written the query we want to run.

SELECT `date`, `close` FROM `data2`

You will of course note that I neglected to put anything about the LIMIT information in there.
That’s because it gets added automatically to your query anyway using phpMyAdmin unless
you specify values in your query.

So in this case, our query is going to SELECT all our values of date and close FROM our table
data2.

MySQL Tips and Tricks for leaflet.js 131

Click on the ‘Go’ button and let’s see what we get.

‘date’ and ‘close’ returned successfully

There we go!

If you’re running the query as ‘root’ you may see lots of other editing and copying and deleting
type options. Don’t fiddle with them and they won’t bite.

Righto… That’s the query we’re going to use. If you look at the returned information with a bit
of a squint, you can imagine that it’s in the same type of format as the *.tsv or *.csv files. (header
at the top and ordered data underneath).

All that we need to do now is get our MySQL query to output data into leaflet.js.

Enter php!

Using php to extract json from MySQL

Now’s the moment we’ve been waiting for to use php!

What we’re going to do is use a php script that performs the query that extracts data out of a
database it in a way that we can input it into Leaflet really easily.

Our php script is going to exist as a separate file which we will name planelatlong.php (ideally
we would place this in a separate directory called php which will be in our web’s root directory
(alongside the data directory) but for the sake of simplicity we will have our ‘calling’ file (the
one with the leaflet.js script) and this php script in the same directory).

The database that we’re going to access is one that contains a range of values. Two of which are
the latitude and longitude of a plane in flight. The database is organised as follows;

MySQL Tips and Tricks for leaflet.js 132

planedb database

In our example we will pull out only the rows with the latitude and longitude and return only
them in a format that the script will recognise as follows;

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

We’ll follow an example of how to get this imported into a leaflet.js script after we’ve gone
through the explanation of how to generate the data.

Here’s the contents of our planelatlong.php file (This is also available in electronic form in
the zip file of example scripts that can be downloaded when you download the book from
Leanpub¹ ³);

¹ ³https://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

MySQL Tips and Tricks for leaflet.js 133

<?php

$username = "planeuser";

$password = "planeuser";

$host = "localhost";

$database="planedb";

$server = mysql_connect($host, $username, $password);

$connection = mysql_select_db($database, $server);

$myquery = "

SELECT `lat`, `long` FROM `test01`

WHERE `lat` <> 0

";

$query = mysql_query($myquery);

if (! $query) {

echo mysql_error();

die;

}

$data = array();

echo "var planelatlong = [";

for ($x = 0; $x < mysql_num_rows($query); $x++) {

$data[] = mysql_fetch_assoc($query);

echo "[",$data[$x]['lat'],",",$data[$x]['long'],"]";

if ($x <= (mysql_num_rows($query)-2)) {

echo ",";

}

}

echo "];";

mysql_close($server);

?>

It’s pretty short, but it packs a punch. Let’s go through it and see what it does.

The <?php line at the start and the ?> line at the end form the wrappers that allow the requesting
page to recognise the contents as php and to execute the code rather than downloading it for
display.

The following lines set up a range of important variables;

MySQL Tips and Tricks for leaflet.js 134

$username = "planeuser";

$password = "planeuser";

$host = "localhost";

$database="planedb";

Hopefully youwill recognise that these are configuration details for theMySQL database. There’s
user and password (don’t worry, because the script isn’t returned to the browser, the browser
doesn’t get to see the password). There’s the host location of our database (in this case it’s local,
but if it was on a remote server, we would just include its address) and there’s the database we’re
going to access.

Then we use those variables to connect to the server…

$server = mysql_connect($host, $username, $password);

… and then we connect to the specific database;

$connection = mysql_select_db($database, $server);

Then we have our query in a form that we can paste into the right spot and it’s easy to use.

$myquery = "

SELECT `lat`, `long` FROM `test01`

WHERE `lat` <> 0

";

I have it like this so all I need to do to change the query I use is to paste it into the middle line
there between the speech-marks and I’m done. It’s just a convenience thing.

The query itself is a fairly simple affair. We return lat and long from our table called test01

but only if the lat value on the row is not equal to zero (WHERE lat <> 0) (this will allow us to
ignore the rows which do not contain a latitude (and typically a longitude in this case) value.

The query is then run against the database with the following command;

$query = mysql_query($myquery);

… and then we check to see if it was successful. If it wasn’t, we output the MySQL error code;

if (! $query) {

echo mysql_error();

die;

}

Then we declare the $data variable as an array;

MySQL Tips and Tricks for leaflet.js 135

$data = array();

Nowwe begin to echo or print out the values for our piece of code that we expect to have inserted
into our leaflet.js code;

First of all we print out the start of the declaration of our array;

echo "var planelatlong = [";

Then we start up a for loop that goes from 0 ($x = 0;) to the number of returned rows in our
query ($x < mysql_num_rows($query)) one step at a time ($x++)

for ($x = 0; $x < mysql_num_rows($query); $x++) {

We place our rows into our $data array…

$data[] = mysql_fetch_assoc($query);

… and then echo each row as a latitude and longitude value enclosed by square brackets and
separated by a comma;

echo "[",$data[$x]['lat'],",",$data[$x]['long'],"]";

So that each line looks a little like this

[-41.31825,174.80768]

Because we need to separate our lat/long values that are enclosed with brackets from each other
with a comma like this…

[-41.31825,174.80768],

[-41.31606,174.80774]

… but we don’t want a comma after the last lat/long pair. We can use an if statement to evaluate
each row to see if it’s the last and print a comma if its not;

if ($x <= (mysql_num_rows($query)-2)) {

echo ",";

}

After the our rows have finished being produced by our loop we need to close it off with another
square bracket;

MySQL Tips and Tricks for leaflet.js 136

echo "];";

And all that remains is to close the connection to our MySQL database;

mysql_close($server);

Whew!

That was a little fast and furious, but I want to revisit the point that we covered in the part
about echoing the data back to whatever had requested it. This is because we are going to use it
directly in our leaflet.js script, but we can actually run the script directly by opening the file in
our browser.

So if you can navigate using your browser to this file and click on it to run it (WAMP should
be your friend here again) this is what you should see printed out on your screen (at least the
information, but probably not formatted as nicely);

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

There it is! A nicely declared array of latitude / longitude points!

It looks a bit unusual on the printed page, but it’s bread and butter for JavaScript.

I have included the planelatlong.php file with the files available when you download the Leaflet
Tips and Tricks¹ book.

Getting the data into leaflet.js

Let’s recap momentarily.

We have created a database, populated it with information, worked out how to extract a subset
of that information and how to do it in a format that is valid (won’t cause an error) JavaScript.
Now for the final act!

If we consider a php file that we would use to display a web page with a leaflet map and a line,
it could look something like this;

¹ https://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

MySQL Tips and Tricks for leaflet.js 137

<?php ?>

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

var map = L.map('map').setView([-41.3058, 174.82082], 12);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var polyline = L.polyline(planelatlong).addTo(map);

</script>

</body>

</html>

MySQL Tips and Tricks for leaflet.js 138

In the middle there is the section where we declare our data array that contains the latitude and
longitude values;

var planelatlong = [

[-41.31825,174.80768],

[-41.31606,174.80774],

[-41.31581,174.80777],

[-41.31115,174.80827],

[-41.30928,174.80835],

[-41.29127,174.83841],

[-41.33571,174.84846],

[-41.34268,174.82877]];

That should look remarkable similar (identical) to the output from the planelatlong.php

file that we developed in the previous section. All we need to do is to get the output from
planelatlong.php to appear in the place of the declared data array.

The is done nice and easily by ‘including’ the php file in the script with the following line;

<?php include 'planelatlong.php'; ?>

And that’s it!

The final script will look like the following;

<?php ?>

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

MySQL Tips and Tricks for leaflet.js 139

<?php include 'planelatlong.php'; ?>

var map = L.map('map').setView([-41.3058, 174.82082], 12);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var polyline = L.polyline(planelatlong).addTo(map);

</script>

</body>

</html>

Of course it still relies on the planelatlong.php script to query the database and return the
values, but now you have the ability to dynamically source different data from outside your web
file.

This example has been a very quick glance at what we need to do to get data from a MySQL
database into Leaflet. I will be including a separate section in the book that will explore a few
different options for importing data from external sources.

Working with GitHub, Gist and
bl.ocks.org
General stuff about bl.ocks.org

In the words of Mike Bostock on the bl.ocks.org¹ main page;

“This is a simple viewer for code examples hosted on GitHub Gist. Code up an
example using Gist, and then point people here to view the example and the source
code, live!”

The whole idea is to take the information that you have in a gist (the pastebin area in Github)
and to give it a viewer that will allow it to display in your browser.

The reason this works is that the files that make up a web page that can be displayed in
your browser conform to a pretty well defined standard. If you can name your main web file
index.html and put it in a gist, bl.ocks.org will not just render it to a browser, but since you can
store your data files in the same gists, your visualization can use those as data sources as well
since they shouldn’t violate any cross domain security restrictions.

Mike’s clever code allows a gallery type preview page to be generated (including a thumbnails
if you follow the instructions in another part of this section).

Thumbnails of examples for d3noob’s blocks

And if you include a readme file formatted usingmarkdown you can have a nice little explanation
of how your visualization works.

The front rendering page includes any markdown notes and the code (not the full screen) is
optimised to accept visualizations of 960x500 pixels (although you can make them other sizes,
it’s just that this is an ‘optimum’ size). Of course there is always the full screen mode to render
your creation in its full glory if necessary.

If I was to pass on any advice when using bl.ocks.org, please consider others who will no doubt
view your work and wonder how you achieved your magic. Help them along where possible
with a few comments in the readme.md file because sharing is caring :-).

¹ http://bl.ocks.org/

http://bl.ocks.org/
http://bl.ocks.org/

Working with GitHub, Gist and bl.ocks.org 141

Installing the plug-in for bl.ocks.org for easy block
viewing

This might sound slightly odd at first if you’re not familiar with using Gist or bl.ocks.org, but
trust me, a) you should use them, b) if you get to the point where you are using these fantastic
services, there’s a good chance that you will want to be able to quickly check out what your
block looks like when you update or add in a Gist.

Here’s the scenario. You’re slaving away getting all your data and files into Gist, and then you’re
switching - in some tiresome manner - to get to the block that bl.ocks.org generates.

Well, throw away that tiresome technique! It’s time to move into the 21st century with some
plug-in goodness. Clever Mike Bostock has put together some handy dandy browser extensions
that will add a button to your Chrome, Safari or Firefox browser to take you straight from your
Gist to your block!

It will turn your Gist page from this…

Gist page without bl.ocks.org button

… to this …

Working with GitHub, Gist and bl.ocks.org 142

Gist page with bl.ocks.org button!

Check out the button!

It’s really handy and works like a charm. You can download it directly from the bl.ocks.org home
page¹ or from theGithub page¹ where the code is hosted (this also includes a quick couple of
lines of instructions for installation if you’re unsure).

Loading a thumbnail into Gist for bl.ocks.org
thumbnails

This description will start on the assumption that the user already has a GitHub / Gist account
set up and running. It’s purpose is to demonstrate how to upload an image as a file named
thumbnail.png to a Gist so that when viewing the users home page on bl.ocks.org you see a
nice little preview of what a visitor can anticipate, when they go to look at your work :-). This
description is a fleshed out version of the one provided by Christophe Viau on Google Groups¹ .

Setting the scene:

There you are: a fresh faced leaflet.js user keen to share his/her work with the world. You set
yourself up a GitHub / Gist account and put your code into a gist.

¹ http://bl.ocks.org/
¹ https://github.com/mbostock/bl.ocks.org
¹ https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

http://bl.ocks.org/
http://bl.ocks.org/
https://github.com/mbostock/bl.ocks.org
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc
http://bl.ocks.org/
https://github.com/mbostock/bl.ocks.org
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

Working with GitHub, Gist and bl.ocks.org 143

The gist web page

Your graph is a thing of rare beauty and the community needs to marvel at your brilliance. Of
course this is a breeze with bl.ocks.org. Once you have all the code sorted out, and all data files
made accessible, bl.ocks.org can display the graph with the code and can even open the graph in
its own window. The person responsible for bl.ocks.org? Mike Bostock of course (wherever does
he get the time?).

Clicking on the bl.ocks.org button on the gist page (load the extension available from the main
page of bl.ocks.org) takes you to see your graph.

Your awesome graph ready to go

Wow! Impressive.

So you think that will make a fine addition to your collection of awesome graphs and if you click
on your GitHub user name that is in the top left of the screen you go to a page that lays out all
your graphs with a thumbnail giving a sneak preview of what the user can expect.

Working with GitHub, Gist and bl.ocks.org 144

d3noob’s blocks, but no thumbnail!

Aww… Rats! There’s a nice place holder, but no pretty picture.

Hang on, what had Mike said on the bl.ocks.org main page?

“The main source code for your example should be named index.html. You can also include a
README.md using Markdown, and a thumbnail.png for preview.”

Ahh.. you need to include a thumbnail.png file in your Gist!

So how to get it there? Well Gist is a repository, so what you need to do is to put the code in
there somehow. Now from the Gist web page this doesn’t appear to be a nice (gui) way to do
this. So from here you will need to suspend your noob status and hit the command line.

The good news (if you’re a windows user (and sorry, I haven’t done this in Linux or on a Mac)) is
that, as part of the GitHub for windows installation, a command line tool was installed as well!
Prepare yourself, you’re going to use the Git Shell.

The Windows GitHub and Git Shell icons

Enough of the scene setting. Let’s git going :-).

I’m going to describe the steps in a pretty verbose fashion with pretty pictures and everything
else, but at the end I will put a simple set of steps in the form that Christophe Viau outlined on
Google Groups¹ .

First you will want to have your image ready. It needs to be a png with dimensions of 230 x 120
pixels. It should also be less than 50kB in size.

Go to your public Gist that you have already set up and copy the link in the “Clone this gist”
box.

¹ https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

Working with GitHub, Gist and bl.ocks.org 145

Copy the ‘Clone this gist’ link

(this should look something like https://gist.github.com/441443¹ ⁰)

Now you’re going to clone this gist to a local repository using the Git Shell. Open it up from the
desktop icon and you should see something like the following;

The Git Shell is open for business

You can clone the gist to a local folder with the command;

git clone https://gist.github.com/4414436.git

Or if you’re using OSX, the following command has been passed on by Alex Hornbake
as an alternative (thanks Alex).

git clone git@gist.github.com:4414436.git

(The url is the one copied from the ‘Clone this gist’ box.)

Running the command

This will create a folder with the id (the number) of the gist in your local GitHub working
directory.

¹ ⁰https://gist.github.com/441443

https://gist.github.com/441443
https://gist.github.com/441443

Working with GitHub, Gist and bl.ocks.org 146

A folder is created for your gist

And there it is (Ooo… Look almost New Years!).

Copy your thumbnail.png file into this directory.

Back to the Git Shell and change into the directory (4414436) .We can now add the thumbnail.png
file to the gist with the command;

git add thumbnail.png

Running the git add command

And now commit it to your gist with the following command in the Git Shell;

git commit -m "Thumbnail image added"

Running the git commit command

Now we need to push the commit to the remote gist (you may be asked for your GitHub user
name and password if you haven’t done this before) with the following command;

git push

Push! Push!

OK, now you can go back to the web page for your gist and refresh it and scroll on down…

Working with GitHub, Gist and bl.ocks.org 147

A thumbnail is born

Woo Hoo!

(I know it doesn’t look like much, but this is a VERY simple graph from D3 Tips and Tricks :-)).

Now for the real test. Go back to your home page for your blocks on bl.ocks.org and refresh the
page.

d3noob’s blocks complete with thumbnail

Oh yes. You may now bask in the sweet glow of victory. And as a little bit of extra fancy, if you
move your mouse over the image it translates up slightly!

Wrap up.

The steps to get your thumbnail into the gist aren’t exactly point and click, but the steps you
need to take are fairly easy to follow. As promised, here is the abridged list of steps that will
avoid you going through the several previous pages.

1. Create your public gist on https://gist.github.com/¹ ¹
2. Get an image ready (230 x 120 pixels, named thumbnail.png)
3. Under “Clone this gist”, copy the link (i.e., https://gist.github.com/4414436.git)
4. If you have the command line git tools (Git Shell), clone this gist to a local folder: git clone

https://gist.github.com/4414436.git (or git clone git@gist.github.com:4414436.git

for OSX) It will add a folder with the gist id as a name (i.e., 4414436) under the current
working directory.

5. Navigate to this folder via the command line in Git Shell: cd 4414436 (dir 4414436 on
windows)

¹ ¹https://gist.github.com/

https://gist.github.com/
https://gist.github.com/

Working with GitHub, Gist and bl.ocks.org 148

6. Navigate to this folder in file explorer and add your image (i.e., thumbnail.png)
7. Add it to git from the command line: git add thumbnail.png

8. Commit it to git: git commit -m "Thumbnail added"

9. Push this commit to your remote gist (you may need your Github user name and
password): git push

10. Go back and refresh your Gist on https://gist.github.com/ to confirm that it worked
11. Check your blocks home page and see if it’s there too. http://bl.ocks.org/<yourusername>

Just to finish off. A big thanks to Christophe Viau for the hard work on finding out how it all
goes together and if there are any errors in the above description I have no doubt they will be
mine.

Appendices
A Simple Map

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

</script>

</body>

</html>

Also available online from bl.ocks.org¹ ² or GitHub¹ ³.

¹ ²http://bl.ocks.org/d3noob/7644920
¹ ³https://gist.github.com/d3noob/7644920

http://bl.ocks.org/d3noob/7644920
https://gist.github.com/d3noob/7644920
http://bl.ocks.org/d3noob/7644920
https://gist.github.com/d3noob/7644920

Appendices 150

Full Screen Map

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<style>

body {

padding: 0;

margin: 0;

}

html, body, #map {

height: 100%;

width: 100%;

}

</style>

</head>

<body>

<div id="map"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

</script>

</body>

</html>

Also available online from bl.ocks.org¹ or GitHub¹ .

¹ http://bl.ocks.org/d3noob/7654694
¹ https://gist.github.com/d3noob/7654694

http://bl.ocks.org/d3noob/7654694
https://gist.github.com/d3noob/7654694
http://bl.ocks.org/d3noob/7654694
https://gist.github.com/d3noob/7654694

Appendices 151

Map with Marker and Features

<!DOCTYPE html>

<html>

<head>

<title>Marker Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

var marker = L.marker([-41.29042, 174.78219],

{draggable: true, // Make the icon draggable

title: 'Hover Text', // Add a title

opacity: 0.5} // Adjust the opacity

)

.addTo(map)

.bindPopup("Te Papa
Museum of New Zealand.")

.openPopup();

</script>

</body>

</html>

Also available online from bl.ocks.org¹ or GitHub¹ .

¹ http://bl.ocks.org/d3noob/7678758
¹ https://gist.github.com/d3noob/7678758

http://bl.ocks.org/d3noob/7678758
https://gist.github.com/d3noob/7678758
http://bl.ocks.org/d3noob/7678758
https://gist.github.com/d3noob/7678758

Appendices 152

Map with polyline and options

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

var polyline = L.polyline([

[-41.286, 174.796],

[-41.281, 174.786],

[-41.279, 174.776],

[-41.290, 174.775],

[-41.292, 174.788]

],

{ color: 'red',

weight: 10,

opacity: .7,

dashArray: '20,15',

lineJoin: 'round'

}).addTo(map);

</script>

</body>

</html>

Appendices 153

Also available online at bl.ocks.org¹ or GitHub¹ .

¹ http://bl.ocks.org/d3noob/7688787
¹ https://gist.github.com/d3noob/7688787

http://bl.ocks.org/d3noob/7688787
https://gist.github.com/d3noob/7688787
http://bl.ocks.org/d3noob/7688787
https://gist.github.com/d3noob/7688787

Appendices 154

A Leaflet map with base layer (tile selection)
controls

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var osmLink = 'OpenStreetMap',

thunLink = 'Thunderforest';

var osmUrl = 'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',

osmAttrib = '© ' + osmLink + ' Contributors',

landUrl = 'http://{s}.tile.thunderforest.com/landscape/{z}/{x}/{y}\

.png',

thunAttrib = '© '+osmLink+' Contributors & '+thunLink;

var osmMap = L.tileLayer(osmUrl, {attribution: osmAttrib}),

landMap = L.tileLayer(landUrl, {attribution: thunAttrib});

var map = L.map('map', {

layers: [osmMap] // only add one!

})

.setView([-41.2858, 174.78682], 14);

var baseLayers = {

"OSM Mapnik": osmMap,

"Landscape": landMap

};

L.control.layers(baseLayers).addTo(map);

Appendices 155

</script>

</body>

</html>

Also available online at bl.ocks.org²⁰⁰ or GitHub²⁰¹.

²⁰⁰http://bl.ocks.org/d3noob/7828823
²⁰¹https://gist.github.com/d3noob/7828823

http://bl.ocks.org/d3noob/7828823
https://gist.github.com/d3noob/7828823
http://bl.ocks.org/d3noob/7828823
https://gist.github.com/d3noob/7828823

Appendices 156

A Leaflet map with overlay layer (and base layer)
controls

<!DOCTYPE html>

<html>

<head>

<title>Simple Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script>

var coolPlaces = new L.LayerGroup();

L.marker([-41.29042, 174.78219])

.bindPopup('Te Papa').addTo(coolPlaces),

L.marker([-41.29437, 174.78405])

.bindPopup('Embassy Theatre').addTo(coolPlaces),

L.marker([-41.2895, 174.77803])

.bindPopup('Michael Fowler Centre').addTo(coolPlaces),

L.marker([-41.28313, 174.77736])

.bindPopup('Leuven Belgin Beer Cafe').addTo(coolPlaces),

L.polyline([

[-41.28313, 174.77736],

[-41.2895, 174.77803],

[-41.29042, 174.78219],

[-41.29437, 174.78405]

]

).addTo(coolPlaces);

var osmLink = 'OpenStreetMap',

thunLink = 'Thunderforest';

var osmUrl = 'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',

osmAttrib = '© ' + osmLink + ' Contributors',

Appendices 157

landUrl = 'http://{s}.tile.thunderforest.com/landscape/{z}/{x}/{y}\

.png',

thunAttrib = '© '+osmLink+' Contributors & '+thunLink;

var osmMap = L.tileLayer(osmUrl, {attribution: osmAttrib}),

landMap = L.tileLayer(landUrl, {attribution: thunAttrib});

var map = L.map('map', {

layers: [osmMap] // only add one!

})

.setView([-41.2858, 174.78682], 14);

var baseLayers = {

"OSM Mapnik": osmMap,

"Landscape": landMap

};

var overlays = {

"Interesting places": coolPlaces

};

L.control.layers(baseLayers,overlays).addTo(map);

</script>

</body>

</html>

Also available online at bl.ocks.org²⁰² or GitHub²⁰³.

²⁰²http://bl.ocks.org/d3noob/7845954
²⁰³https://gist.github.com/d3noob/7845954

http://bl.ocks.org/d3noob/7845954
https://gist.github.com/d3noob/7845954
http://bl.ocks.org/d3noob/7845954
https://gist.github.com/d3noob/7845954

Appendices 158

Leaflet.draw plugin with options.

<!DOCTYPE html>

<html>

<head>

<title>Leaflet.draw Plugin</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<link

rel="stylesheet"

href="http://leaflet.github.io/Leaflet.draw/leaflet.draw.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script

src="http://leaflet.github.io/Leaflet.draw/leaflet.draw.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: 'Map data © ' + mapLink,

maxZoom: 18,

}).addTo(map);

var LeafIcon = L.Icon.extend({

options: {

shadowUrl:

'http://leafletjs.com/docs/images/leaf-shadow.png',

iconSize: [38, 95],

shadowSize: [50, 64],

iconAnchor: [22, 94],

shadowAnchor: [4, 62],

popupAnchor: [-3, -76]

}

Appendices 159

});

var greenIcon = new LeafIcon({

iconUrl: 'http://leafletjs.com/docs/images/leaf-green.png'

});

var drawnItems = new L.FeatureGroup();

map.addLayer(drawnItems);

var drawControl = new L.Control.Draw({

position: 'topright',

draw: {

polygon: {

shapeOptions: {

color: 'purple'

},

allowIntersection: false,

drawError: {

color: 'orange',

timeout: 1000

},

showArea: true,

metric: false,

repeatMode: true

},

polyline: {

shapeOptions: {

color: 'red'

},

},

rect: {

shapeOptions: {

color: 'green'

},

},

circle: {

shapeOptions: {

color: 'steelblue'

},

},

marker: {

icon: greenIcon

},

},

edit: {

featureGroup: drawnItems

Appendices 160

}

});

map.addControl(drawControl);

map.on('draw:created', function (e) {

var type = e.layerType,

layer = e.layer;

if (type === 'marker') {

layer.bindPopup('A popup!');

}

drawnItems.addLayer(layer);

});

</script>

</body>

</html>

Also available online at bl.ocks.org²⁰ or GitHub²⁰ .

²⁰ http://bl.ocks.org/d3noob/7730264
²⁰ https://gist.github.com/d3noob/7730264

http://bl.ocks.org/d3noob/7730264
https://gist.github.com/d3noob/7730264
http://bl.ocks.org/d3noob/7730264
https://gist.github.com/d3noob/7730264

Appendices 161

OSMGeocoder plugin with options.

<!DOCTYPE html>

<html>

<head>

<title>osmGeocoder Search Plugin for Leaflet Map</title>

<meta charset="utf-8" />

<link

rel="stylesheet"

href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"

/>

<link

rel="stylesheet"

href="http://k4r573n.github.io/leaflet-control-osm-geocoder/Control.OS\

MGeocoder.css"

/>

</head>

<body>

<div id="map" style="width: 600px; height: 400px"></div>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet.js">

</script>

<script

src="http://k4r573n.github.io/leaflet-control-osm-geocoder/Control.OSM\

Geocoder.js">

</script>

<script>

var map = L.map('map').setView([-41.2858, 174.78682], 14);

mapLink =

'OpenStreetMap';

L.tileLayer(

'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© ' + mapLink + ' Contributors',

maxZoom: 18,

}).addTo(map);

var osmGeocoder = new L.Control.OSMGeocoder({

collapsed: false,

position: 'bottomright',

text: 'Find!',

});

map.addControl(osmGeocoder);

Appendices 162

</script>

</body>

</html>

Also available online at bl.ocks.org²⁰ or GitHub²⁰ .

²⁰ http://bl.ocks.org/d3noob/7746162
²⁰ https://gist.github.com/d3noob/7746162

http://bl.ocks.org/d3noob/7746162
https://gist.github.com/d3noob/7746162
http://bl.ocks.org/d3noob/7746162
https://gist.github.com/d3noob/7746162

	Table of Contents
	Acknowledgements
	Make sure you get the most up to date copy of Leaflet Tips and Tricks

	Introduction
	What is leaflet.js?
	What do you need to get started?
	HTML
	JavaScript
	Cascading Style Sheets (CSS)
	Web Servers
	PHP
	Other Useful Stuff
	Text Editor
	Getting Leaflet
	Where to get information on leaflet.js
	leafletjs.com
	Google Groups
	Stack Overflow
	Github
	bl.ocks.org
	Twitter
	Books

	Start With a Simple Map
	HTML
	JavaScript
	Declaring the starting parameters for the map
	Declaring the source for the map tiles

	And there's your map!

	Leaflet Features
	Adding a marker to our map
	Adding a popup to our marker
	Marker options
	Drag a marker
	Add a title to a marker
	Adjust the markers transparency

	Adding multiple markers to our map
	Adding a line to our map
	Adding options to our polyline

	Using multiple tile layers on your map
	Overlaying information interactively on your map

	Leaflet Plugins
	Leaflet.draw
	Leaflet.draw code description
	Leaflet.draw configuration options
	Object colours
	Polygon line intersection
	Show and measure an area
	Repeating a drawing option automatically
	Place an alternative marker
	Place the Leaflet.draw toolbar in another position

	OSMGeocoder Search
	OSMGeocoder code description
	OSMGeocoder configuration options

	Leaflet.FileLayer load local GPX, KML, GeoJSON files
	Leaflet.FileLayer code description

	Generate a heatmap with Leaflet.heat
	Leaflet.heat code description
	radius configuration option
	blur configuration option
	maxZoom configuration option

	Assorted Leaflet Tips and Tricks
	Make your map full screen
	Importing external data into leaflet.js
	Importing data as a JavaScript file
	Importing data from MySQL via php
	Extracting data from MySQL with php

	Making maps with d3.js and leaflet.js combined
	d3.js Overview
	Leaflet map with d3.js objects that scale with the map
	Leaflet map with d3.js elements that are overlaid on a map

	Tile servers that can be used with Leaflet
	URL Template
	Usage Policy
	Attribution
	Open Street Map OSM Mapnik
	URL Template
	Usage policy
	Attribution
	Usage example

	Open Street Map Black and White
	URL Template
	Usage policy
	Attribution
	Usage example

	Open Cycle Map
	URL Template
	Usage policy
	Attribution
	Usage example

	Outdoors
	URL Template
	Usage policy
	Attribution
	Usage example

	Transport
	URL Template
	Usage policy
	Attribution
	Usage example

	Landscape
	URL Template
	Usage policy
	Attribution
	Usage example

	MapQuest Open Aerial
	URL Template
	Usage policy
	Attribution
	Usage example

	MapQuest-OSM
	URL Template
	Usage policy
	Attribution
	Usage example

	Stamen.Watercolor
	URL Template
	Usage policy
	Attribution
	Usage example

	Esri World Imagery
	URL Template
	Usage policy
	Attribution
	Usage example

	Map Tips and Tricks
	How do maps get presented on a web page?
	Vectors and bitmaps.
	Vector graphics
	Bitmap graphics
	Vectors and bitmaps for maps.

	Map tiles and zoom levels
	How are the tiles on a map server organised?

	MySQL Tips and Tricks for leaflet.js
	Using a MySQL database as a source of data.
	PHP is our friend
	phpMyAdmin
	Create your database
	Importing your data into MySQL
	Querying the Database
	Using php to extract json from MySQL
	Getting the data into leaflet.js

	Working with GitHub, Gist and bl.ocks.org
	General stuff about bl.ocks.org
	Installing the plug-in for bl.ocks.org for easy block viewing
	Loading a thumbnail into Gist for bl.ocks.org thumbnails
	Setting the scene:
	Enough of the scene setting. Let's git going :-).
	Wrap up.

	Appendices
	A Simple Map
	Full Screen Map
	Map with Marker and Features
	Map with polyline and options
	A Leaflet map with base layer (tile selection) controls
	A Leaflet map with overlay layer (and base layer) controls
	Leaflet.draw plugin with options.
	OSMGeocoder plugin with options.

