LEARNING
Node.|s

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . .. 1
Chapter 1: Getting started with NOde.JS........... ... 2
REMIAIKS . . 2
Y4157 0] I P 2
= 1] 0] [T 6
Hello WOrId HT TP SEIVET e e e e e e e e e 6
Hello World command [INE. e e e e 7
Installing and RUNNING NOGE.JS. e e et e e e e e 8
RUNNING @ NOAE Program 8
Deploying your application ONlINe. i et e 8
Debugging Your NOdeJS APPIICALION. e 9
Debugging NatiVely 9
Hello Woorld With EXPressS. ... oo 10
Hello WOrld basiC FOULING. ... oo e 10
TLS Socket: server and ClIEeNt. 12
How to Create a Key and Certificate..................... 12
I PO AN . 12
TLS SOCKEL SNV 12
TLS Socket Client 13
Hello World In the REP L. ... e e 14
COrE MOAUIES. . .. e 15
All core modules at-a-glance........... ... 15
How to get a basic HTTPS web serverup and running!. 19
Step 1 : Build a Certificate AUTNOKItY e 19
Step 2 : Install your certificate as a root certificate............ ... 20
Step 3 Starting YOUr NOUE SEIVET ettt e 20
Chapter 2: Arduino communicationwithnodeJs.......................... i, 22
T OTUCTION. ...t 22

B S . ..o 22

Node Js communication with Arduino via Serialport. o 22

NOAE JS COUB. ..o e 22
ANUINO COEB. e e 23
S AN U .o 23
AP Er 3 ASYNC, S 25
)Y 1= G U 25
BN S . ..o 25
Parallel : MUI-tasKINg.o e e e e 25
Call async.parallel() with an object........... ... 26
Resolving multiple values 26
Series : independent MoNo-tasking. 27
Call async.series() With an Object. ... 28
Waterfall : dependent mono-tasking. ... 28
async.times(To handle for loop in better way). ... 29
async.each(To handle array of data efficiently)...................o 29
async.series(To handle events ONE DY ONE)........veei i e 30
Chapter 4: ASYNC/AWaIL 31
I OAUCTION. . e 31
EX APl . .. 31
Async Functions with Try-Catch Error Handling. ... e e 31
Comparison between Promises and ASYNC/AWAIL.t e 32
Progression from CallDacks. 32
StOPS EXECULION AL QWAL oottt ettt et ettt e e 33
Chapter 5: Asynchronous programming............. ..o 34
o 0 T 1o o 34
) 1= G U 34

E XM S . .o 34
Callback fUNCHIONS.t et 34
Callback functions in JAVaSCIipt. 34
SYNChronoUs CallbacKs. 34

ASYNChronous CallDacKs. 35

Callback functions IN NOAE.[S. 36

COde BXAMPIE . . 37
ASYNC error NAaNAIING 38
Ty CAICN . 38
Working possibilities. 38
EVeNt NaNdIErS. .. 38
DOMAINS 38
Callback Nell. ... 39
NALIVE PrOMISES. . ..o e e e e e e 40
Chapter 6: Autoreload on Changes............ ... 42
= 1] 0] (= J 42
Autoreload on source code changes USiNng NOAEMON. i it 42
Installing nodemon globally.......... ... 42
Installing nodemon locally 42
USING NOGBMION 42
BIOW S I SYNIC . . .ottt et 42
OVBIVIBW 42
Installation. 42
WINAOWS USBIS. . e e e 43
BasSIC USa0e o 43
AQVAaNCEA USaQ e o 43
GTUNE S . . e 43
10][o N 44
APl 44
Chapter 7: Avoid callback hell. 45
e 1111 o [TP 45
ASYNC MOAUIE. .. e e e 45
ASYNC MOAUIE. . ..o e e 45
Chapter 8: Bluebird PromisSes. 47
E XM S . .o a7

Converting nodeback library 10 PromiSES.ttt e e e e e e e 47

FUNCHONAl PrOmMiSES. . . e e 47

(0fe] o]0 (o (ST (CT=T e (=T = 1 (0] £ FA 47
Automatic Resource Disposal (PromiSe.USING)oinii ittt et 48
EXECULING 1N SO S, .ttt ettt e e et e e e e e 48
Chapter 9: Callback t0 Promise. 49
E XM S . . o 49
Promisifying @ callDack. 49
Manually promisifying a callback. 50
SEtTIMEOUL PrOMISIIEU. et e e e e e e e e 50
Chapter 10: Cassandra Integration............................. 51
€= 10 1]] 5 51
Hello WK . . et e e 51
Chapter 10: CLL. ... 52
0] 52
EX APl . .. 52
CommaNd LINE OPtiONS. ottt e e e 52
Chapter 12: Client-server cOmmuNICatioN.............. ... 56
EX APl . .. 56
W EXPress, JQUEIY and JAOE.ooo ittt e 56
Chapter 13: Cluster ModUIe. 58
) 1= G U 58
REMIAIKS . . 58
BN S . ..o 58
Hello W OrId. . . 58
ClUStEr EXAMPIE. . ..o 59
Chapter 14: Connectto Mongodb 61
I OdUCTION. . e 61
117 61
€= 0 1]] 5 61
Simple example to Connect mongoDB from NOAE.JS. i e 61

Simple way to Connect mongoDB with core NOAe.JS. i e 61

Chapter 15: Creating a Node.js Library that Supports Both Promises and Error-First Callbac.....62

o0 T 1o o 62

E XM S . . oo 62
Example Module and Corresponding Program using Bluebird. 62
Chapter 16: Creating API's with Node.jS................... 65
= 10] 0] (S T 65
GET api USING EXPIOSS. . ..ottt e et e e e e e e e e 65
POST @pi USING EXPIESS . . oottt ettt e et ettt e e e e e e e e e e e 65
Chapter 17: CSV parser iNNOU JS....... ... 67
o0 T 1o o 67

E XM S . ..o 67
USINg FSto read in @ C OV . ..o e e e 67
Chapter 18: Database (MongoDB With MONQOOSE) ..ot 68
B S . ..o 68
1Y/ T g To oo 2= o'0] | 1= ox 1 o o 68
1Yo T 1= P 68
INSEIT UALA. . ..o 69
REA AALA.o 69
Chapter 19: Debugging Node.js application....................... 71
= 10] 0] (S 71
Core node.js debugger and NOde INSPECIOT. . ..o it e e e e 71
UsiNg Core debUgQgero 71
CommMaANd FEfEIBNCE. e 71
Using Built-in NOde INSPECIOr. o 72
UsSiNg NOAE INSPECIOT e 72
Chapter 20: Deliver HTML or any other sortoffile.......................... ... 75
)Y 1= G U 75

E XM S . ..o 75
Deliver HTML at specified path. o e e e 75
FOlder StrUCTUIE . . . e et e e 75

BTV B S . e 75

Chapter 21: Dependency INJECHON. 77

E XM S . . oo 77
Why Use DependencCy INJECHION. e ettt e e e 77
Chapter 22: Deploying Node.js application without downtime.. 78
E XM S . . oo 78
Deployment using PM2 without dOWNEIME. e 78
Chapter 23: Deploying Node.js applications in production.. 80
o= 10] o] [J 80
Setting NODE _ENV="prodUCHiON". 80
RUNIME flagS 80
DPENABNCIES 80
Manage app With ProCeSS MANAGET 81
P2 PrOCESS MaANAGETttt ettt e ettt e e et e e 81
DEploYMENt USING PV 2. . e e 82
Deployment USING PrOCESS MANAGETttt ettt e ettt e et e et e e e e e e e e 83

0T T 83
Using different Properties/Configuration for different environments like dev, qa, staging 83
Taking advantage Of CIUSIEIS. e e e e e e e e 84
Chapter 24: ECMAScript 2015 (ES6) with Node.js.................o 86
EX APl . . 86
CONSHIEt dECIAratiONS.t 86
AITOW TUNCHIONS . . . ettt e e e e e e e 86
ArrOW FUNCHON EXAMPDIE . .. o e e e e e e e e 86
AESIIUCTUNING . . . ettt et et et et e e e e e e e e e e e e e e e 87
O . 87

B S B ClaSS . . oottt 88
Chapter 25: ENVIFONMeNt 89
€= 0 1] 0] 5 89
ACCEeSSING ENVIFIONMENT VANADIES e e e e e e e 89
process.argv command liNE argUMENTSo ittt e et 89
Using different Properties/Configuration for different environments like dev, ga, staging ¢ 90

Loading environment properties from a "property file". 91

Chapter 26: EVent EMItterS 93

RIS . ..o 93

E XM S . .o 93
HTTP Analytics through an Event EMItter. o e 93

2 7 1T 94

Get the names of the events that are subscribed t0. e 95

Get the number of listeners registered to listen for a specificevent............ i, 95
Chapter 27: EVeNtOOP 97
I OAU G ON . .. 97

E XMl . .o 97
How the concept of event [00p EVOIVEQ.o i e 97
Eventloop in pSeUdO COAE.o 97
Example of a single-threaded HTTP server withnoeventloop.. 97
Example of a multi-threaded HTTP server withnoeventloop...........................o. 97
Example of a HTTP server with event loop................. 98
Chapter 28: Exception handling............ ... 100
B AL S . .. 100
Handling EXCeption 1N NOGE.JS. i e e e e e 100
Unhanded EXception Management. ettt et ettt e e 101
Silently Handling EXCEPLIONS. oo 102
Returning to INItial StAte. 102
Errors @nd PrOmMiSES.ttt e et et et e e e e 103
Chapter 29: Executing files or commands with Child Processes... 104
)Y 1= ¥ GO 104
RIS . . 104

E XM S . .o 104
Spawning a New Process to eXeCUte @ COMMANT.ttt ettt et 104
Spawning a shell to execute a CoOMMANG. e 105
Spawning a process to run an exXeCUtable. i 106
Chapter 30: Exporting and Consuming Modules.. 107

REMAIKS . . o 107

EX Al . .. 107

Loading and USiNg @ MOAUIE. e e e 107
Creating a hello-world.js Module.o 108
Invalidating the module Cache. 109
BUilding YOUr OWN MOAUIES o e e e e e e e 110
Every module iNJected ONlY ONCE. e e e 111
Module loading from node_MOAUIES. i e e 111
Folder as amodUle. oo 112
Chapter 31: Exporting and Importing Module innode.js........................... 113
= 1] 0] [J 113
Using a simple Module IN MO, S. e e e e e e 113
USING IMPOIS [N ESB. ... ittt e e e e e e e e e e 113
EXporting With ESB SYNTAX.ottt e e e 115
Chapter 32: File upload. 116
= 101 0] [116
Single File Upload UsSing MUILET. e e e e e 116

N O . . 117
How to filter upload by extension: 117
Using formidable MOdUIE. ... 117
Chapter 33: Filesystem /O 119
RIS . 119

E XAl S . .. 119
Writing to a file using writeFile or WrteFIleSYNC. o i 119
Asynchronously Read from Files. e 120
WIth ENCOING e 120
WithOUt ENCOING.o 120
RelatiVe PatNS. 120
Listing Directory Contents with readdir or readdirSYNC.t e 121
USING @ QENEIAION. ... e 121
Reading from a file SynChronouSIly. 122
ReEATING @ SHIING. e 122

Deleting a file using unlink or UNIINKSYNC. i e e e e 122

Reading a file into a Buffer USING StreamIS.ooo i e e 123

Check Permissions of @ File OF DIrECIOIYo e et e 123
ASYNCRIONOUSIY 123
SYNCNIONOUSIY 124

Avoiding race conditions when creating or using an existing directory.............................oiiia. 124
Checking if afile or a direCtory EXIStS. oo 125
ASYNCRIONOUSIY ... 125
SYNCNIONOUSIY ... 125

Cloning a file USING SIrEaIMS e et et e e e 126

Copying files by pIpINg StrEaMS. o e 126

Changing contents of atext file. 126

Determining the line count of atextfile.o 127
= o] 0151 P 127

Reading a file INe DY INe. ... 127
= 0] 0151 P 127
Chapter 34: Getting started with Nodes profiling.. 129
I OdUCTION. . e 129
RIS . 129
EX APl . .. 129

Profiling a simple Node appliCation. i e 129

Chapter 35: Good coding Style...... 132
REMIAIKS . . 132
B S . ..o 132

BasSIiC PrOgram fOr SIgNMUPottt ettt e e 132

Chapter 36: Graceful ShUtdOWN 136
B S . ..o 136

Graceful ShUtdown - SIGTERM e e e 136

Chapter 37 GIUN . 137
REMIAIKS . .. 137
= 1] 0] [137

INtrodUCHION TO GrUNLIS. .. .o e e e e e 137

INStalling GruntPIUGINS ot et e e 138

Chapter 38: HaCK. ... 140
B S . ..o 140
Add New exXteNSIONS T0 FEOUITE()ottt et e e e e e e e e e e 140
Chapter 39: Handling POST requestin Node.jS.................ooi 141
REMIAIKS . . 141
= 10] 0] [T 141
Sample node.js server that just handles POST reqUESES. ...ttt e e 141
Chapter 40: How modules are loaded..................... 143
E XM S . .o 143
Global MOOE. . .. 143
Loading MOTUIESot e 143
Loadinga Folder Module.............. ... 143
Chapter 40 Nt 145
= 1] 0] [145
LT 0 ST =T VT 145

DD Gl N, . 146
Chapter 42: Installing Node.|S................... 148
EX APl . .. 148
Install Node.js 0N UBUNLU. e e e e e e 148
Using the apt package manager........... ... 148
Using the latest of specific version (e.g. LTS 6.x) directly from nodesource.......................... 148
Installing Node.js ON WINAOWS.o e 148
Using Node Version Manager (NVIM) o e 149
Install Node.js From Source with APT package manager. ..., 150
Installing Node.js on Mac using package Manager.uuurrriiie e 150
HOME DI EW . .. 150
1Y = Lo o T PP 151
Installing using MacOS X INStaller.o oo 151
Checkif Nodeisinstalled. 151

Install Node.js from source on Centos, RHEL and Fedora..............coooiiiiiiiiiiiiiiiii 153
Installing Node.JS WIth M. ... 153
Chapter 43: Interacting with Console. 155
)Y 1= ¥ GO 155
= 1] 0] [J 155

0 o o 1T 155
Console ModUle. 155
CONSOIE. IO . ..o o 155
(o0 TST0] 1= =T ¢ o P 155
console.time, CONSOIE.IMEENT. e 155
Process ModuUle 156
FOormatting 156
GBNEIAL. . .. 156
FONE COl0rS. ..o 156
BacKgroUNd CoOl0rS. .. oo 157
Chapter 44: Keep a node application constantly running.............................. 158
= 10] 0] [J 158
UsSe PM2 8S @ PrOCESS MANAGETttt ettt ettt ettt et e e e e e e e e e e 158
Useful commands for monitoring the proCess. 158
Running and stopping a FOrever damON. e e e e e e 159
Continuous runNNING WIth NONUP. o e e e e e e e 160
Process Mangement With FOMEVET. e e e e e e e e e e 160
Chapter 45: Koa Framework V2. 161
= 1] 0] [T 161
Hello WOrld eXamiple. e e e e e e e 161
Handling errors using middIEWAre. e e 161
Chapter 46: Lodash 162
o0 T 1o o 162
= 1] 0] [J 162

Filter @ COllECtiON. 162

Chapter 47: Loopback - REST Based CONNecCtor. ... 163

o0 T 1o o 163
= 10] 0] [J 163
Adding aweb based CONNECLON. e 163
Chapter 48: metalsmith. ... 165
= 1] 0] [J 165
Build @ Simple DIOg. 165
Chapter 49: Mongodb integration........... 166
)Y 1= ¥ GO 166

P Al A OIS 166
= 1] 0] [T 167
CoNNECE 10 MONQODD B 167
MongoClient Method CONNECI(). e e e e e et 167
INSEIt @ OCUMENL. ...ttt et e e e e e e e e e 167
Collection Method INSEIONE()ottt e e e e e e e e e e e e 168
Read @ COlECHION. e 168
Collection Method fINA() oo e e e 168
UpPdate @ QOCUMIBNL.ttt ettt e e e e e e e e e e e e e 169
Collection Method UPateONE().ttt e e e e e e e e e 169
Delete @ QOCUMENT.ttt et et e 169
Collection method delete@ONE() e et e e e e e 170
Delete multiple dOCUMEBNLS. o et e et e e e e 170
Collection method deleteMany ().ot e 170
SIMPIE CONMNECT. . .. et et e e e e e e e e 171
Simple CoNNECT, USING PrOMISES.ottt et ettt et 171
Chapter 50: MongoDB Integration for Node.jS/EXPress.jS.............cooooviiiiiiiiiii 172
o0 T 1o o 172
REMIAIKS . .. 172

E XM S . ..o 172
INStalliNg MONQOD B et e e e 172
Creating a Mongoose MOAEL. e e e e e 172

Querying your Mongo Database.o 173

Chapter 51: Mongoose Library 175

= 10] 0] [175
Connect to MongoDB USING MONQOOSE.ttt ettt e e e e e e et 175
Save Data to MongoDB using Mongoose and EXpress.js ROULES. ...t 175

SO U . . 175
7 o [P 176
U S0 . . o 177

Find Data in MongoDB Using Mongoose and EXpress.jSROUtes. ...ttt 177
S U . 177
GO0 . . 177
U S0 . . 179

Find Data in MongoDB Using Mongoose, Express.js Routes and $text Operator.......................... 179
S tUD . 179
GO0 . 180
0 LT To [181

INdEXES IN MOEIS. e 182

Useful MONgOO0SE fUNCHIONS. e 184

find data in moNgOdb USING PrOMISES.o o 184

S tUP . 184
GO0 . . 184
0 LT To [185
Chapter 52: MSSQL Intergration........ 187

I OTUCTION. e e 187

REMIAIKS . . 187

= 10] 0] [187
Connecting with SQL via. mssgl npm module. 187

Chapter 53: Multithreading.................. 189

o0 T o o 189

REMIAIKS . .. 189

= 1] 0] [T 189

CIUS BT . oo e 189

Gl PrOCESS . . e 190
Chapter 54: Mysql Connection POOI........... ... 191
E XAl . .. 191
Using a connection pool without database.o e 191
Chapter 55: MySQL integration.................. 193
I OdUCTION. e 193
[1 11] o [TP 193
Query a connection object With parameters. 193
UsiNg @ CONNECHION POOL. e et e e e e e e e e 193

a. Running multiple queries at Same tiImMe. 193
b. Achieving multi-tenancy on database server with different databases hosted onit...................... 194
CONNECT 10 MY S Q. . . et ettt e e e 195
Query a connection object without parameters. 195
Run a number of queries with a single connection from a pool...............oo i 195
Return the qUErY WNEN @N EITOF OCCUIS. ...ttt ettt ettt et ettt et e 196
EXPOrt CoNNECHiON POOL. e e e 196
Chapter 56: N-A P .. 198
o0 T o o 198
= 1] 0] [J 198
Hello 10 N-A P e 198
Chapter 57: Node JS Localization.............. ... 200
[T OTUCTION. e 200
= 1] 0] [T 200
using i18n module to maintains localization iIN NOE JS PP i vttt e 200
Chapter 58: Node server without framework....................... 202
R MK . .. 202
= 111 0] (= 202
Framework-18SS NOUE SEIVET. e e 202
OVErcOMING CORS ISSUBS.ttt ettt e e e e e e e e e e e e e e 203
Chapter 59: Node.js (express.js) with angular.js Samplecode.. 204

I OTUCTI ON . . .o e 204

EX Al . .. 204

(1 ¢=T= 1] oo JRo 18 o] (o] [=]ox /3NN 204

Ok, but how we create the express skeleton project?.t e 204
HOW eXpress WOrKS, Driefly 2. 205
Installing Pug and updating Express template engine. ... 205
How AngulardS fits in all Of thisS 2.o 206
Chapter 60: Node.JS and MoNgoDB. 208
REMIAIKS . . 208
B S . ..o 208
Connecting To @ Database.ooi 208
Creating NeW CoOllECtiON. o e e e e e e 209
INSEIING DOCUMENES . ..ottt e e e e e e e e e e e e e e 209
REATING. ... 210
L]0 = o 210
MEENOOS 211
UPAAtE () . .o 211
UPdateONe 211
UpdateManyo 211
REPIACEONE 212
DIEtING. 212
Chapter 61: Node.js Architecture & Inner Workings......................oiiii i, 214
= 1] 0] [J 214
Node.js - UNder the NOOd. e e e e e e e e 214
NOGE. IS - IN MOLON . .. et e e e e e e e e e e e 214
Chapter 62: Node.js code for STDIN and STDOUT without using any library........................ 216
I OTUCTION. ...t 216
= 10] 0] [T 216
PO g A . . e e e 216
Chapter 63: Node.js Design Fundamental............................ i, 217
= 1] 0] [217

The NOde.jS PhilOSOPNY e e e e 217

Chapter 64: Node.js Error Management. 218

o0 T 1o o 218
= 10] 0] [J 218
Creating Error ODJeCt. o 218

T OWING EITOT . . ottt e e e e e e e e e 218

Iy, CatCN DIOCK. .. 219
Chapter 65: Node.js PerformancCe.............. ... 221
[1 11] o [TP 221
Y7 o 1 T o 221
Blocking Operation EXample. ... 221
Non-Blocking IO Operation EXample. 221
Performance Considerations........... ... 222
INCrEe@SE MAXSOCKETS. e e 222

B SIS . . 222
Setting YoUr OWN ANt 222
Turning off Socket Pooling entirely..................... 223
Pl 223
ENADIE GZiP . .o 223
Chapter 66: Node.js v6 New Features and Improvement............................ooiiiiii ., 225
I OdUCTION. . e 225
E XAl S . .. 225
Default FUNCHION Parameters. e e 225
RESE ParamMeterS. . .o 225
SPread OPEIALOL.ttt et 225
AITOW FUNCHIONS 226
"ThIS™ IN AITOW FUNCHION. . ..ottt e e e e 226
Chapter 67: Node.js With CORS 228
= 1011 5 228
ENADIE COR S N BX IS, S . o .ttt ittt ettt et et e e e e e e e e e e e e 228
Chapter 68: Node.JSWIth ES6............ ... 229

I OTUCT ON . . o e e 229

EX Al . .. 229

Node ES6 Support and creating a project with Babel........... ... 229
USE JS €56 0N YOUI NOGBIS @ ..ottt ettt et et e e e e e e e e e e e e e e 230

P ErEqUISIEES: 230
Chapter 69: Node.jsWith Oracle. ... 233
B S . ..o 233
Connectto Oracle DB. 233
Query a connection object Without parameters. ... 233
Using a local module for easier QUEIYING.ttt e e e e e 234
Chapter 70: NodeJS Beginner GUIde.............. ... 236
= 1] 0] [J 236
Hello W Orld L. 236
Chapter 71: NodeJS FrameWOrKS. 237
= 1] 0] (= T 237
Web Server Frameworks.o oo 237
B S S . et 237
0 L= 237
Command Line Interface Frameworks. oo 237
COMMIANAET S, ..ttt 237
VO DAL S 238
Chapter 72: Nodejs HistOryo 239
INETOAUCTION. . .. e e 239
E XM S . .o 239
KeY BVENTS IN ACKH YA e e e 239
2000 . 239
2000 239
200 L 239
200 239
2003 240
200 240

Qe 240
P 241
Qe 241
2006 . . 241
QLo 241
Q. 241
2 241
Qo 241
Chapter 73: NOdeJs ROULING ... 242
o0 T o o 242
REMIAIKS . . 242

B XM S . . oo 242
EXPress Webh Server ROULING. o e e e e e e e e e e 242
Chapter 74: NodeJS With Redis............ ... 247
R MK . .. 247

B AL S . .. 247
GEttiNG SHAMo 247
Storing Key-Value PairS. e 248
Some more important operations supported by node_redis.......... ... 250
AP el 75 NP . 252
It OTUCTION. ... et 252
)Y 1= ¥ GO 252

P Al A OIS, . .. 253

E XM S . .o 254
INStAlliNg PACKAGESt 254
INtrOdUCH ON. .. 254
Installing NP M . ..o 254
Howtoinstall packages.o 255
Installing dependencCies 257

NPM Behind A ProXy S@IVETo 258

SCOPES AN FEPOSI O IS . .. ettt 258

Uninstalling PaCKAGES. e 259
BasiC SEMANtIC VEISIONING 259
Setting up a package CoONfIQUIAtiON. o i e e 260
Publishing @ package. ... 261
RUNNING SCIIPES . . .o 261
Removing eXtran@ous PaCKagES. 262
Listing currently installed PaCKages. ... 263
Updating Nnpm and PaCKagES.uu 263
Locking modules to SPeCifiC VEISIONS. 264
Setting up for globally installed packages. 264
Linking projects for faster debugging and development. ... 265
HelD B X, 265
Steps for linking project dependenCIeS. 265
Steps for linking a global to0l. ... 265
Problems that May ariSe. ... 265
Chapter 76: nvm - Node Version Manager ... 266
REMIAIKS . .. 266
E XM S . . oo 266
INStall NV M e 266
ChECK NVM VEISION.ot e e e e e e e e e e 266
Installing an SPeCIfic NOGE VEISION e e e e e e e e e e 266
Using an already installed NOAE VEISION. i e e e e 266
INStall NVM 0N MAC OSX. .o e e 267
INSTALLATION PROCESSo e 267
TEST THAT NVM WAS PROPERLY INSTALLED. e 267
Setting alias for NOAE VEISION. e e e e e 268
Run any arbitrary command in a subshell with the desired versionof node.............. 268
Chapter 77: OAULN 2.0 ... 270
= 1] 0] [270

OAuth 2 with Redis Implementation - grant_type: password.t 270

Chapter 78: package.jSON. 278
REMIAIKS . . 278

E XM S . . oo 278
BasiC project defiNitioN. 278
DEPENAEBNCIES. . . .ttt e e 278
AeVDEPENAENCIES 279
ol 1] o] £ J 279
Pre-defined SCriPtS.o 279
User-defined SCHiptS. 280
Extended project definition. 280
EXPIOriNg PacCKage. JSON. 281
Chapter 79: Parsing command line arguments...................oiiiii i 286
= 10] 0] 1 286
Passing action (Verb) and ValUes. i 286
Passing boolean SWILCRES. 286
Chapter 80: Passportintegration......... ... 287
RIS . 287
EX APl . . 287
GEttING STAM oo e 287
Local aUtNENTICALION.ottt et e e 287
Facebook authentication. 289
Simple Username-Password Authentication. e 290
Google Passport authentiCation. i e e e e e e 291
Chapter 81 PASSPOIL. S 293
I OTUCTION. ...t 293
= 10] 0] [T 293
Example of LocalStrategy iN PaSSPOIT.[S.ttt et ettt e 293
Chapter 82: Performance challenges..................... 295
= 1] 0] [295

Processing long running queries With NOGE. o e 295

Chapter 83: PostgreSQL integration......... ... 299

= 10] 0] [299
CoNNECT TO POSIgrES Q. . . e e e 299
Query With ConNECtioN ODJECT. e e e e 299

Chapter 84: Project StrUCIUIe 300

o 0 T o o 300

REMIAIKS . . 300

B XM S . ..o 300
A simple nodejs application with MVC and AP 300

Chapter 85: Push notifications. 303

I OTUCTION. e e 303

P A M OIS 303

= 1] 0] [303
WD NOLIFICAtION. . .. o e 303
Y o] o] O 304

Chapter 86: Readline............. ... 305

R]2 305

EX APl . .. 305
Line-by-line file reading.o e 305
Prompting USer iNPUE VIA CLl. e e e e e e e 305

Chapter 87: Remote Debugging in Node.JS................ . 307

[1 11] o [T U 307
NOAEJIS ruUN CONfIQUIALION. o e ettt et e e e e e e e 307
IntelliJ/Webstorm ConfigUration. e e 307
Use the proxy for debugging via port 0N LINUX. e 308

Chapter 88: ReQUITE() 309

o0 T 1o o 309

)Y 1= G 309

REMIAIKS . .. 309

= 1] 0] [J 309

Beginning require() use with a function and file.......... 309

Beginning require() use with an NPM Package.ooouiiiiii e 310

Chapter 89: Restful APl Design: Best Practices......................... i 311
B S . ..o 311
Error Handling: GET @ll FESOUICES.ottt e e e e e e e e e e e e 311
Chapter 90: Route-Controller-Service structure for EXpressJS........................oiii 313
B S . ..o 313
Model-Routes-Controllers-Services DireCtory StrUCIUIE. ... oot 313
Model-Routes-Controllers-Services Code StUCIUIE.ttt et 313
USERMOAEL S o 313
US BT FOU S, S . ..t 313
USEI.CONITOIOS. S 314
ST S VI C S, Sttt 314
Chapter 91: Routing ajax requests with EXpress.JS........................... i 315
= 1011 5 315
A simple Implementation Of AJA X e e s 315
Chapter 92: Running Node.jS @S @ SeIVICE.......... ..ot 317
I OdUCTION. . e 317
EX APl . .. 317
NOde.jS @S @ SYSIEMA HEBMION ettt e e e e e e 317
Chapter 93: Securing Node.js applications........................... 319
EX APl . .. 319
Preventing Cross Site Request Forgery (CSRF) e 319

ST I SR T 1Y To 1= £ O 320
USING HT T P S e e et et e e e e e e e e e 321
Setting UP an HT TP S SOIV e . . .t e e e e e e e e e 321
Step 1 : Build a Certificate AUThOIIty o 321
Step 2 : Install your certificate as a root certificate................... i 322
Secure express.jS 3 APPIICALION. 322
Chapter 94: Send Web Notification........... ... 324
= 1] 0] [324

Send Web notification using GCM (Google Cloud Messaging SyStem)...... ...t 324

Chapter 95: Sending a file streamtoclient........................ ... 326

= 10] 0] [326
Using fs And pipe To Stream Static Files From The Server. 326
Streaming Using flUeNt-fimpeg.o 327

Chapter 96: SeqUEelIZe.JS. 328

B S . ..o 328
INSTAIIALION. 328
DEfiNING MOUIS. . ..o e e 329

1. sequelize.define(modelName, attributes, [options]).................... 329
2. sequelize.dmport(Path) 329
Chapter 97: Simple REST based CRUD APl 331

= 1] 0] [T 331

REST API for CRUD IN EXPIreSS 3. ..ottt e e e e e e e e e 331
Chapter 98: Socket.io commMUNICAtION............. 332

= 1] 0] [J 332

"Hello world!" wWith SOCKET MESSAQES.\ttt e e 332
Chapter 99: Synchronous vs Asynchronous programminginnodejs................................... 333

E XM S . ..o 333

USING GSYNC . .ottt et et e e e e e e e e s 333
Chapter 100: TCP SOCKeLS. 334

E XM S . . oo 334
A SIMPIE TCP SEIVETottt e e e e e e e e e e 334
A SIMpIe TCP ClaNt. .. e e e e e 334

Chapter 101: Template frameworks 336

E XM S . .o 336

NUNJUCKS . ..ttt e e e e e 336
Chapter 102: Uninstalling NOGe.JS. ... 338

= 1] 0] [T 338
Completely uninstall Node.js 0n Mac OSX. e 338
Uninstall Node.jS 0N WINAOWS.o ettt e e e 338

Chapter 103: Unit testing frameworks............. ... 339

EX Al . .. 339

MOCQhA SYNCNIONOUS.ottt e e e e e e e e e e e e 339
Mocha asynchronous (Callback).oo i e e 339
Mocha asynChronoUS (PrOMISE).ttt ettt et et e e ettt e e et 339
Mocha ASynchronous (aSYNCIAWAIL).ttt e e e et 339
Chapter 104: Use Cases Of NOAe.JS............oooiii 341
= 1] 0] [J 341

L I ST Y P 341
Console with CommMaNd PrOMPL.ttt e e e e 341
Chapter 105: Using Browserfiy to resolve 'required' error with browsers.............................. 343
= 1] 0] 1 T 343
EXAMPIE - FIlE. S, e 343
What is this snippet dOiNg 2. 343
InStall BrOWS eIy 343
I PO AN . .. 344
What does that MeaN?. ... 344
Chapter 106: Using IISNode to host Node.js Web AppsinlIS.. 345
RIS . . 345
Virtual Directory / Nested Application with Views Pitfall... 345
VOIS ONIS . .. 345
E XAl S . .. 345
GEttiNG SHAM Ao 345
REQUITEIM BN S .. 345
Basic Hello World EXample USING EXPIESS.ottt ettt e e e e e e et 346
PrOJECE SHIUCUI 346
server.js - Express Application........ 346
Configuration & Web.config. ... 346
CONfIQUIALION 347
[ISNOAE HaNAIET e e e 347
URL-ReWITE RUIES e 347

Using an IIS Virtual Directory or Nested Application Via.ot e 348

Using Socket.io With [ISNOAE.o e e e e e e e e e 349

Chapter 107: UsiNg StreamIS 350
P A M OIS 350
EX AL . .. 350

Read Data from TextFile With Streams. 350
PIPING ST A S . ..o 351
Creating your own readable/writable Stream. 351
VY St A 2 . . et 352

Chapter 108: Using WebSocket's with Node.JS...................... 355

E XM S . ..o 355
INStalling WD SOCKET S 355
Adding WebSO0CKet'S t0 YOUr fileS. e e 355
Using WebSocket's and WEDSOCKEE SEIVEI'S.o e 355
A Simple WebSocket Server EXample. o 355

Chapter 109: Web Apps With EXPIreSS. ...t 357
I OdUCTION. . e 357
)11 357
P A A B S . 357
[1 11] o [T U 357

GEttiNG SEAM Ao 357
BaSIC FOULING . .. oottt e e 358
Getting Info from the reqUEST. o e 359
Modular eXpress appliCatiON 360

More complicated @Xampleo 361
Using a Template ENQINe. ... 362
Using a Template ENQINe. ... 362
EJS Template EXamle. .. .o 363

JSON AP With EXPrESSTS . . e e e e e e e 363
SEIVING StALIC fIlES. ..o 364
MURIPIE fOIAEIS . . e e 365
Named routes iN DjangO-StYle. e s 365

Error Handlingo e e 366

Using middleware and the next callback. 366

Error NandliNg.o s 368
Hook: How to execute code before any req and afterany res...............o i 370
Handling POST REQUESTS.ttt e e e e e e e e e e 370
Setting COOKIES With COOKIE-PAISEY ettt e e e e e e e e e e e 371
Custom MIAAIEWArE 1N EXPIESS.ttt et et e e e e e e e e e e 371
Error handling IN EXPreSS o e e 372
AddING MIAAIBWATE.ottt e e 372
Hello World. ... 372
Chapter 110: Windows authentication under node.jS...................ooooiiii i, 374
REMIAIKS . . 374
= 1] 0] [374
USING ACHVEAITECIONYo .ottt e e e e e et et 374
InStallation 374
U S0 . . 374
Chapter 111: Yarn Package Manager......... ... 375
INTrOTUCTION. e e 375

E XAl S . .. 375
Yarn INStallation.o o 375
A O S . . 375
HOMI B O W . 375
Y= Lo 0 1 375
Adding Yarn t0 YoUr PATH. ..o o 375
WWINOOWS . .. 375
1Y 1T 375
(01 gToTole] F= 11) 375
X 376
Debian [UDUNTU.o 376
CentOS /Fedora/ RHEL. ... 376
o P 376

Al DS UL ONS . . . oo e 377

Alternative Method of Installation..................... 377
S 1= | o 1 o S 377
JLIE= 11 0 2= L 377
N . 377

POSt INStall. ... 377
Creating a basiC PaCKage. i 377
Install package With Yarn.o o 378

(04 (=70 [X 379

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: node-js

It is an unofficial and free Node.js ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Node.js.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/node-js
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with Node.|s

Remarks

Node.js is an event-based, non-blocking, asynchronous I/O framework that uses Google's V8
JavaScript engine. It is used for developing applications that make heavy use of the ability to run
JavaScript both on the client, as well as on server side and therefore benefit from the re-usability
of code and the lack of context switching. It is open-source and cross-platform. Node.js
applications are written in pure JavaScript and can be run within Node.js environment on
Windows, Linux etc...

Versions

Version | Release Date

v8.2.1 2017-07-20
v8.2.0 2017-07-19
v8.1.4 2017-07-11
v8.1.3 2017-06-29
v8.1.2 2017-06-15
v8.1.1 2017-06-13
v8.1.0 2017-06-08
v8.0.0 2017-05-30
v7.10.0 2017-05-02
v7.9.0 2017-04-11
v7.8.0 2017-03-29
v7.7.4 2017-03-21
v7.7.3 2017-03-14
v7.7.2 2017-03-08
v7.7.1 2017-03-02

v7.7.0 2017-02-28

https://riptutorial.com/

https://nodejs.org/en/blog/release/v8.2.1/
https://nodejs.org/en/blog/release/v8.2.0/
https://nodejs.org/en/blog/release/v8.1.4/
https://nodejs.org/en/blog/release/v8.1.3/

Version | Release Date

v7.6.0 2017-02-21
v7.5.0 2017-01-31
v7.4.0 2017-01-04
v7.3.0 2016-12-20
v7.2.1 2016-12-06
v7.2.0 2016-11-22
v7.1.0 2016-11-08
v7.0.0 2016-10-25
v6.11.0 2017-06-06
v6.10.3 2017-05-02
v6.10.2 2017-04-04
v6.10.1 2017-03-21
v6.10.0 2017-02-21
v6.9.5 2017-01-31
v6.9.4 2017-01-05
v6.9.3 2017-01-05
v6.9.2 2016-12-06
v6.9.1 2016-10-19
v6.9.0 2016-10-18
v6.8.1 2016-10-14
v6.8.0 2016-10-12
v6.7.0 2016-09-27
v6.6.0 2016-09-14
v6.5.0 2016-08-26

v6.4.0 2016-08-12

https://riptutorial.com/

Version | Release Date

v6.3.1 2016-07-21
v6.3.0 2016-07-06
v6.2.2 2016-06-16
v6.2.1 2016-06-02
v6.2.0 2016-05-17
v6.1.0 2016-05-05
v6.0.0 2016-04-26
v5.12.0 2016-06-23
v5.11.1 2016-05-05
v5.11.0 2016-04-21
v5.10.1 2016-04-05

v5.10 2016-04-01

v5.9 2016-03-16
v5.8 2016-03-09
V5.7 2016-02-23
v5.6 2016-02-09
v5.5 2016-01-21
v5.4 2016-01-06
v5.3 2015-12-15
v5.2 2015-12-09
v5.1 2015-11-17
v5.0 2015-10-29
v4.4 2016-03-08
v4.3 2016-02-09
v4.2 2015-10-12

https://riptutorial.com/

Version | Release Date

v4.l 2015-09-17
v4.0 2015-09-08
i0.js v3.3 2015-09-02
i0.jsv3.2 2015-08-25
io.jsv3.1 2015-08-19
i0.js v3.0 2015-08-04
i0.jsv2.5 2015-07-28
i0.jsv2.4 2015-07-17
io.jsv2.3 2015-06-13
i0.jsv2.2 2015-06-01
i0.jsv2.1 2015-05-24
i0.jsv2.0 2015-05-04
i0.jsv1.8 2015-04-21
io.jsv1l.7 2015-04-17
i0.jsv1.6 2015-03-20
io.jsvl.5 2015-03-06
io.jsvl.4 2015-02-27
i0.jsv1.3 2015-02-20
io.jsvl.2 2015-02-11
io.jsvli.l 2015-02-03
io.jsv1.0 2015-01-14
v0.12 2016-02-09
v0.11 2013-03-28
v0.10 2013-03-11

v0.9 2012-07-20

https://riptutorial.com/

Version | Release Date

v0.8 2012-06-22
v0.7 2012-01-17
v0.6 2011-11-04
v0.5 2011-08-26
v0.4 2011-08-26
v0.3 2011-08-26
v0.2 2011-08-26
v0.1 2011-08-26
Examples

Hello World HTTP server

First, install Node.js for your platform.

In this example we'll create an HTTP server listening on port 1337, which sends seiio, worid! to
the browser. Note that, instead of using port 1337, you can use any port number of your choice
which is currently not in use by any other service.

The nttp module is a Node.js core module (a module included in Node.js's source, that does not
require installing additional resources). The nttp module provides the functionality to create an
HTTP server using the ntcp.createserver () method. To create the application, create a file
containing the following JavaScript code.

const http = require('http'); // Loads the http module

http.createServer ((request, response) => {
// 1. Tell the browser everything is OK (Status code 200), and the data is in plain text
response.writeHead (200, {

'Content-Type': 'text/plain'
}) i

// 2. Write the announced text to the body of the page
response.write ('Hello, World!\n');

// 3. Tell the server that all of the response headers and body have been sent
response.end () ;

}).listen(1337); // 4. Tells the server what port to be on

Save the file with any file name. In this case, if we name it ne110. 35 We can run the application by
going to the directory the file is in and using the following command:

https://riptutorial.com/

http://www.riptutorial.com/node-js/topic/1294/installing-node-js
http://www.riptutorial.com/node-js/example/30139/core-modules
https://nodejs.org/api/http.html#http_http_createserver_requestlistener

node hello. js

The created server can then be accessed with the URL http://localhost:1337 or
http://127.0.0.1:1337 in the browser.

A simple web page will appear with a “Hello, World!” text at the top, as shown in the screenshot
below.

Q0@ < localhost:1337) & i >

Hello, World!

Editable online example.
Hello World command line

Node.js can also be used to create command line utilities. The example below reads the first
argument from the command line and prints a Hello message.

To run this code on an Unix System:

1. Create a new file and paste the code below. The filename is irrelevant.
2. Make this file executable with chmod 700 FILE_NAME
3. Run the app with ./app_navE David

On Windows you do step 1 and run it with node app_NaME David

#!/usr/bin/env node
'use strict';

/*
The command line arguments are stored in the “process.argv’ array,
which has the following structure:
[0] The path of the executable that started the Node.js process
[1] The path to this application
[2-n] the command line arguments

https://riptutorial.com/

http://localhost:1337
http://127.0.0.1:1337
https://i.stack.imgur.com/Oq3Y4.png
https://glitch.com/edit/#!/node-hello-world

Example: ['/bin/node', '/path/to/yourscript', 'argl', ‘'arg2', ...]
src: https://nodejs.org/api/process.html#process_process_argv

*/

// Store the first argument as username.
var username = process.argv|[2];

// Check if the username hasn't been provided.
if (!'username) {

// Extract the filename
var appName = process.argv|[l].split (require('path').sep) .pop();

// Give the user an example on how to use the app.
console.error ('Missing argument! Example: %$s YOUR_NAME', appName);

// Exit the app (success: 0, error: 1).

// An error will stop the execution chain. For example:
// ./app.js && ls -> won't execute ls

// ./app.js David && 1ls —> will execute 1ls
process.exit (1) ;

}

// Print the message to the console.
console.log('Hello %s!', username);

Installing and Running Node.|s

To begin, install Node.js on your development computer.
Windows: Navigate to the download page and download/run the installer.

Mac: Navigate to the download page and download/run the installer. Alternatively, you can install
Node via Homebrew using brew install node. HOmebrew is a command-line package mananger
for Macintosh, and more information about it can be found on the Homebrew website.

Linux: Follow the instructions for your distro on the command line installation page.

Running a Node Program

To run a Node.js program, simply run node app.js Of nodejs app.js, Where app. js is the filename of
your node app source code. You do not need to include the . ;s suffix for Node to find the script
you'd like to run.

Alternatively under UNIX-based operating systems, a Node program may be executed as a
terminal script. To do so, it needs to begin with a shebang pointing to the Node interpreter, such
as #!/usr/bin/env node. The file also has to be set as executable, which can be done using chmoq.
Now the script can be directly run from the command line.

Deploying your application online

https://riptutorial.com/

https://nodejs.org/en/download/
https://nodejs.org/en/download/
http://brew.sh/
https://nodejs.org/en/download/package-manager/

When you deploy your app to a (Node.js-specific) hosted environment, this environment usually
offers a rorT-environment variable that you can use to run your server on. Changing the port
number to process.env.rorT allows you to access the application.

For example,

http.createServer (function (request, response) {
// your server code
}) .listen (process.env.PORT) ;

Also, if you would like to access this offline while debugging, you can use this:

http.createServer (function (request, response) {
// your server code
}) .listen (process.env.PORT || 3000);

where 3000 is the offline port number.

Debugging Your NodeJS Application

You can use the node-inspector. Run this command to install it via npm:
npm install -g node-inspector

Then you can debug your application using
node-debug app.js

The Github repository can be found here: hitps://github.com/node-inspector/node-inspector

Debugging natively
You can also debug node.js natively by starting it like this:
node debug your-script.js

To breakpoint your debugger exactly in a code line you want, use this:

debugger;

For more information see here.

In node.js 8 use the following command:

node —--inspect-brk your-script.js

https://riptutorial.com/

https://github.com/node-inspector/node-inspector
https://nodejs.org/api/debugger.html

Then open about: //inspect iN a recent version of Google Chrome and select your Node script to
get the debugging experience of Chrome's DevTools.

Hello World with Express

The following example uses Express to create an HTTP server listening on port 3000, which
responds with "Hello, World!". Express is a commonly-used web framework that is useful for
creating HTTP APIs.

First, create a new folder, e.g. myapp. GO into myapp and make a new JavaScript file containing the
following code (let's name it ne110. js for example). Then install the express module using npm
install --save express from the command line. Refer to this documentation for more information
on how to install packages.

// Import the top-level function of express
const express = require ('express');

// Creates an Express application using the top-level function
const app = express();

// Define port number as 3000
const port = 3000;

// Routes HTTP GET requests to the specified path "/" with the specified callback function
app.get ('/', function (request, response) {
response.send('Hello, World!');

}) i

// Make the app listen on port 3000
app.listen (port, function() {

console.log('Server listening on http://localhost:' + port);
1)

From the command line, run the following command:

node hello. js

Open your browser and navigate t0 nttp://localhost:3000 Of http://127.0.0.1:3000 tO See the
response.

For more information about the Express framework, you can check the \Web Apps With Express
section

Hello World basic routing

Once you understand how to create an HTTP Server with node, it's important to understand how
to make it "do" things based on the path that a user has navigated to. This phenomenon is called,
"routing”.

The most basic example of this would be to check if (request.url === 'some/path/here’), and then
call a function that responds with a new file.

https://riptutorial.com/ 10

http://www.riptutorial.com/node-js/example/1588/installing-packages
http://www.riptutorial.com/node-js/topic/483/web-apps-with-express
http://www.riptutorial.com/node-js/example/1169/hello-world-http-server

An example of this can be seen here:

const http = require('http');

function index (request, response) {
response.writeHead (200);
response.end('Hello, World!");

http.createServer (function (request, response) {
if (request.url === '/') {
return index (request, response);
response.writeHead (404);
response.end (http.STATUS_CODES[404]) ;
}).listen (1337);

If you continue to define your "routes” like this, though, you'll end up with one massive callback
function, and we don't want a giant mess like that, so let's see if we can clean this up.

First, let's store all of our routes in an object:

var routes = {
'/': function index (request, response) {
response.writeHead (200);
response.end('Hello, World!");

b
'/foo': function foo (request, response) {

response.writeHead (200);
response.end ('You are now viewing "foo"');

Now that we've stored 2 routes in an object, we can now check for them in our main callback:

http.createServer (function (request, response) {
if (request.url in routes) {
return routes|[request.url] (request, response);
response.writeHead (404) ;
response.end (http.STATUS_CODES[404]) ;
}).1listen (1337);
Now every time you try to navigate your website, it will check for the existence of that path in your

routes, and it will call the respective function. If no route is found, the server will respond with a
404 (Not Found).

And there you have it--routing with the HTTP Server API is very simple.

https://riptutorial.com/ 11

TLS Socket: server and client

The only major differences between this and a regular TCP connection are the private Key and the
public certificate that you'll have to set into an option object.

How to Create a Key and Certificate

The first step in this security process is the creation of a private Key. And what is this private key?
Basically, it's a set of random noise that's used to encrypt information. In theory, you could create
one key, and use it to encrypt whatever you want. But it is best practice to have different keys for
specific things. Because if someone steals your private key, it's similar to having someone steal
your house keys. Imagine if you used the same key to lock your car, garage, office, etc.

openssl genrsa -out private-key.pem 1024

Once we have our private key, we can create a CSR (certificate signing request), which is our
request to have the private key signed by a fancy authority. That is why you have to input
information related to your company. This information will be seen by the signing authority, and
used to verify you. In our case, it doesn’t matter what you type, since in the next step we're going
to sign our certificate ourselves.

openssl req —new -—-key private-key.pem -out csr.pem
Now that we have our paper work filled out, it's time to pretend that we're a cool signing authority.
openssl x509 -req -in csr.pem -signkey private-key.pem -out public-cert.pem

Now that you have the private key and the public cert, you can establish a secure connection
between two NodeJS apps. And, as you can see in the example code, it is a very simple process.

Important!

Since we created the public cert ourselves, in all honesty, our certificate is worthless, because we
are nobodies. The NodeJS server won't trust such a certificate by default, and that is why we need
to tell it to actually trust our cert with the following option rejectUnauthorized: false. Very
important: never set this variable to true in a production environment.

TLS Socket Server

'use strict';

var tls = require('tls');
var fs = require('fs');

const PORT
const HOST

1337;
'127.0.0.1"

https://riptutorial.com/ 12

var options = {
key: fs.readFileSync ('private-key.pem'),
cert: fs.readFileSync('public-cert.pem')
bi

var server = tls.createServer (options, function (socket) {

// Send a friendly message
socket.write ("I am the server sending you a message.");

// Print the data that we received
socket.on('data', function (data) {

console.log('Received: %s [it is %d bytes longl',
data.toString() .replace (/ (\n)/gm,""),
data.length);

1)

// Let us know when the transmission is over
socket.on('end', function() {

console.log('EOT (End Of Transmission)');

1)

// Start listening on a specific port and address
server.listen (PORT, HOST, function() {

console.log("I'm listening at %s, on port %s", HOST, PORT);

1)

// When an error occurs, show it.
server.on('error', function(error) {

console.error (error) ;

// Close the connection after the error occurred.
server.destroy () ;

1)

TS Socket Client

'use strict';

var tls = require('tls');
var fs = require('fs');

const PORT = 1337;
const HOST '127.0.0.1"

// Pass the certs to the server and let it know to process even unauthorized certs.
var options = ({
key: fs.readFileSync ('private-key.pem'),

https://riptutorial.com/

13

}i

var

P

cert: fs.readFileSync('public-cert.pem'),

rejectUnauthorized: false

client = tls.connect (PORT, HOST, options, function() {

// Check if the authorization worked
if (client.authorized) {

console.log("Connection authorized by a Certificate Authority.");
} else {
console.log("Connection not authorized: " + client.authorizationError)

// Send a friendly message
client.write ("I am the client sending you a message.");

client.on("data", function (data) {

P

console.log('Received: %s [it is %d bytes long]',
data.toString() .replace (/ (\n)/gm,""),
data.length);

// Close the connection after receiving the message
client.end();

client.on('close', function() {

P

console.log("Connection closed");

// When an error ocoures, show it.

client.on('error', function(error) {

P

console.error (error) ;

// Close the connection after the error occurred.
client.destroy () ;

Hello World in the REPL

When called without arguments, Node.js starts a REPL (Read-Eval-Print-Loop) also known as the
“Node shell”.

At a command prompt type node.

$ node

>

At the Node shell prompt > type "Hello World!"

https://riptutorial.com/

14

$ node
> "Hello World!"
'Hello World!'

Core modules

Node.js is a Javascript engine (Google's V8 engine for Chrome, written in C++) that allows to run
Javascript outside the browser. While numerous libraries are available for extending Node's
functionalities, the engine comes with a set of core modules implementing basic functionalities.

There's currently 34 core modules included in Node:

["assert',
'buffer',
'c/c++_addons',
'child_process',
'cluster',
'console',
'crypto’,
'deprecated_apis’,
'dns',
'domain',
'Events',

'fs',
'http',
'https',
'module’,
'net',

'os',
'path’,
'punycode’',
'querystring',
'readline’',
'repl',
'stream',
'string_decoder',
'timers',
'tls_(ssl) ',
'tracing',
"tty',
'dgram',
'url',
'util',
'v8',

'vm',

'z1lib']

This list was obtained from the Node documentation API hitps://nodejs.org/api/all.htm! (JSON file:

https://nodejs.org/api/all.json).

All core modules at-a-glance

assert

https://riptutorial.com/

15

https://nodejs.org/api/all.html
https://nodejs.org/api/all.json

The assert module provides a simple set of assertion tests that can be used to test invariants.
buffer

Prior to the introduction of typoearrray in ECMASCcript 2015 (ES6), the JavaScript language had no
mechanism for reading or manipulating streams of binary data. The surrer class was introduced
as part of the Node.js API to make it possible to interact with octet streams in the context of things
like TCP streams and file system operations.

Now that typ-aar-ay has been added in ES6, the surrer class implements the vin csarray APlLiN a
manner that is more optimized and suitable for Node.js' use cases.

c/c++ _addons

Node.js Addons are dynamically-linked shared objects, written in C or C++, that can be loaded into
Node.js using the require () function, and used just as if they were an ordinary Node.js module.
They are used primarily to provide an interface between JavaScript running in Node.js and C/C++
libraries.

child_process

The child_process module provides the ability to spawn child processes in a manner that is similar,
but not identical, to popen(3).

cluster

A single instance of Node.js runs in a single thread. To take advantage of multi-core systems the
user will sometimes want to launch a cluster of Node.js processes to handle the load. The cluster
module allows you to easily create child processes that all share server ports.

console

The conso1e module provides a simple debugging console that is similar to the JavaScript console
mechanism provided by web browsers.

crypto

The crypto module provides cryptographic functionality that includes a set of wrappers for
OpenSSL's hash, HMAC, cipher, decipher, sign and verify functions.

deprecated_apis

Node.js may deprecate APIs when either: (a) use of the API is considered to be unsafe, (b) an
improved alternative API has been made available, or (c) breaking changes to the API are
expected in a future major release.

dns
The ans module contains functions belonging to two different categories:

1. Functions that use the underlying operating system facilities to perform name resolution, and

https://riptutorial.com/ 16

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Refer%0D%0Aence/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArra%0D%0Ay
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
http://www.riptutorial.com/node-js/topic/2817/cluster-module

that do not necessarily perform any network communication. This category contains only one
funCﬂon:dns.lookup(L

2. Functions that connect to an actual DNS server to perform name resolution, and that always
use the network to perform DNS queries. This category contains all functions in the dans
module except dns. 1ookup ().

domain

This module is pending deprecation. Once a replacement API has been finalized, this module
will be fully deprecated. Most end users should not have cause to use this module. Users who
absolutely must have the functionality that domains provide may rely on it for the time being but
should expect to have to migrate to a different solution in the future.

Events

Much of the Node.js core API is built around an idiomatic asynchronous event-driven architecture
in which certain kinds of objects (called "emitters") periodically emit named events that cause
Function objects ("listeners") to be called.

fs

File 1/0 is provided by simple wrappers around standard POSIX functions. To use this module do
require ('£s'). All the methods have asynchronous and synchronous forms.

http

The HTTP interfaces in Node.js are designed to support many features of the protocol which have
been traditionally difficult to use. In particular, large, possibly chunk-encoded, messages. The
interface is careful to never buffer entire requests or responses--the user is able to stream data.

https
HTTPS is the HTTP protocol over TLS/SSL. In Node.js this is implemented as a separate module.
module

Node.js has a simple module loading system. In Node.js, files and modules are in one-to-one
correspondence (each file is treated as a separate module).

net

The net module provides you with an asynchronous network wrapper. It contains functions for
creating both servers and clients (called streams). You can include this module with

require('net');.
0s
The os module provides a number of operating system-related utility methods.

path

https://riptutorial.com/ 17

http://www.riptutorial.com/node-js/topic/1623/event-emitters
http://www.riptutorial.com/node-js/topic/2973/http

The path module provides utilities for working with file and directory paths.

punycode

The version of the punycode module bundled in Node.js is being deprecated.
guerystring

The querystring module provides utilities for parsing and formatting URL query strings.
readline

The reada1ine module provides an interface for reading data from a Readable stream (such as
process.stdin) one line at a time.

repl

The rep1 module provides a Read-Eval-Print-Loop (REPL) implementation that is available both as
a standalone program or includible in other applications.

stream

A stream is an abstract interface for working with streaming data in Node.js. The stream module
provides a base API that makes it easy to build objects that implement the stream interface.

There are many stream objects provided by Node.js. For instance, a request to an HTTP server
and process.stdout are both stream instances.

string_decoder

The string_decoder module provides an API for decoding surrer Objects into strings in a manner
that preserves encoded multi-byte UTF-8 and UTF-16 characters.

timers

The timer module exposes a global API for scheduling functions to be called at some future period
of time. Because the timer functions are globals, there is no need to call require ('timers') tO USE
the API.

The timer functions within Node.js implement a similar API as the timers API provided by Web
Browsers but use a different internal implementation that is built around the Node.js Event Loop.

tls_(ssl)

The t1s module provides an implementation of the Transport Layer Security (TLS) and Secure
Socket Layer (SSL) protocols that is built on top of OpenSSL.

tracing

Trace Event provides a mechanism to centralize tracing information generated by V8, Node core,
and userspace code.

https://riptutorial.com/ 18

http://www.riptutorial.com/node-js/topic/1431/readline
http://www.riptutorial.com/node-js/topic/2974/using-streams
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick

Tracing can be enabled by passing the —-trace-events-enabled flag when starting a Node.js
application.

tty

The tty module provides the tty.readstream and tty.writestrean Classes. In most cases, it will not
be necessary or possible to use this module directly.

dgram

The agram module provides an implementation of UDP Datagram sockets.
url

The ur1 module provides utilities for URL resolution and parsing.

util

The wti1 module is primarily designed to support the needs of Node.js' own internal APIs.
However, many of the utilities are useful for application and module developers as well.

v8

The vs module exposes APIs that are specific to the version of V8 built into the Node.js binary.
Note: The APIs and implementation are subject to change at any time.

vm

The vm module provides APIs for compiling and running code within V8 Virtual Machine contexts.
JavaScript code can be compiled and run immediately or compiled, saved, and run later.

Note: The vm module is not a security mechanism. Do not use it to run untrusted code.
zlib
The z1ib module provides compression functionality implemented using Gzip and Deflate/Inflate.

How to get a basic HTTPS web server up and running!

Once you have node.js installed on your system, you can just follow the procedure below to get a
basic web server running with support for both HTTP and HTTPS!

Step 1: Build a Certificate Authority

1. create the folder where you want to store your key & certificate :

mkdir conf

https://riptutorial.com/ 19

https://developers.google.com/v8/

2. go to that directory :

cd conf

3. grab this ca.cnr file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https—authorized-clients/master/keys/ca.cnf

4. create a new certificate authority using this configuration :

openssl req —new -x509 -days 9999 -config ca.cnf -keyout ca-key.pem -out ca-cert.pem

5. now that we have our certificate authority in ca-key.pem and ca-cert.pen, let's generate a
private key for the server :

openssl genrsa —-out key.pem 4096

6. grab this server.cnt file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https—-authorized-
clients/master/keys/server.cnf

7. generate the certificate signing request using this configuration :

openssl req -new -config server.cnf -key key.pem -out csr.pem

8. sign the request :

openssl x509 -req -extfile server.cnf -days 999 -passin "pass:password" —-in csr.pem —-CA ca-
cert.pem —-CAkey ca-key.pem —-CAcreateserial -out cert.pem

Step 2 : Install your certificate as a root certificate

1. copy your certificate to your root certificates' folder :

sudo cp ca-crt.pem /usr/local/share/ca-certificates/ca-crt.pem

2. update CA store :

sudo update-ca-certificates

Step 3 : Starting your node server

First, you want to create a server. js file that contains your actual server code.

https://riptutorial.com/ 20

The minimal setup for an HTTPS server in Node.js would be something like this :

var https = require('https');
var fs = require('fs');

var httpsOptions = {
key: fs.readFileSync ('path/to/server-key.pem'),
cert: fs.readFileSync ('path/to/server—crt.pem')
bi

var app = function (req, res) {
res.writeHead (200) ;
res.end("hello world\n");

https.createServer (httpsOptions, app).listen(4433);

If you also want to support http requests, you need to make just this small modification :

var http = require('http');
var https = require('https');
var fs = require('fs');

var httpsOptions = {
key: fs.readFileSync ('path/to/server-key.pem'),
cert: fs.readFileSync ('path/to/server-crt.pem')

bi
var app = function (req, res) {

res.writeHead (200) ;
res.end ("hello world\n");

http.createServer (app) .1listen (8888);
https.createServer (httpsOptions, app).listen(4433);

1. go to the directory where your server. js IS located :

cd /path/to

2.run server.js .

node server.js

Read Getting started with Node.|s online: https://riptutorial.com/node-js/topic/340/getting-started-
with-node-js

https://riptutorial.com/

21

https://riptutorial.com/node-js/topic/340/getting-started-with-node-js
https://riptutorial.com/node-js/topic/340/getting-started-with-node-js

C_hapter 2. Arduino communication with
nodeds

Introduction

Way to show how Node.Js can communicate with Arduino Uno.

Examples

Node Js communication with Arduino via serialport

Node js code

Sample to start this topic is Node.js server communicating with Arduino via serialport.

npm install express —--save
npm install serialport —--save

Sample app.js:

const express = require ('express');
const app = express();

var SerialPort = require("serialport");
var port = 3000;

var arduinoCOMPort = "COM3";

var arduinoSerialPort = new SerialPort (arduinoCOMPort, ({
baudrate: 9600
}) i

arduinoSerialPort.on('open', function () {
console.log('Serial Port ' + arduinoCOMPort + ' is opened.');
1)
app.get ('/', function (req, res) {
return res.send('Working');
})
app.get ('/:action', function (req, res) {
var action = reg.params.action || reqg.param('action');
if (action == 'led") {

arduinoSerialPort.write ("w") ;
return res.send('Led light is on!'");

https://riptutorial.com/

22

if (action == 'off') {

arduinoSerialPort.write("t");

return res.send("Led light is off!");
}
return res.send('Action: ' + action);
1)
app.listen (port, function () {

console.log('Example app listening on port http://0.0.0.0:' + port +
1)

Starting sample express server:

node app.js

Arduino code

// the setup function runs once when you press reset or power the board
void setup () {
// initialize digital pin LED_BUILTIN as an output.

Serial.begin(9600); // Begen listening on port 9600 for serial
pinMode (LED_BUILTIN, OUTPUT),;

digitalWrite (LED_BUILTIN, LOW);

// the loop function runs over and over again forever
void loop () {

if (Serial.available() > 0) // Read from serial port
{
char ReaderFromNode; // Store current character
ReaderFromNode = (char) Serial.read();
convertToState (ReaderFromNode); // Convert character to state
}
delay (1000) ;

void convertToState (char chr) {

if (chr=="o") {
digitalWrite (LED_BUILTIN, HIGH);
delay (100);

}

if (chr=="f") {
digitalWrite (LED_BUILTIN, LOW);
delay (100);

Starting Up

1)

https://riptutorial.com/

23

1. Connect the arduino to your machine.
2. Start the server

Control the build in led via node js express server.

To turn on the led:
http://0.0.0.0:3000/1ed
To turn off the led:
http://0.0.0.0:3000/0ff

Read Arduino communication with nodeJs online: https://riptutorial.com/node-
js/topic/10509/arduino-communication-with-nodejs

https://riptutorial.com/

24

https://riptutorial.com/node-js/topic/10509/arduino-communication-with-nodejs
https://riptutorial.com/node-js/topic/10509/arduino-communication-with-nodejs

C_hapter 3: async.|s

Syntax

» Each callback must be written with this syntax:
« function callback(err, result [, argl], ...]])

» This way, you are forced to return the error first, and can't ignore handling them later
on. null is the convention in absence of errors

* callback(null, myResult);

* Your callbacks can contain more arguments than err and result, but it's useful only for

a specific set of functions (waterfall, seq, ...
« callback(null, myResult, myCustomArgument);

* And, of course, send errors. You must do it, and handle errors (or at least log them).

 callback(err);

Examples

Parallel : multi-tasking

async.parallel(tasks, afterTasksCallback) will execute a set of tasks in parallel and wait the end of

all tasks (reported by the call of callback function).

When tasks are finished, async call the main callback with all errors and all results of tasks.

function shortTimeFunction (callback) {
setTimeout (function () {

callback (null, 'resultOfShortTime');

}, 200);
}

function mediumTimeFunction (callback) {
setTimeout (function () {

callback (null, 'resultOfMediumTime') ;

}, 500);
}

function longTimeFunction (callback) {

setTimeout (function () {
callback (null, 'resultOfLongTime');
}, 1000);

async.parallel ([
shortTimeFunction,

https://riptutorial.com/

25

http://caolan.github.io/async/docs.html#.parallel

mediumTimeFunction,
longTimeFunction
I
function(err, results) {
if (err) {
return console.error (err);

console.log(results);
P

Result : ["resultOfShortTime", "resultOfMediumTime", "resultOfLongTime"].

Call .opmepemero WIth @an object

You can replace the tasks array parameter by an object. In this case, results will be also an object
with the same keys than tasks.

It's very useful to compute some tasks and find easily each result.

async.parallel ({

short: shortTimeFunction,
medium: mediumTimeFunction,
long: longTimeFunction

}y

function (err, results) {
if (err) {

return console.error (err);

console.log(results);
1)

Result : {short: "resultOfShortTime", medium: "resultOfMediumTime", long: "resultOfLongTime"}.

Resolving multiple values

Each parallel function is passed a callback. This callback can either return an error as the first
argument or success values after that. If a callback is passed several success values, these
results are returned as an array.

async.parallel ({
short: function shortTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfShortTimel', 'resultOfShortTime2');
}, 200);
by
medium: function mediumTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfMediumTimel', 'resultOfMeiumTime2');
}, 500);

https://riptutorial.com/ 26

b
function(err, results) {
if (err) {
return console.error (err);

console.log(results);
P

Result :

short: ["resultOfShortTimel", "resultOfShortTime2"],
medium: ["resultOfMediumTimel", "resultOfMediumTime2"]

Series : independent mono-tasking

async.series(tasks, afterTasksCallback) will execute a set of tasks. Each task are executed after
another. If a task fails, async stops immediately the execution and jump into the main
callback.

When tasks are finished successfully, async call the "master"” callback with all errors and all results

of tasks.

function shortTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfShortTime');
}, 200);

function mediumTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfMediumTime') ;
}, 500);

function longTimeFunction (callback) {
setTimeout (function () {
callback (null, 'resultOfLongTime');
}, 1000);

async.series ([

mediumTimeFunction,
shortTimeFunction,
longTimeFunction

1y

function(err, results) {
if (err) {

return console.error (err);

console.log(results);

https://riptutorial.com/

27

http://caolan.github.io/async/docs.html#.series

P

Result : ["resultOfMediumTime", "resultOfShortTime", "resultOfLongTime"].

Call .oyne.cemies0 With an object

You can replace the tasks array parameter by an object. In this case, results will be also an object

with the same keys than tasks.

It's very useful to compute some tasks and find easily each result.

async.series ({

short: shortTimeFunction,
medium: mediumTimeFunction,
long: longTimeFunction

}y

function(err, results) {
if (err) {

return console.error (err);

console.log(results);

)i

Result : {short: "resultOfShortTime", medium:

Waterfall : dependent mono-tasking

"resultOfMediumTime",

long: "resultOfLongTime"}.

async.waterfall(tasks, afterTasksCallback) will execute a set of tasks. Each task are executed
after another, and the result of a task is passed to the next task. As async.series(), if a task
fails, async stop the execution and call immediately the main callback.

When tasks are finished successfully, async call the "master” callback with all errors and all results

of tasks.

function getUserRequest (callback) {

// We simulate the request with a timeout

setTimeout (function () {
var userResult = {
name : 'Aamu'

}i

callback (null, userResult);
}, 500);

function getUserFriendsRequest (user,

callback)

// Another request simulate with a timeout

setTimeout (function () {
var friendsResult = [];
if (user.name === "Aamu") {
friendsResult = [{

{

https://riptutorial.com/

28

http://caolan.github.io/async/docs.html#.waterfall

name : 'Alice'

boo A
name: 'Bob'

1

callback (null, friendsResult);
}, 500);

async.waterfall ([
getUserRequest,
getUserFriendsRequest
1,
function(err, results) {
if (err) {

return console.error (err);

console.log (JSON.stringify (results));
P

Result: resuits contains the second callback parameter of the last function of the waterfall, which
iS friendsresult in that case.

async.times(To handle for loop in better way)

To execute a function within a loop in node.js, it's fine to use a ror loop for short loops. But the
loop is long, using tor loop will increase the time of processing which might cause the node
process to hang. In such scenarios, you can use: asycn.times

function recursiveAction(n, callback)

{
//do whatever want to do repeatedly
callback (err, result);

}

async.times (5, function(n, next) {
recursiveAction (n, function(err, result) {

next (err, result);

1)

}, function(err, results) {
// we should now have 5 result

1)

This is called in parallel. When we want to call it one at a time, use: async.timesSeries
async.each(To handle array of data efficiently)

When we want to handle array of data, its better to use async.each. When we want to perform
something with all data & want to get the final callback once everything is done, then this method

will be useful. This is handled in parallel way.

function createUser (userName, callback)

{

https://riptutorial.com/ 29

//create user in db
callback (null)//or error based on creation

var arrayOfData = ['Ritu', 'Sid', 'Tom'];
async.each (arrayOfData, function (eachUserName, callback) {

// Perform operation on each user.

console.log('Creating user '+eachUserName) ;

//Returning callback is must. Else it wont get the final callback, even if we miss to
return one callback

createUser (eachUserName, callback);

}, function(err) {
//If any of the user creation failed may throw error.
if(err) {
// One of the iterations produced an error.
// All processing will now stop.
console.log('unable to create user');
} else {
console.log('All user created successfully');

1)
To do one at a time can use async.eachSeries
async.series(To handle events one by one)

/In async.series,all the functions are executed in series and the consolidated outputs of each
function is passed to the final callback. e.g/

var async = require(‘async’); async.series([function (callback) { console.log('First Execute..");
callback(null, 'userPersonalData’); }, function (callback) { console.log('Second Execute.. ");
callback(null, 'userDependentData’); }], function (err, result) { console.log(result); });

/[Output:
First Execute.. Second Execute.. [userPersonalData’,'userDependentData’] //result

Read async.js online: https://riptutorial.com/node-js/topic/3972/async-js

https://riptutorial.com/

30

https://riptutorial.com/node-js/topic/3972/async-js

C_hapter 4: Async/Await

Introduction

Async/await is a set of keywords that allows writing of asynchronous code in a procedural manner

without having to rely on callbacks (callback hell) or promise-chaining (.then () .then () .then()).

This works by using the await keyword to suspend the state of an async function, until the

resolution of a promise, and using the async keyword to declare such async functions, which return

a promise.

Async/await is available from node.js 8 by default or 7 using the flag --harmony-async-await.

Examples

Async Functions with Try-Catch Error Handling

One of the best features of async/await syntax is that standard try-catch coding style is possible,

just like you were writing synchronous code.

const myFunc = async (req, res) => {
try {
const result = await somePromise () ;

} catch (err) {
// handle errors here

}
)i

Here's an example with Express and promise-mysq|:

router.get ('/flags/:1d', async (req, res) => {
try {

const connection = await pool.createConnection();

try {

const sgl = 'SELECT f.id, f.width, f.height, f.code, f.filename
FROM flags £
WHERE f.id = ?
LIMIT 1°;

const flags = await connection.query(sgl, reqg.params.id);

if (flags.length === 0)

return res.status (404).send({ message: 'flag not found' });

return res.send({ flags([0] });

} finally {
pool.releaseConnection (connection);

https://riptutorial.com/

31

} catch (err) {
// handle errors here
}
1)

Comparison between Promises and Async/Await
Function using promises:

function myAsyncFunction () {
return aFunctionThatReturnsAPromise ()
// doSomething is a sync function
.then (result => doSomething(result))
.catch (handleError) ;

So here is when Async/Await enter in action in order to get cleaner our function:

async function myAsyncFunction () {
let result;

try {

result = await aFunctionThatReturnsAPromise () ;
} catch (error) {

handleError (error);

// doSomething is a sync function
return doSomething (result);

So the keyword async would be similar to write return new Promise ((resolve, reject) => {...

And await Similar to get your result in then callback.
Here | leave a pretty brief gif that will not left any doubt in mind after seeing it:

GIF
Progression from Callbacks
In the beginning there were callbacks, and callbacks were ok:

const getTemperature = (callback) => {
http.get ('www.temperature.com/current', (res) => {
callback (res.data.temperature)

})

const getAirPollution = (callback) => {
http.get ('www.pollution.com/current', (res) => {
callback (res.data.pollution)
}) i

https://riptutorial.com/

32

https://twitter.com/manekinekko/status/855824609299636230

getTemperature (function (temp) {
getAirPollution (function (pollution) {
console.log(the temp is ${temp} and the pollution is ${pollution}.’)
// The temp is 27 and the pollution is 0.5.
})
})

But there were a few really frustrating issues with callbacks so we all started using promises.

const getTemperature = () => {
return new Promise ((resolve, reject) => {
http.get ('www.temperature.com/current', (res) => {

resolve (res.data.temperature)
})
})

const getAirPollution = () => {
return new Promise ((resolve, reject) => {
http.get ('www.pollution.com/current', (res) => {
resolve (res.data.pollution)

b
b

getTemperature ()

.then (temp => console.log(the temp is S${temp}’))

.then(() => getAirPollution())

.then(pollution => console.log(and the pollution is ${pollution}’))
// the temp is 32

// and the pollution is 0.5

This was a bit better. Finally, we found async/await. Which still uses promises under the hood.

const temp = await getTemperature ()
const pollution = await getAirPollution ()

Stops execution at await
If the promise doesn't return anything, the async task can be completed using await.

try{
await User.findByIdAndUpdate (user._id, {
Spush: {
tokens: token
}
}) .exec ()
}catch (e) {
handleError (e)

Read Async/Await online: https://riptutorial.com/node-js/topic/6729/async-await

https://riptutorial.com/ 33

http://callbackhell.com
https://riptutorial.com/node-js/topic/6729/async-await

C_hapter 5: Asynchronous programming

Introduction

Node is a programming language where everything could run on an asynchronous way. Below you
could find some examples and the typical things of asynchronous working.

Syntax

» doSomething([args], function([argsCB]) { /* do something when done */});
» doSomething([args], ([argsCB]) => { /* do something when done */ });

Examples

Callback functions

Callback functions in JavaScript

Callback functions are common in JavaScript. Callback functions are possible in JavaScript
because functions are first-class citizens.

Synchronous callbacks.

Callback functions can be synchronous or asynchronous. Since Asynchronous callback functions
may be more complex here is a simple example of a synchronous callback function.

// a function that uses a callback named ‘cb’ as a parameter
function getSyncMessage (cb) {

cb ("Hello World!"™);
}

console.log("Before getSyncMessage call");
// calling a function and sending in a callback function as an argument.
getSyncMessage (function (message) {
console.log (message) ;
1)
console.log ("After getSyncMessage call");

The output for the above code is:

> Before getSyncMessage call
> Hello World!
> After getSyncMessage call

First we will step through how the above code is executed. This is more for those who do not

https://riptutorial.com/ 34

https://en.wikipedia.org/wiki/First-class_function

already understand the concept of callbacks if you do already understand it feel free to skip this
paragraph. First the code is parsed and then the first interesting thing to happen is line 6 is
executed which outputs sefore getsyncMessage call tO the console. Then line 8 is executed which
calls the function getsyncMessage Sending in an anonymous function as an argument for the
parameter named cb in the getsyncressage function. Execution is now done inside the
getSyncMessage function on line 3 which executes the function <o which was just passed in, this call
sends an argument string "Hello World" for the param named message in the passed in anonymous
function. Execution then goes to line 9 which logs re110 worid:! to the console. Then the execution
goes through the process of exiting the callstack (see also) hitting line 10 then line 4 then finally
back to line 11.

Some information to know about callbacks in general:

» The function you send in to a function as a callback may be called zero times, once, or
multiple times. It all depends on implementation.

» The callback function may be called synchronously or asynchronously and possibly both
synchronously and asynchronously.

» Just like normal functions the names you give parameters to your function are not important
but the order is. So for example on line 8 the parameter nessage could have been named
statement, msg, OF Iif you're being nonsensical something like je11ybean. SO you should know
what parameters are sent into your callback so you can get them in the right order with
proper names.

Asynchronous callbacks.

One thing to note about JavaScript is it is synchronous by default, but there are APIs given in the
environment (browser, Node.js, etc.) that could make it asynchronous (there's more about that
here).

Some common things that are asynchronous in JavaScript environments that accept callbacks:

e Events

» setTimeout
 setinterval

« the fetch API
e Promises

Also any function that uses one of the above functions may be wrapped with a function that takes
a callback and the callback would then be an asynchronous callback (although wrapping a
promises with a function that takes a callback would likely be considered an anti-pattern as there
are more preferred ways to handle promises).

So given that information we can construct an asynchronous function similar to the above
synchronous one.

// a function that uses a callback named ‘cb’ as a parameter
function getAsyncMessage (cb) {
setTimeout (function () { cb("Hello World!"™) 1}, 1000);

https://riptutorial.com/ 35

https://developer.mozilla.org/en-US/docs/Glossary/Call_Stack
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://stackoverflow.com/a/13806828/2066736

console.log("Before getSyncMessage call");
// calling a function and sending in a callback function as an argument.
getAsyncMessage (function (message) {

console.log (message) ;

1)
console.log ("After getSyncMessage call");

Which prints the following to the console:

> Before getSyncMessage call

> After getSyncMessage call

// pauses for 1000 ms with no output
> Hello World!

Line execution goes to line 6 logs "Before getSyncMessage call". Then execution goes to line 8
calling getAsyncMessage with a callback for the param c». Line 3 is then executed which calls
setTimeout with a callback as the first argument and the number 300 as the second argument.
setTimeout does whatever it does and holds on to that callback so that it can call it later in 1000
milliseconds, but following setting up the timeout and before it pauses the 1000 milliseconds it
hands execution back to where it left off so it goes to line 4, then line 11, and then pauses for 1
second and setTimeout then calls its callback function which takes execution back to line 3 where
getAsyncMessages Callback is called with value "Hello World" for its parameter message Which is then
logged to the console on line 9.

NodeJS has asynchronous callbacks and commonly supplies two parameters to your functions
sometimes conventionally called err and data. An example with reading a file text.

const fs = require("fs");

fs.readFile("./test.txt", "utf8", function(err, data) {
if (err) {
// handle the error
} else {
// process the file text given with data

)i

This is an example of a callback that is called a single time.

It's good practice to handle the error somehow even if your just logging it or throwing it. The else is
not necessary if you throw or return and can be removed to decrease indentation so long as you
stop execution of the current function in the if by doing something like throwing or returning.

Though it may be common to see err, data it may not always be the case that your callbacks will
use that pattern it's best to look at documentation.

https://riptutorial.com/ 36

Another example callback comes from the express library (express 4.x):

// this code snippet was on http://expressjs.com/en/4x/api.html
const express = require ('express');
const app = express();

// this app.get method takes a url route to watch for and a callback
// to call whenever that route is requested by a user.
app.get ('/', function(req, res) {
res.send('hello world');
1)

app.listen(3000);

This example shows a callback that is called multiple times. The callback is provided with two
objects as params named here as req and res these names correspond to request and response
respectively, and they provide ways to view the request coming in and set up the response that
will be sent to the user.

As you can see there are various ways a callback can be used to execute sync and async code in
JavaScript and callbacks are very ubiquitous throughout JavaScript.

Code example
Question: What is the output of code below and why?

setTimeout (function () {
console.log ("A");
}, 1000);

setTimeout (function () {
console.log("B");
o 0);

getDataFromDatabase (function (err, data) {
console.log("C");
setTimeout (function () {
console.log("D");
}, 1000);
1)

console.log ("E");

Output: This is known for sure: eeap. c is unknown when it will be logged.

Explanation: The compiler will not stop on the setTimeout and the getpatarrompatabase methodes.
So the first line he will log is =. The callback functions (first argument of setTimeout) Will run after
the set timeout on a asynchronous way!

More details:

1. £ has N0 setTimeout
2. 8 has a set timeout of O milliseconds
3. a has a set timeout of 1000 milliseconds

https://riptutorial.com/ 37

4. p must request a database, after it must o wait 1000 milliseconds so it comes after a.
5. cis unknown because it is unknown when the data of the database is requested. It could be
before or after a.

Async error handling

Try catch

Errors must always be handled. If you are using synchronous programming you could use a try
catch. But this does not work if you work asynchronous! Example:

try {
setTimeout (function () {
throw new Error("I'm an uncaught error and will stop the server!");
}, 100);
}

catch (ex) {

console.error ("This error will not be work in an asynchronous situation: " + ex);

Async errors will only be handled inside the callback function!

Working possibilities
v0.8

Event handlers

The first versions of Node.JS got an event handler.

process.on ("UncaughtException", function(err, data) {
if (err) {
// error handling

v0.8

Domains

Inside a domain, the errors are release via the event emitters. By using this are all errors, timers,
callback methodes implicitly only registrated inside the domain. By an error, be an error event
send and didn't crash the application.

var domain = require ("domain");
var dl = domain.create () ;
var d2 = domain.create();

https://riptutorial.com/ 38

dl.run (function() {
d2.add (setTimeout (function () {
throw new Error ("error on the timer of domain 2");

br 0))5
}) i
dl.on("error", function(err) {
console.log("error at domain 1: " + err);
}) i
d2.on ("error", function(err) {
console.log("error at domain 2: " + err);
}) i
Callback hell

Callback hell (also a pyramid of doom or boomerang effect) arises when you nest too many
callback functions inside a callback function. Here is an example to read a file (in ES6).

const fs = require('fs');
let filename = "${__ dirname}/myfile.txt’;

fs.exists (filename, exists => {
if (exists) {
fs.stat (filename, (err, stats) => {
if (err) {
throw err;
}
if (stats.isFile()) {
fs.readFile(filename, null, (err, data) => {
if (err) {
throw err;
}
console.log(data);
1)
}
else {
throw new Error ("This location contains not a file");

1)
}
else {
throw new Error ("404: file not found");

)i

How to avoid "Callback Hell"

It is recommended to nest no more than 2 callback functions. This will help you maintain code
readability and will me much easier to maintain in the future. If you have a need to nest more than
2 callbacks, try to make use of distributed events instead.

There also exists a library called async that helps manage callbacks and their execution available
on npm. It increases the readability of callback code and gives you more control over your callback
code flow, including allowing you to run them in parallel or in series.

https://riptutorial.com/ 39

https://nodejs.org/api/events.html
https://caolan.github.io/async/

Native Promises

v6.0.0

Promises are a tool for async programming. In JavaScript promises are known for their then
methods. Promises have two main states ‘pending’ and 'settled’. Once a promise is 'settled’ it
cannot go back to 'pending’. This means that promises are mostly good for events that only occur
once. The 'settled’ state has two states as well 'resolved’ and 'rejected'. You can create a new
promise using the new keyword and passing a function into the constructor new promise (function

(resolve, reject) {}).

The function passed into the Promise constructor always receives a first and second parameter
usually named reso1ve and reject respectively. The naming of these two parameters is
convention, but they will put the promise into either the 'resolved’ state or the 'rejected’ state.
When either one of these is called the promise goes from being '‘pending’ to 'settled’. resoive is
called when the desired action, which is often asynchronous, has been performed and reject IS
used if the action has errored.

In the below timeout is a function that returns a Promise.

function timeout (ms) {
return new Promise (function (resolve, reject) {
setTimeout (function () {
resolve ("It was resolved!");
}, ms)
}) i
}

timeout (1000) .then (function (dataFromPromise) {
// logs "It was resolved!"
console.log(dataFromPromise) ;

b

console.log("waiting...");

console output

waiting...
// << pauses for one second>>
It was resolved!

When timeout is called the function passed to the Promise constructor is executed without delay.
Then the setTimeout method is executed and its callback is set to fire in the next ns milliseconds,
in this case ms=1000. Since the callback to the setTimeout isn't fired yet the timeout function returns
control to the calling scope. The chain of then methods are then stored to be called later when/if
the Promise has resolved. If there were catch methods here they would be stored as well, but
would be fired when/if the promise 'rejects'.

The script then prints 'waiting...". One second later the setTimeout calls its callback which calls the
resolve function with the string "It was resolved!". That string is then passed into the then method's
callback and is then logged to the user.

https://riptutorial.com/ 40

In the same sense you can wrap the asynchronous setTimeout function which requires a callback
you can wrap any singular asynchronous action with a promise.

Read more about promises in the JavaScript documentation Promises.

Read Asynchronous programming online: https://riptutorial.com/node-js/topic/8813/asynchronous-
programming

https://riptutorial.com/ 41

http://www.riptutorial.com/javascript/topic/231/promises
https://riptutorial.com/node-js/topic/8813/asynchronous-programming
https://riptutorial.com/node-js/topic/8813/asynchronous-programming

C_hapter 6: Autoreload on changes

Examples

Autoreload on source code changes using nodemon

The nodemon package makes it possible to automatically reload your program when you modify
any file in the source code.

Installing nodemon globally

npm install —-g nodemon (or npm i -g nodemon)

Installing nodemon locally

In case you don't want to install it globally

npm install —--save-dev nodemon (Or npm i -D nodemon)

Using nodemon

Run your program with nodemon entry. js (Of nodemon entry)
This replaces the usual use of node entry.js (O node entry).

You can also add your nodemon startup as an npm script, which might be useful if you want to
supply parameters and not type them out every time.

Add package.json:

"scripts": {
"start": "nodemon entry.js —-devmode -something 1"

}
This way you can just use npm start from your console.

Browsersync

Overview

Browsersync is a tool that allows for live file watching and browser reloading. It's available as a
NPM package.

https://riptutorial.com/

42

https://browsersync.io
https://www.npmjs.com/package/browser-sync

Installation

To install Browsersync you'll first need to have Node.js and NPM installed. For more information
see the SO documentation on Installing and Running Node.|s.

Once your project is set up you can install Browsersync with the following command:

$ npm install browser-sync -D

This will install Browsersync in the local node_noduies directory and save it to your developer
dependencies.

If you'd rather install it globally use the -4 flag in place of the -o flag.

Windows Users

If you're having trouble installing Browsersync on Windows you may need to install Visual Studio
S0 you can access the build tools to install Browsersync. You'll then need to specify the version of
Visual Studio you're using like so:

$ npm install browser-sync —--msvs_version=2013 -D

This command specifies the 2013 version of Visual Studio.

Basic Usage

To automatically reload your site whenever you change a JavaScript file in your project use the
following command:

$ browser-sync start —--proxy "myproject.dev" --files "**/*_ js"

Replace myproject.dev With the web address that you are using to access your project.
Browsersync will output an alternate address that can be used to access your site through the

proxy.

Advanced Usage

Besides the command line interface that was described above Browsersync can also be used with
Grunt.js and Gulp.js.

Grunt.js

Usage with Grunt.js requires a plugin that can be installed like so:

https://riptutorial.com/ 43

https://nodejs.org/en/
http://www.riptutorial.com/node-js/topic/340/getting-started-with-node-js
http://stackoverflow.com/tags/gruntjs/info
http://stackoverflow.com/tags/gulp/info

$ npm install grunt-browser-sync -D

Then you'll add this line to your gruntfile. js:

grunt.loadNpmTasks ('grunt-browser-sync') ;

Gulp.js

Browsersync works as a CommonJS module, so there's no need for a Gulp.js plugin. Simply
require the module like so:

var browserSync = require ('browser-sync') .create();

You can now use the Browsersync AP to configure it to your needs.

API

The Browsersync API can be found here: https://browsersync.io/docs/api

Read Autoreload on changes online: https://riptutorial.com/node-js/topic/1743/autoreload-on-
changes

https://riptutorial.com/

44

http://stackoverflow.com/tags/commonjs/info
https://browsersync.io/docs/api
https://browsersync.io/docs/api
https://riptutorial.com/node-js/topic/1743/autoreload-on-changes
https://riptutorial.com/node-js/topic/1743/autoreload-on-changes

C_hapter 7. Avoid callback hell

Examples

Async module

The source is available for download from GitHub. Alternatively, you can install using npm:
$ npm install --save async

As well as using Bower:

$ bower install async

Example:

var async = require ("async");
async.parallel ([
function(callback) { ... },
function(callback) { ... }
], function (err, results) {
// optional callback
1)

Async Module

Thankfully, libraries like Async.js exist to try and curb the problem. Async adds a thin layer of
functions on top of your code, but can greatly reduce the complexity by avoiding callback nesting.

Many helper methods exist in Async that can be used in different situations, like series, parallel,
waterfall, etc. Each function has a specific use-case, so take some time to learn which one will
help in which situations.

As good as Async is, like anything, its not perfect. Its very easy to get carried away by combining
series, parallel, forever, etc, at which point you're right back to where you started with messy code.
Be careful not to prematurely optimize. Just because a few async tasks can be run in parallel
doesn't always mean they should. In reality, since Node is only single-threaded, running tasks in
parallel on using Async has little to no performance gain.

The source is available for download from https://github.com/caolan/async . Alternatively, you can
install using npm:

$ npm install --save async
As well as using Bower:

$ bower install async

https://riptutorial.com/ 45

https://github.com/caolan/async

Async's waterfall Example:

var fs = require('fs');
var async = require('async');
var myFile = '/tmp/test';

async.waterfall ([
function (callback) {
fs.readFile (myFile, 'utf8', callback);
by
function (txt, callback) {
txt = txt + '\nAppended something!"';
fs.writeFile (myFile, txt, callback);
}
], function (err, result) {
if (err) return console.log(err);
console.log('Appended text!');
1)

Read Avoid callback hell online: https://riptutorial.com/node-js/topic/10045/avoid-callback-hell

https://riptutorial.com/

46

https://riptutorial.com/node-js/topic/10045/avoid-callback-hell

C_hapter 8: Bluebird Promises

Examples
Converting nodeback library to Promises

const Promise = require('bluebird'),
fs = require('fs')

Promise.promisifyAll (fs)

// now you can use promise based methods on 'fs' with the Async suffix
fs.readFileAsync ('file.txt') .then (contents => {

console.log(contents)
}) .catch(err => {

console.error ('error reading', err)

})

Functional Promises
Example of map:

Promise.resolve([1, 2, 3]).map(el => {
return Promise.resolve(el * el) // return some async operation in real world

3]
Example of filter:

Promise.resolve ([1, 2, 3]).filter(el => {

)

return Promise.resolve(el % 2 === 0) // return some async operation in real world
}) .then (console.loqg)

Example of reduce:

Promise.resolve([1, 2, 3]).reduce((prev, curr) => {
return Promise.resolve (prev + curr) // return some async operation in real world
}) .then (console.loq)

Coroutines (Generators)

const promiseReturningFunction = Promise.coroutine (function* (file) {

const data = yield fs.readFileAsync(file) // this returns a Promise and resolves to the file

contents

return data.toString() .toUpperCase ()
})

promiseReturningFunction('file.txt') .then (console.loq)

https://riptutorial.com/

a7

Automatic Resource Disposal (Promise.using)

function somethingThatReturnsADisposableResource () {
return getSomeResourceAsync(...).disposer (resource => {
resource.dispose ()

})

Promise.using (somethingThatReturnsADisposableResource (), resource => ({
// use the resource here, the disposer will automatically close it when Promise.using exits

})

Executing in series

Promise.resolve([1l, 2, 31)

.mapSeries (el => Promise.resolve(el * el)) // in real world, use Promise returning async
function

.then (console.loq)

Read Bluebird Promises online: https://riptutorial.com/node-js/topic/6728/bluebird-promises

https://riptutorial.com/

48

https://riptutorial.com/node-js/topic/6728/bluebird-promises

C_hapter 9: Callback to Promise

Examples

Promisifying a callback

Callback-based:

db.notification.email.find({subject: 'promisify callback'}, (error, result) => {
if (error) {
console.log(error);

}

// normal code here

}) i

This uses bluebird's promisifyAll method to promisify what is conventionally callback-based code
like above. bluebird will make a promise version of all the methods in the object, those promise-
based methods names has Async appended to them:
let email = bluebird.promisifyAll (db.notification.email);
email.findAsync ({subject: 'promisify callback'}).then(result => ({
// normal code here

})

.catch (console.error);

If only specific methods need to be promisified, just use its promisify:

let find = bluebird.promisify(db.notification.email.find);
find({locationId: 168}) .then(result => {
// normal code here

)i
.catch (console.error);

There are some libraries (e.g., MassiveJS) that can't be promisified if the immediate object of the
method is not passed on second parameter. In that case, just pass the immediate object of the
method that need to be promisified on second parameter and enclosed it in context property.

let find = bluebird.promisify(db.notification.email.find, { context: db.notification.email });
find({locationId: 168}) .then(result => {
// normal code here

)i
.catch (console.error);

https://riptutorial.com/

Manually promisifying a callback

Sometimes it might be necessary to manually promisify a callback function. This could be for a
case where the callback does not follow the standard error-first format or if additional logic is
needed to promisify:

Example with fs.exists(path, callback):

var fs = require('fs');

var existsAsync = function (path) {
return new Promise (function (resolve, reject) {
fs.exists (path, function (exists) {

// exists is a boolean

if (exists) {
// Resolve successfully
resolve () ;

} else {
// Reject with error
reject (new Error ('path does not exist'));

// Use as a promise now

existsAsync ('/path/to/some/file') .then (function () {
console.log('file exists!');

}) .catch (function (err) {
// file does not exist
console.error (err);

}) i

setTimeout promisified

function wait (ms) {
return new Promise (function (resolve, reject) {
setTimeout (resolve, ms)

b

Read Callback to Promise online: https://riptutorial.com/node-js/topic/2346/callback-to-promise

https://riptutorial.com/

50

http://fredkschott.com/post/2014/03/understanding-error-first-callbacks-in-node-js/
https://nodejs.org/api/fs.html#fs_fs_exists_path_callback
https://riptutorial.com/node-js/topic/2346/callback-to-promise

C_hapter 10: Cassandra Integration

Examples

Hello world

For accessing Cassandra c-ssandra-driver module from DataStax can be used. It supports all the
features and can be easily configured.

const cassandra = require ("cassandra-driver");
const clientOptions = {
contactPoints: ["hostl", "host2"],

keyspace: "test"
bi

const client = new cassandra.Client (clientOptions) ;
const query = "SELECT hello FROM world WHERE name = ?";
client.execute (query, ["John"], (err, results) => {

if (err) {
return console.error (err);

console.log(results.rows);

)i

Read Cassandra Integration online: https://riptutorial.com/node-js/topic/5949/cassandra-
integration

https://riptutorial.com/ 51

https://github.com/datastax/nodejs-driver
https://riptutorial.com/node-js/topic/5949/cassandra-integration
https://riptutorial.com/node-js/topic/5949/cassandra-integration

Chapter 11: CLI

Syntax
* node [options] [v8 options] [script.js | -e "script"] [arguments]
Examples
Command Line Options
Added in: v0.1.3 Print node's version.
~-h, —-help

Added in: v0.1.3 Print node command line options. The output of this option is less detailed than
this document.

-e, ——eval "script"

Added in: v0.5.2 Evaluate the following argument as JavaScript. The modules which are
predefined in the REPL can also be used in script.

-p, —-print "script"
Added in: v0.6.4 Identical to -e but prints the result.
—-c, ——check
Added in: v5.0.0 Syntax check the script without executing.
-i, —-—-interactive
Added in: v0.7.7 Opens the REPL even if stdin does not appear to be a terminal.

-r, —--require module

Added in: v1.6.0 Preload the specified module at startup.

Follows require()'s module resolution rules. module may be either a path to a file, or a node
module name.

—-—-no—-deprecation

https://riptutorial.com/ 52

Added in: v0.8.0 Silence deprecation warnings.

—-—trace-deprecation

Added in: v0.8.0 Print stack traces for deprecations.

——throw-deprecation
Added in: v0.11.14 Throw errors for deprecations.
—-no-warnings
Added in: v6.0.0 Silence all process warnings (including deprecations).

—-—trace-warnings

Added in: v6.0.0 Print stack traces for process warnings (including deprecations).
—-—trace-sync-io

Added in: v2.1.0 Prints a stack trace whenever synchronous I/O is detected after the first turn of
the event loop.

—-—zero—-fill-buffers

Added in: v6.0.0 Automatically zero-fills all newly allocated Buffer and SlowBuffer instances.

——preserve-symlinks

Added in: v6.3.0 Instructs the module loader to preserve symbolic links when resolving and
caching modules.

By default, when Node.js loads a module from a path that is symbolically linked to a different on-
disk location, Node.js will dereference the link and use the actual on-disk "real path" of the module
as both an identifier and as a root path to locate other dependency modules. In most cases, this
default behavior is acceptable. However, when using symbolically linked peer dependencies, as
illustrated in the example below, the default behavior causes an exception to be thrown if moduleA
attempts to require moduleB as a peer dependency:

{appDir}
— app
| F— index.is
| L— node_modules
| — moduleA -> {appDir}/moduleA
| L— moduleB
| F— index.is
| L— package. json
L— moduleA

— index.js

https://riptutorial.com/ 53

L— package. json

The --preserve-symlinks command line flag instructs Node.js to use the symlink path for modules
as opposed to the real path, allowing symbolically linked peer dependencies to be found.

Note, however, that using --preserve-symlinks can have other side effects. Specifically,
symbolically linked native modules can fail to load if those are linked from more than one location
in the dependency tree (Node.js would see those as two separate modules and would attempt to
load the module multiple times, causing an exception to be thrown).

—-—track-heap-objects

Added in: v2.4.0 Track heap object allocations for heap snapshots.

—-—prof-process

Added in: v6.0.0 Process v8 profiler output generated using the v8 option --prof.
--v8-options
Added in: v0.1.3 Print v8 command line options.

Note: v8 options allow words to be separated by both dashes (-) or underscores ().

For example, --stack-trace-limit is equivalent to --stack_trace_limit.
——tls-cipher-list=1list

Added in: v4.0.0 Specify an alternative default TLS cipher list. (Requires Node.js to be built with
crypto support. (Default))

——enable-fips

Added in: v6.0.0 Enable FIPS-compliant crypto at startup. (Requires Node.js to be built with
Jconfigure --openssl-fips)

——force-fips

Added in: v6.0.0 Force FIPS-compliant crypto on startup. (Cannot be disabled from script code.)
(Same requirements as --enable-fips)

—-—icu-data-dir=file
Added in: v0.11.15 Specify ICU data load path. (overrides NODE_ICU_DATA)

Environment Variables

https://riptutorial.com/ 54

NODE_DEBUG=module [, ...]

Added in: v0.1.32 ','-separated list of core modules that should print debug information.
NODE_PATH=path[:..]

Added in: v0.1.32 ":-separated list of directories prefixed to the module search path.

Note: on Windows, this is a ';'-separated list instead.

NODE_DISABLE_COLORS=1

Added in: v0.3.0 When set to 1 colors will not be used in the REPL.

NODE_ICU_DATA=file

Added in: v0.11.15 Data path for ICU (Intl object) data. Will extend linked-in data when compiled
with small-icu support.

NODE_REPL_HISTORY=file

Added in: v5.0.0 Path to the file used to store the persistent REPL history. The default path is
~/.node_repl_history, which is overridden by this variable. Setting the value to an empty string ("™
or " ") disables persistent REPL history.

Read CLI online: https://riptutorial.com/node-js/topic/6013/cli

https://riptutorial.com/ 55

https://riptutorial.com/node-js/topic/6013/cli

C_hapter 12: Client-server communication

Examples

Iw Express, jQuery and Jade

//'client. jade'

//a button is placed down; similar in HTML
button (type='button', id='send_ by_button') Modify data

#modify Lorem ipsum Sender

//loading jQuery; it can be done from an online source as well
script (src='./Js/jquery-2.2.0.min.js")

//AJAX request using jQuery
script
S (function () {
S ('"#send_by_button') .click (function (e) {
e.preventDefault () ;

//test: the text within brackets should appear when clicking on said button
//window.alert ('You clicked on me. - jQuery');

//a variable and a JSON initialized in the code
var predeclared = "Katamori";
var data = {
Title: "Name_SenderTest",
Nick: predeclared,
FirstName: "Zoltan",
Surname: "Schmidt"
}i

//an AJAX request with given parameters
S.ajax ({

type: 'POST',

data: JSON.stringify (data),

contentType: 'application/json',

url: 'http://localhost:7776/domaintest"',

//on success, received data is used as 'data' function input
success: function (data) {
window.alert ('Request sent; data received.');

var Jjsonstr = JSON.stringify (data);
var Jjsonobj = JSON.parse (jsonstr);

//if the 'nick' member of the JSON does not equal to the predeclared
string (as it was initialized), then the backend script was executed, meaning that
communication has been established

if (data.Nick != predeclared) {

document .getElementById ("modify") .innerHTML = "JSON changed!\n" +
jsonstr;

}i

https://riptutorial.com/ 56

//'domaintest_route. js’

var express = require ('express');
var router = express.Router();

//an Express router listening to GET requests — in this case, it's empty, meaning that nothing
is displayed when you reach 'localhost/domaintest'
router.get ('/', function(req, res, next) {

}) i

//same for POST requests — notice, how the AJAX request above was defined as POST
router.post ('/', function(req, res) {
res.setHeader ('Content-Type', 'application/json');

//content generated here
var some_json = {
Title: "Test",

Item: "Crate"

}i

var result = JSON.stringify (some_json);
//content got 'client.jade'

var sent_data = reqg.body;

sent_data.Nick = "ttony33";

res.send (sent_data) ;

module.exports = router;

/Ibased on a personally used gist: hitps://gist.github.com/Katamori/5c9850102e4baf6e9896

Read Client-server communication online: https://riptutorial.com/node-js/topic/6222/client-server-
communication

https://riptutorial.com/

57

https://gist.github.com/Katamori/5c9850f02e4baf6e9896
https://riptutorial.com/node-js/topic/6222/client-server-communication
https://riptutorial.com/node-js/topic/6222/client-server-communication

C_hapter 13: Cluster Module

Syntax

e const cluster = require("cluster")
* cluster.fork()

* cluster.isMaster

* cluster.isWorker

* cluster.schedulingPolicy

* cluster.setupMaster(settings)

* cluster.settings

* cluster.worker // in worker

* cluster.workers // in master

Remarks

Note that c1uster.fork () Spawns a child process that begins executing the current script from the
beginning, in contrast to the rork () system call in C which clones the current process and
continues from the instruction after the system call in both parent and child process.

The Node.js Documentation has a more complete guide to clusters here

Examples

Hello World
This is your ciuster. js:

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus () .length;

if (cluster.isMaster) {
// Fork workers.
for (let i = 0; i < numCPUs; i++) {
cluster.fork () ;

cluster.on('exit', (worker, code, signal) => {
console.log(worker ${worker.process.pid} died’);
1)
} else {
// Workers can share any TCP connection
// In this case it i1s an HTTP server
require ('./server.js') ();

This is your main server. js:

https://riptutorial.com/

58

https://nodejs.org/api/cluster.html

const http = require('http');

function startServer () {
const server = http.createServer ((req, res) => {
res.writeHead (200) ;
res.end('Hello Http');
1)

server.listen (3000);

if (!module.parent) {
// Start server if file is run directly
startServer () ;

} else {
// Export server, if file is referenced via cluster
module.exports = startServer;

In this example, we host a basic web server, however, we spin up workers (child processes) using
the built-in cluster module. The number of processes forker depend on the number of CPU cores
available. This enables a Node.js application to take advantage of multi-core CPUs, since a single
instance of Node.js runs in a single thread. The application will now share the port 8000 across all
the processes. Loads will automatically be distributed between workers using the Round-Robin
method by default.

Cluster Example

A single instance of node. 55 runs in a single thread. To take advantage of multi-core systems,
application can be launched in a cluster of Node.js processes to handle the load.

The c1uster module allows you to easily create child processes that all share server ports.

Following example create the worker child process in main process that handles the load across
multiple cores.

Example

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length; //number of CPUS

if (cluster.isMaster) {
// Fork workers.
for (var i = 0; i < numCPUs; i++) {
cluster.fork(); //creating child process

}

//on exit of cluster
cluster.on('exit', (worker, code, signal) => {
if (signal) {
console.log(worker was killed by signal: ${signal}’);
} else if (code !== 0) {
console.log (' worker exited with error code: ${code}’);
} else {

https://riptutorial.com/ 59

console.log('worker success!');

1)
} else {
// Workers can share any TCP connection

// In this case it is an HTTP server
http.createServer ((req, res) => {
res.writeHead (200) ;
res.end('hello world\n');
}).1listen (3000) ;

Read Cluster Module online: https://riptutorial.com/node-js/topic/2817/cluster-module

https://riptutorial.com/

60

https://riptutorial.com/node-js/topic/2817/cluster-module

C_hapter 14: Connect to Mongodb

Introduction

MongoDB is a free and open-source cross-platform document-oriented database program.
Classified as a NoSQL database program, MongoDB uses JSON-like documents with schemas.

For more details go to https://www.mongodb.com/

Syntax

» MongoClient.connect('mongodb://127.0.0.1:27017/crud',function (err,db) {//do womething
here});

Examples
Simple example to Connect mongoDB from Node.JS

MongoClient.connect ('mongodb://localhost:27017/myNewDB', function (err,db) {
if (err)
console.log("Unable to connect DB. Error: " + err)
else
console.log('Connected to DB');

db.close();
1)

myNewDB is DB name, if it does not exists in database then it will create automatically with this
call.

Simple way to Connect mongoDB with core Node.JS

var MongoClient = require ('mongodb') .MongoClient;

//connection with mongoDB
MongoClient.connect ("mongodb://localhost:27017/MyDb", function (err, db) {
//check the connection
if (err) {
console.log("connection failed.");
lelse{
console.log("successfully connected to mongoDB.");
1)

Read Connect to Mongodb online: https://riptutorial.com/node-js/topic/6280/connect-to-mongodb

https://riptutorial.com/

https://www.mongodb.com/
https://riptutorial.com/node-js/topic/6280/connect-to-mongodb

C_hapter 15: Creating a Node.|s Library that
Supports Both Promises and Error-First
Callbacks

Introduction

Many people like working with promises and/or async/await syntax, but when writing a module it
would be useful to some programmers to support classic callback style methods as well. Rather
than creating two modules, or two sets of functions, or having the programmer promisify your

module, your module can support both programming methods at one using bluebird's asCallback()

or Q's nodeify().

Examples

Example Module and Corresponding Program using Bluebird
math.js

'use strict';
const Promise = require('bluebird');
module.exports = {

// example of a callback-only method
callbackSum: function(a, b, callback) {

if (typeof a !== 'number')

return callback (new Error ('"a" must be a number'));
if (typeof b !== 'number')

return callback (new Error ('"b" must be a number'));

return callback(null, a + b);
by

// example of a promise-only method
promiseSum: function(a, b) {
return new Promise (function (resolve, reject) {

if (typeof a !== 'number')

return reject (new Error ('"a" must be a number'));
if (typeof b !== 'number')

return reject (new Error ('"b" must be a number'));

resolve(a + b);
}) i
bo

// a method that can be used as a promise or with callbacks
sum: function(a, b, callback) {
return new Promise (function (resolve, reject) {
if (typeof a !== 'number')
return reject (new Error ('"a" must be a number'));

https://riptutorial.com/

62

if (typeof b !== 'number')

return reject (new Error ('"b" must be a number'));

resolve(a + b);

}) .asCallback (callback);

by

bi
index.js

'use strict';

const math = require('./math'");

// classic callbacks

math.callbackSum(l, 3, function(err, result) {

if (err)
console.log('Test 1: ' + err);
else
console.log('Test 1: the answer is ' + result);

}) i

math.callbackSum(l, 'd', function(err, result) {

if (err)
console.log('Test 2: '
else

console.log('Test 2: the answer is ' + result);

}) i

// promises

math.promiseSum (2, 5)

.then (function (result) {
console.log('Test 3: the

})

.catch (function (err) {
console.log('Test 3: ' +

}) i

math.promiseSum (1)

.then (function (result) {
console.log('Test 4: the

})

.catch (function (err) {
console.log('Test 4: ' +

}) i

// promise/callback method

math.sum (8, 2)

.then (function (result) {
console.log('Test 5: the

})

.catch (function (err) {
console.log('Test 5: ' +

}) i

+ err);

answer is ' 4+ result);

err);

answer is ' + result);

err);

used like a promise

answer is ' + result);

err);

https://riptutorial.com/

63

// promise/callback method used with callbacks

math.sum (7, 11, function(err, result) {

if (err)
console.log('Test 6: ' + err);
else
console.log('Test 6: the answer is ' + result);

}) i

// promise/callback method used like a promise with async/await syntax
(async () => {
try |
let x = await math.sum (6, 3);

console.log('Test 7a: ' + x);

let y = await math.sum (4, 's');
console.log('Test 7b: ' + vy);

} catch(err) {

console.log(err.message) ;

IDNON

Read Creating a Node.js Library that Supports Both Promises and Error-First Callbacks online:
https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-
and-error-first-callbacks

https://riptutorial.com/

64

https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-and-error-first-callbacks
https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-and-error-first-callbacks

C_hapter 16: Creating API's with Node.js

Examples

GET api using Express
Node. js @pis can be easily constructed in express web framework.

Following example creates a simple cer api for listing all users.

Example

var express = require ('express');
var app = express();

var users =[{
id: 1,
name: "John Doe",
age : 23,
email: "john@doe.com"

}1i

// GET /api/users
app.get ('/api/users', function(req, res) {
return res. json (users); //return response as JSON

}) i

app.listen('3000', function() {
console.log('Server listening on port 3000'");

}) i

POST api using Express

Following example create rost api using express. This example is similar to cer example except the
use of body-parser that parses the post data and add it to req.body.

Example

var express = require ('express');

var app = express|();

// for parsing the body in POST request
var bodyParser = require ('body-parser');

var users =[{

id: 1,

name: "John Doe",

age : 23,

email: "john@doe.com"

}1;

app.use (bodyParser.urlencoded ({ extended: false }));
app.use (bodyParser.json()) ;

https://riptutorial.com/ 65

// GET /api/users
app.get ('/api/users', function(req, res) {
return res.json (users);

}) i

/* POST /api/users
{

"user": {
"id": 3,
"name": "Test User",
"age" : 20,
"email": "test@test.com"
}
}
=)
app.post ('/api/users', function (req, res) {
var user = reqg.body.user;

users.push (user) ;

return res.send('User has been added successfully');

app.listen('3000', function () {
console.log('Server listening on port 3000'");

Read Creating API's with Node.js online: https://riptutorial.com/node-js/topic/5991/creating-api-s-
with-node-js

https://riptutorial.com/

https://riptutorial.com/node-js/topic/5991/creating-api-s-with-node-js
https://riptutorial.com/node-js/topic/5991/creating-api-s-with-node-js

C_hapter 17: csv parser in node |s

Introduction

Reading data in from a csv can be handled in many ways. One solution is to read the csv file into
an array. From there you can do work on the array.

Examples

Using FSto read in a CSV

fsis the File System APl in node. We can use the method readFile on our fs variable, pass it a
data.csv file, format and function that reads and splits the csv for further processing.

This assumes you have a file named data.csv in the same folder.

'use strict'

const fs = require('fs');

fs.readFile('data.csv', 'utf8', function (err, data) {
var dataArray = data.split (/\r?\n/);

console.log(dataArray) ;

)i

You can now use the array like any other to do work on it.

Read csv parser in node js online: https://riptutorial.com/node-js/topic/9162/csv-parser-in-node-js

https://riptutorial.com/

67

https://nodejs.org/api/fs.h
https://riptutorial.com/node-js/topic/9162/csv-parser-in-node-js

C_hapter 18: Database (MongoDB with
Mongoose)

Examples

Mongoose connection

Make sure to have mongodb running first! mongod --dbpath data/

package.json

"dependencies": {
"mongoose": ""4.5.5",

}

server.js (ECMA 6)

import mongoose from 'mongoose';
mongoose.connect ('mongodb://localhost:27017/stackoverflow—example') ;

const db = mongoose.connection;
db.on('error', console.error.bind(console, 'DB connection error!'));

server.js (ECMA 5.1)

var mongoose = require ('mongoose');
mongoose.connect ('mongodb://localhost:27017/stackoverflow—example"') ;

var db = mongoose.connection;
db.on('error', console.error.bind(console, 'DB connection error!'));

Model

Define your model(s):

app/models/user.js (ECMA 6)

import mongoose from 'mongoose';
const userSchema = new mongoose.Schema ({
name: String,

password: String

}) i

const User = mongoose.model ('User', userSchema);

export default User;

https://riptutorial.com/

68

app/model/user.js (ECMA 5.1)

var mongoose = require ('mongoose');
var userSchema = new mongoose.Schema ({

name: String,
password: String

var User = mongoose.model ('User', userSchema);

module.exports = User
Insert data
ECMA 6:
const user = new User ({
name: 'Stack',

password: 'Overflow',

) g

user.save ((err) => {
if (err) throw err;

console.log('User saved!');
}) i
ECMAS. 1.
var user = new User ({
name: 'Stack',

password: 'Overflow',
b

user.save (function (err) {
if (err) throw err;

console.log('User saved!');
)i

Read data

ECMAG:

User.findOne ({
name: 'stack'
}, (err, user) => {
if (err) throw err;

if (luser) {

console.log('No user was found');
} else {

console.log('User was found');

https://riptutorial.com/

69

}) i
ECMAS.1:

User.findOne ({
name: 'stack'

}, function (err, user) {
if (err) throw err;

if (l'user) {
console.log('No user was found');
} else {
console.log('User was found');
}
1)

Read Database (MongoDB with Mongoose) online: https://riptutorial.com/node-
js/topic/6411/database--mongodb-with-mongoose-

https://riptutorial.com/

70

https://riptutorial.com/node-js/topic/6411/database--mongodb-with-mongoose-
https://riptutorial.com/node-js/topic/6411/database--mongodb-with-mongoose-

C_hapter 19: Debugging Node.js application

Examples

Core node.js debugger and node inspector

Using core debugger

Node.js provides a build in non graphical debugging utility. To start the build in the debugger, start

the application with this command:

node debug filename. js

Consider the following simple Node.js application contained in the debugpemo. js

'use strict';
function addTwoNumber (a, b) {
// function returns the sum of the two numbers
debugger
return a + b;

}

var result = addTwoNumber (5, 9);
console.log(result) ;

The keyword debugger Will stop the debugger at that point in the code.

Command reference

1. Stepping

cont, ¢ - Continue execution
next, n - Step next

step, s - Step in

out, o - Step out

2. Breakpoints

setBreakpoint (), sb() - Set breakpoint on current line
setBreakpoint (line), sb(line) - Set breakpoint on specific line

To Debug the above code run the following command

node debug debugDemo. js

https://riptutorial.com/

71

Once the above commands runs you will see the following output. To exit from the debugger
interface, type process.exit ()

ankuranand: ~/workspace/nodejs/nodejsDebugging $ node debug debugDemo. js
< Debugger listening on port 5858
debug> . ok
break in debugDemo.js:3
1 // A Demo Code Showing the basic capabilities of the nodejs debugging module

"use strict’;

(5 T VY N

function addTwoNumber{a, b){
debug> n
break in debugDemo.js:11

o }
1a
»11 let result = addTwoNumber(5, 9);
12 conscle.log(result);
13
debug> c
break in debughemo.js:7
5 function addTwoNumber(a, b){
& [/ function returns the sum of the two numbers
> 7 debugger
3 return a + b;

9 }
debug> c
< 14
debug> process.exift()
ankuranand: ~/workspace/nodejs/nodejsDebugging % I

Use watch (expression) cOmmand to add the variable or expression whose value you want to watch
and restart to restart the app and debugging.

Use rep1 to enter code interactively. The repl mode has the same context as the line you are
debugging. This allows you to examine the contents of variables and test out lines of code. Press
ctri+c to leave the debug repl.

Eng Built-in Node inspector

v6.3.0
You can run node's built in v8 inspector! The node-inspector plug-in is not needed anymore.

Simply pass the inspector flag and you'll be provided with a URL to the inspector

node —--inspect server.]js

mng Node inspector

https://riptutorial.com/ 72

https://i.stack.imgur.com/XSJMF.png
https://nodejs.org/api/debugger.html#debugger_v8_inspector_integration_for_node_js
https://github.com/node-inspector/node-inspector

Install the node inspector:

npm install —-g node-inspector

Run your app with the node-debug command:

node-debug filename. js

After that, hit in Chrome:

http://localhost:8080/debug?port=5858

Sometimes port 8080 might not be available on your computer. You may get the following error:
Cannot start the server at 0.0.0.0:8080. Error: listen EACCES.

In this case, start the node inspector on a different port using the following command.

Snode-inspector —--web-port=6500

You will see something like this:

B debugDemo.js x r

// A Demo Code Showing the basic capabilities of the nodejs debugging module v Watc
: A —rad Expres:
use strict’; P

function addTwoMumber{a, b){
/f function returns the sum of the two numbers
return a + b;

}

war result = addTwoNumber(S, 9);
console.log(result);

w Call .

L o I o S I S Yy N Iy

Functio

anonyn

©

IMaodule

e
Ry

Module
Module
Module
Module
listOnT
¥ Loca
“ariabl
&

L

> & a
[=Y
9 m

&

10:1 JavaScript Spaces:4 ﬂ P @re

https://riptutorial.com/ 73

https://i.stack.imgur.com/JpaL6.png

Read Debugging Node.js application online: https://riptutorial.com/node-js/topic/5900/debugging-
node-js-application

https://riptutorial.com/ 74

https://riptutorial.com/node-js/topic/5900/debugging-node-js-application
https://riptutorial.com/node-js/topic/5900/debugging-node-js-application

Chapter 20: Deliver HTML or any other sort of
file
Syntax
» response.sendFile(fileName, options, function (err) {});
Examples

Deliver HTML at specified path

Here's how to create an Express server and serve index.htm1 by default (empty path /), and
pagel.htmlfor/pagel pth.

Folder structure

project root
| server. js

| views

| index.html

| pagel.html
var express = require ('express');
var path = require('path');

var app = express|();

// deliver index.html if no file is requested
app.get ("/", function (request, response) {

response.sendFile (path.join(__dirname, 'views/index.html'));
1)

// deliver pagel.html if pagel is requested
app.get ('/pagel', function (request, response) {
response.sendFile (path. join(__dirname, 'views', 'pagel.html', function(error) {
if (error) {
// do something in case of error
console.log(err);
response.end (JSON.stringify ({error:"page not found"}));

app.listen(8080);

Note that sendrile () just streams a static file as response, offering no opportunity to modify it. If

https://riptutorial.com/ 75

you are serving an HTML file and want to include dynamic data with it, then you will need to use a
template engine such as Pug, Mustache, or EJS.

Read Deliver HTML or any other sort of file online: https://riptutorial.com/node-
js/topic/6538/deliver-html-or-any-other-sort-of-file

https://riptutorial.com/ 76

https://riptutorial.com/node-js/topic/6538/deliver-html-or-any-other-sort-of-file
https://riptutorial.com/node-js/topic/6538/deliver-html-or-any-other-sort-of-file

C_hapter 21: Dependency Injection

Examples

Why Use Dependency Injection

1. Fast Development process
2. Decoupling
3. Unit test writing

Fast Development process
When using dependency injection node developer can faster their development proceess because
after DI there is less code conflict and easy to manage all module.

Decoupling
Modules becomes less couple then it is easy to maintain.

Unit test writing
Hardcoded dependencies can pass them into the module then easy to write unit test for each
module.

Read Dependency Injection online: https://riptutorial.com/node-js/topic/7681/dependency-injection

https://riptutorial.com/ 7

https://riptutorial.com/node-js/topic/7681/dependency-injection

C_hapter 22: Deploying Node.|s application

without downtime.

Examples

Deployment using PM2 without downtime.

ecosystem. json

"name": "app-name",
"script": "server",
"exec_mode": "cluster",
"instances": 0,
"wait_ready": true
"listen_timeout": 10000,
"kill timeout": 5000,

wailt_ready

Instead of reload waiting for listen event, wait for process.send(‘ready");

listen_timeout

Time in ms before forcing a reload if app not listening.

kill timeout

Time in ms before sending a final SIGKLL.

server. js

const http = require('http');
const express = require ('express');

const app = express();
const server = http.Server (app);
const port = 80;

server.listen (port, function() {
process.send('ready');

}) i

process.on ('SIGINT', function() {
server.close (function () {
process.exit (0);
1)
1)

https://riptutorial.com/

78

You might need to wait for your application to have etablished connections with your
DBs/caches/workers/whatever. PM2 needs to wait before considering your application as online.
To do this, you need to provide wait_ready: true in a process file. This will make PM2 listen for
that event. In your application you will need to add process.send (' ready'); When you want your
application to be considered as ready.

When a process is stopped/restarted by PM2, some system signals are sent to your process in a
given order.

First a stcinT a signal is sent to your processes, signal you can catch to know that your process is
going to be stopped. If your application does not exit by itself before 1.6s (customizable) it will
receive a stckrLL Signal to force the process exit. So if your application need to clean-up
something states or jobs you can catch the sicint signal to prepare your application to exit.

Read Deploying Node.js application without downtime. online: https://riptutorial.com/node-
Jjs/topic/9752/deploying-node-js-application-without-downtime-

https://riptutorial.com/ 79

https://riptutorial.com/node-js/topic/9752/deploying-node-js-application-without-downtime-
https://riptutorial.com/node-js/topic/9752/deploying-node-js-application-without-downtime-

C_hapter 23: Deploying Node.|s applications In
production

Examples

Setting NODE_ENV="production"

Production deployments will vary in many ways, but a standard convention when deploying in
production is to define an environment variable called nooe_rnv and set its value to "production”.

Runtime flags

Any code running in your application (including external modules) can check the value of nope_gnv:

if (process.env.NODE_ENV === 'production') {
// We are running in production mode

} else {
// We are running in development mode

}

Ependencies

When the ~xope_env environment variable is set to 'production’ all devbependencies in your
package.json file will be completely ignored when running npm insta11. YOu can also enforce this
with a ——production'ﬂag:

npm install --production

For setting nooe_exv you can use any of these methods
method 1: set NODE_ENV for all node apps

Windows :
set NODE_ENV=production

Linux or other unix based system :
export NODE_ENV=production

This sets nope_env for current bash session thus any apps started after this statement will have

NoDE_ENV Set 10 production.

https://riptutorial.com/ 80

method 2: set NODE_ENV for current app

NODE_ENV=production node app.js

This will set vopr_env for the current app only. This helps when we want to test our apps on
different environments.

method 3: create .env file and use it
This uses the idea explained here. Refer this post for more detailed explanation.
Basically you create .env file and run some bash script to set them on environment.

To avoid writing a bash script, the env-cmd package can be used to load the environment
variables defined in the .env file.

env-cmd .env node app.js

method 4: Use cross-env package
This package allows environment variables to be set in one way for every platform.

After installing it with npm, you can just add it to your deployment script in package. json as follows:

"build:deploy": "cross-env NODE_ENV=production webpack"

Manage app with process manager

It's a good practice to run NodeJS apps controlled by process managers. Process manager helps
to keep application alive forever, restart on failure, reload without downtime and simplifies
administrating. Most powerful of them (like PMZ2) have a built-in load balancer. PM2 also enables
you to manage application logging, monitoring, and clustering.

PM2 process manager

Installing PM2:

npm install pm2 -g

Process can be started in cluster mode involving integrated load balancer to spread load between
processes:

pm2 start app.js -i 0 --name "api" (-I IS tO0 specify number of processes to spawn. If itis 0, then
process number will be based on CPU cores count)

While having multiple users in production, its must to have a single point for PM2. Therefore pm2
command must be prefixed with a location (for PM2 config) else it will spawn a new pm2 process
for every user with config in respective home directory. And it will be inconsistent.

https://riptutorial.com/ 81

http://stackoverflow.com/a/28821696/620039
https://www.npmjs.com/package/env-cmd
https://www.npmjs.com/package/cross-env
http://pm2.keymetrics.io/

leage:PM2_HOME=/etc/.pm2 pm2 start app.js

Deployment using PM2

pM2 IS @ production process manager for node. js applications, that allows you to keep applications

alive forever and reload them without downtime. PM2 also enables you to manage application
logging, monitoring, and clustering.

Install pm2 globally.

npm install —-g pm2

Then, run the node. 55 app using r2.

pm2 start server.js —-—-name "my-app"

Following commands are useful while working with pu2.

List all running processes:
pm2 list
Stop an app:
pmZ2 stop my-app
Restart an app:
pm2 restart my-app
To view detailed information about an app:
pm2 show my-app
To remove an app from PM2’s registry:

pm2 delete my-app

https://riptutorial.com/

82

http://i.stack.imgur.com/9L2zo.png

Deployment using process manager
Process manager is generally used in production to deploy a nodejs app. The main functions of a

process manager are restarting the server if it crashes, checking resource consumption, improving
runtime performance, monitoring etc.

Some of the popular process managers made by the node community are forever, pm2, etc.

Forvever

corever IS @ command-line interface tool for ensuring that a given script runs continuously. forever
's simple interface makes it ideal for running smaller deployments of xode. s apps and scripts.

forever MONItOrs your process and restarts it if it crashes.

Install forever globally

$ npm install -g forever

Run application :
$ forever start server.js
This starts the server and gives an id for the process(starts from 0).
Restart application :
$ forever restart 0
Here o is the id of the server.
Stop application :
$ forever stop 0

Similar to restart, o is the id the server. You can also give process id or script name in place of the
id given by the forever.

For more commands : https://www.npmjs.com/package/forever

Using different Properties/Configuration for different environments like dev,
ga, staging etc.

Large scale applications often need different properties when running on different environments.
we can achieve this by passing arguments to NodeJs application and using same argument in
node process to load specific environment property file.

https://riptutorial.com/ 83

https://github.com/foreverjs/forever
https://www.npmjs.com/package/forever

Suppose we have two property files for different environment.

e dev.json

"PORT": 3000,

"DB": {
"host": "localhost",
"user": "bob",
"password": "12345"

* ga.json

"PORT": 3001,

IIDBII . {
"host": "where_db_is_hosted",
"user": "bob",
"password": "54321"

Following code in application will export respective property file which we want to use.

process.argv.forEach (function (val) {
var arg = val.split("=");
if (arg.length > 0) {
if (arg[0] === 'env') {
var env = require('./' + arg[l] + '.json');
exports.prop = env;

1)
We give arguments to the application like following

node app.js env=dev

if we are using process manager like forever than it as simple as

forever start app.Jjs env=dev

Taking advantage of clusters

A single instance of Node.js runs in a single thread. To take advantage of multi-core systems the
user will sometimes want to launch a cluster of Node.s processes to handle the load.

https://riptutorial.com/ 84

var cluster = require('cluster');
var numCPUs = require('os') .cpus () .length;

if (cluster.isMaster) {
// In real life, you'd probably use more than just 2 workers,
// and perhaps not put the master and worker in the same file.
//
// You can also of course get a bit fancier about logging, and
// implement whatever custom logic you need to prevent DoS
// attacks and other bad behavior.
//
// See the options in the cluster documentation.
//
// The important thing is that the master does very little,
// increasing our resilience to unexpected errors.
console.log('your server is working on ' + numCPUs + ' cores');

for (var i = 0; 1 < numCPUs; i++) {
cluster.fork () ;

cluster.on('disconnect', function (worker) {
console.error ('disconnect!');
//clearTimeout (timeout) ;
cluster.fork () ;

1)

} else {
require ('./app.js');

Read Deploying Node.js applications in production online: https://riptutorial.com/node-
Jjs/topic/2975/deploying-node-js-applications-in-production

https://riptutorial.com/

85

https://riptutorial.com/node-js/topic/2975/deploying-node-js-applications-in-production
https://riptutorial.com/node-js/topic/2975/deploying-node-js-applications-in-production

C_hapter 24: ECMAScript 2015 (ES6) with
Node.|s

Examples

const/let declarations

Unlike var, const/1et are bound to lexical scope rather than function scope.

var x = 1 // will escape the scope
let vy = 2 // bound to lexical scope
const z = 3 // bound to lexical scope, constant

}

console.log(x) // 1
console.log(y) // ReferenceError: y is not defined
console.log(z) // ReferenceError: z is not defined

Run in RunKit
Arrow functions
Arrow functions automatically bind to the 'this' lexical scope of the surrounding code.

performSomething (result => {
this.someVariable = result

})
VS

performSomething (function (result) {
this.someVariable = result
}.bind (this))

Arrow Function Example
Let's consider this example, that outputs the squares of the numbers 3, 5, and 7:

let nums = [3, 5, 7]
let squares = nums.map (function (n) {
return n * n

})

console.log(squares)

Run in RunKit

The function passed to .map can also be written as arrow function by removing the function

https://riptutorial.com/

https://runkit.com/594bb4eaaac7e6001294132c/595433650a7efc0011ffcf09
https://runkit.com/594bb4eaaac7e6001294132c/595611661cba570012815901

keyword and instead adding the arrow =>:

let nums = [3, 5, 7]
let squares = nums.map((n) =>
return n * n

})

console.log (squares)

Run in RunKit

However, this can be written even more concise. If the function body consists of only one

{

statement and that statement computes the return value, the curly braces of wrapping the function

body can be removed, as well as the return keyword.

let nums = [3, 5, 7]
let squares = nums.map(n => n
console.log(squares)

Run in RunKit

destructuring

let [x,Vy, ...nums] = [0,
console.log(x, y, nums);

* 1)

1, 2, 3, 4

let {a, b, ...props} = {a:l, b:2, c:3,

console.log(a, b, props);

let dog = {name: 'fido', age:
let {name:n, age} = dog;
console.log(n, age);

flow

/* Q@flow */

function product (a: number, b:

return a * b;

const b = 3;
let c (2,20, 307 117
let d 3p

import request from 'request';

request ('http://dev.markitondemand.com/MODApis/Api/v2/Quote/json?symbol=AAPL",

payload)=>{

3ih;

number) {

’

payload = JSON.parse (payload);

let {LastPrice} = payload;
console.log(LastPrice);
}) i

r 5, 61;

d:{e:4}}

https://riptutorial.com/

87

https://runkit.com/594bb4eaaac7e6001294132c/595613101cba570012815999
https://runkit.com/594bb4eaaac7e6001294132c/59561361f9fe430012c7ab34

ES6 Class

class Mammel {

constructor (legs) {
this.legs = legs;

}

eat () {
console.log('eating..."');

}

static count () {
console.log('static count..."');

class Dog extends Mammel {

constructor (name, legs) {
super (legs) ;
this.name = name;

}

sleep () {
super.eat () ;
console.log('sleeping');

let d = new Dog('fido', 4);
d.sleep();

d.eat ();

console.log('d', d);

Read ECMAScript 2015 (ES6) with Node.js online: https://riptutorial.com/node-
js/topic/6732/ecmascript-2015--es6--with-node-js

https://riptutorial.com/

88

https://riptutorial.com/node-js/topic/6732/ecmascript-2015--es6--with-node-js
https://riptutorial.com/node-js/topic/6732/ecmascript-2015--es6--with-node-js

C_hapter 25. Environment

Examples

Accessing environment variables

The process.env property returns an object containing the user environment.

It returns an object like this one :

TERM: 'xterm-256color’',
SHELL: '/usr/local/bin/bash',
USER: 'maciej',
PATH: '~/.bin/:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin’',
PWD: '/Users/maciej',
EDITOR: 'vim',
SHLVL: '1'",
HOME: '/Users/maciej',
LOGNAME: 'maciej',
'/usr/local/bin/node'"

process.env.HOME // '/Users/maciej'

If you set environment variable roo t0 foobar, it Will be accessible with:

process.env.FOO // 'foobar'

process.argv command line arguments

process.argv is an array containing the command line arguments. The first element will be node,
the second element will be the name of the JavaScript file. The next elements will be any
additional command line arguments.

Code Example:
Output sum of all command line arguments
index. Jjs

var sum = 0;
for (i = 2; 1 < process.argv.length; i++) {
sum += Number (process.argv[i]);

}

console.log(sum) ;

Usage Exaple:

https://riptutorial.com/

89

https://nodejs.org/docs/latest/api/process.html#process_process_argv

node index.js 2 5 6 7

Output will be 20
A brief explanation of the code:

Here in for loop for (i = 2; i < process.argv.length; i++) lOOp begins with 2 because first two
elements in process.argv array always iS ['path/to/node.exe', 'path/to/js/file', ...]

Converting to number number (process.argviil) because elements in process.argv array always is
string

Using different Properties/Configuration for different environments like dev,
ga, staging etc.

Large scale applications often need different properties when running on different environments.

we can achieve this by passing arguments to NodeJs application and using same argument in
node process to load specific environment property file.

Suppose we have two property files for different environment.

* dev.json

PORT : 3000,

DB : {
host : "localhost",
user : "bob",
password : "12345"
}
}
* ga.json

PORT : 3001,

DB : {
host : "where_db_is_hosted",
user : "bob",
password : "54321"

Following code in application will export respective property file which we want to use.

Suppose the code is in environment.js

process.argv.forEach (function (val, index, array) {

https://riptutorial.com/ 90

var arg = val.split ("=");
if (arg.length > 0) {

if (arg[0] === 'env') {
var env = require('./' + arg[l] + '.json');
module.exports = env;

1)

We give arguments to the application like following
node app.js env=dev

if we are using process manager like forever than it as simple as
forever start app.Jjs env=dev

How to use the configuration file

var env= require ("environment.js");

Loading environment properties from a "property file"
* Install properties reader:

npm install properties-reader --save
» Create a directory env to store your properties files:

mkdir env
» Create environments.js:

process.argv.forEach (function (val, index, array) {
var arg = val.split("=");
if (arg.length > 0) {

if (arg[0] === 'env') {
var env = require('./env/' + arg[l] + '.properties');
module.exports = env;

)i

» Sample development.properties properties file:

Dev properties

[main]

Application port to run the node server
app.port=8080

[database]

https://riptutorial.com/

91

Database connection to mysqgl
mysqgl.host=localhost
mysqgl.port=2500

» Sample usage of the loaded properties:

var enviorment = require('./environments');
var PropertiesReader = require ('properties-reader');
var properties = new PropertiesReader (enviorment) ;

var someVal = properties.get ('main.app.port');

 Starting the express server

npm start env=development

or

npm start env=production

Read Environment online: https://riptutorial.com/node-js/topic/2340/environment

https://riptutorial.com/

https://riptutorial.com/node-js/topic/2340/environment

C_hapter 26: Event Emitters

Remarks

When an event "fires" (which means the same as "publishing an event" or "emitting an event"),
each listener will be called synchronously (source), along with any accompanying data that was
passed in to emit (), NO Matter how many arguments you pass in:

myDog.on ('bark', (howLoud, howLong, howIntense) => {
// handle the event

})
myDog.emit ('bark', 'loudly', '5 seconds long', 'fiercely')

The listeners will be called in the order they were registered:

myDog.on ('urinate', () => console.log('My first thought was "Oh-no"'))

myDog.on ('urinate', () => console.log('My second thought was "Not my lawn :)"'))

myDog.emit ('urinate')

// The console.logs will happen in the right order because they were registered in that order.

But if you need a listener to fire first, before all of the other listeners that have already been added,
YOU Can USe prependListener () like SO:

myDog.prependListener ('urinate', () => console.log('This happens before my first and second
thoughts, even though it was registered after them'))

If you need to listen to an event, but you only want to hear about it once, you can use once instead
of on, OI prependOncelistener instead of prependListener. After the event is fired and the listener gets
called, the listener will automatically be removed, and won't be called again the next time the
event is fired.

Finally, if you want to remove all of the listeners and start over, feel free to do just that:

myDog.removeAllListeners ()

Examples

HTTP Analytics through an Event Emitter
In the HTTP server code (e.g. server. js):

const EventEmitter = require('events')

const serverEvents = new EventEmitter ()

// Set up an HTTP server
const http = require('http')
const httpServer = http.createServer ((request, response) => ({

https://riptutorial.com/ 93

https://nodejs.org/dist/latest-v6.x/docs/api/events.html#events_asynchronous_vs_synchronous

// Handler the request...
// Then emit an event about what happened
serverEvents.emit ('request', request.method, request.url)

P

// Expose the event emitter
module.exports = serverEvents

In supervisor code (e.g. supervisor. js):

const server = require('./server.js')
// Since the server exported an event emitter, we can listen to it for changes:
server.on ('request', (method, url) => {
console.log(Got a request: ${method} ${url}’)
})

Whenever the server gets a request, it will emit an event called request Which the supervisor is
listening for, and then the supervisor can react to the event.

Basics

Event Emitters are built into Node, and are for pub-sub, a pattern where a publisher will emit
events, which subscribers can listen and react to. In Node jargon, publishers are called Event
Emitters, and they emit events, while subscribers are called listeners, and they react to the events.

// Require events to start using them

const EventEmitter = require('events') .EventEmitter;
// Dogs have events to publish, or emit

class Dog extends EventEmitter {};

class Food {};
let myDog = new Dog();

// When myDog is chewing, run the following function
myDog.on ('chew', (item) => {
if (item instanceof Food) {
console.log('Good dog');

} else {
console.log(Time to buy another ${item}’);
}
1)
myDog.emit ('chew', 'shoe'); // Will result in console.log('Time to buy another shoe')
const bacon = new Food();
myDog.emit ('chew', bacon); // Will result in console.log('Good dog')

In the above example, the dog is the publisher/EventEmitter, while the function that checks the
item was the subscriber/listener. You can make more listeners too:

myDog.on ('bark', () => {
console.log ('"WHO\'S AT THE DOOR?');
// Panic

1)

https://riptutorial.com/ 94

There can also be multiple listeners for a single event, and even remove listeners:

myDog.on ('chew', takeADeepBreathe);

myDog.on ('chew', calmDown) ;

// Undo the previous line with the next one:
myDog.removeListener ('chew', calmDown) ;

If you want to listen to a event only once, you can use:

myDog.once ('chew', pet);

Which will remove the listener automatically without race conditions.

Get the names of the events that are subscribed to

The function EventEmitter.eventNames() will return an array containing the names of the events

currently subscribed to.

const EventEmitter = require ("events");
class MyEmitter extends EventEmitter{}

var emitter = new MyEmitter () ;

emitter

.on ("message", function(){ //listen for message event
console.log("a message was emitted!");

})

.on ("message", function(){ //listen for message event
console.log("this is not the right message");

})

.on("data", function(){ //listen for data event

console.log("a data just occured!!");
)i
console.log(emitter.eventNames ()); //=> ["message","data"]
emitter.removeAllListeners ("data");//=> removeAllListeners to data event
console.log(emitter.eventNames ()); //=> ["message"]
Run in RunKit

Get the number of listeners registered to listen for a specific event

The function Emitter.listenerCount(eventName) will return the number of listeners that are

currently listening for the event provided as argument

const EventEmitter = require ("events");
class MyEmitter extends EventEmitter{}
var emitter = new MyEmitter();

emitter
.on("data", ()=>{ // add listener for data event
console.log("data event emitter");

)i

https://riptutorial.com/

95

https://runkit.com/594bb4eaaac7e6001294132c/594bb635aac7e600129413e7

console.log(emitter.listenerCount ("data")) // => 1
console.log(emitter.listenerCount ("message")) // => 0

emitter.on ("message", function mListener(){ //add listener for message event
console.log ("message event emitted");

1)

console.log(emitter.listenerCount ("data")) // => 1

console.log(emitter.listenerCount ("message")) // => 1

emitter.once ("data", (stuff)=>{ //add another listener for data event
console.log (' Tell me my S${stuff});
})

console.log(emitter.listenerCount ("data")) /] => 2
console.log(emitter.listenerCount ("message"))// => 1

Read Event Emitters online: https://riptutorial.com/node-js/topic/1623/event-emitters

https://riptutorial.com/

96

https://riptutorial.com/node-js/topic/1623/event-emitters

C_hapter 27: Eventloop

Introduction

In this post we are going to discuss how the concept of Eventloop emerged and how it can be
used for high performance servers and event driven applications like GUIs.

Examples

How the concept of event loop evolved.

Eventloop in pseudo code

An event loop is a loop that waits for events and then reacts to those events

while true:
wait for something to happen
react to whatever happened

E_xample of a single-threaded HTTP server
with no event loop

while true:

socket = wait for the next TCP connection

read the HTTP request headers from (socket)
file_contents = fetch the requested file from disk
write the HTTP response headers to (socket)

write the (file_contents) to (socket)

close (socket)

Here's a simple form of a HTTP server which is a single threaded but no event loop. The problem
here is that it waits until each request is finished before starting to process the next one. If it takes
a while to read the HTTP request headers or to fetch the file from disk, we should be able to start
processing the next request while we wait for that to finish.

The most common solution is to make the program multi-threaded.

Example of a multi-threaded HTTP server
with no event loop

https://riptutorial.com/ 97

function handle_connection (socket) :
read the HTTP request headers from (socket)
file_contents = fetch the requested file from disk
write the HTTP response headers to (socket)
write the (file_contents) to (socket)
close (socket)
while true:
socket = wait for the next TCP connection
spawn a new thread doing handle_connection (socket)

Now we have made our little HTTP server multi threaded. This way, we can immediately move on
to the next request because the current request is running in a background thread. Many servers,
including Apache, use this approach.

But it's not perfect. One limitation is that you can only spawn so many threads. For workloads
where you have a huge number of connections, but each connection only requires attention every
once in a while, the multi-threaded model won't perform very well. The solution for those cases is
to use an event loop:

Example of a HTTP server with event loop

while true:
event = wait for the next event to happen
if (event.type == NEW_TCP_CONNECTION) :
conn = new Connection
conn.socket = event.socket
start reading HTTP request headers from (conn.socket) with userdata = (conn)
else if (event.type == FINISHED_READING_FROM_SOCKET) :
conn = event.userdata
start fetching the requested file from disk with userdata = (conn)
else if (event.type == FINISHED_READING_FROM_DISK) :
conn = event.userdata
conn.file contents = the data we fetched from disk
conn.current_state = "writing headers"
start writing the HTTP response headers to (conn.socket) with userdata = (conn)
else if (event.type == FINISHED_WRITING_TO_SOCKET) :
conn = event.userdata
if (conn.current_state == "writing headers"):
conn.current_state = "writing file contents"
start writing (conn.file_contents) to (conn.socket) with userdata = (conn)
else if (conn.current_state == "writing file contents"):
close (conn.socket)

Hopefully this pseudocode is intelligible. Here's what's going on: We wait for things to happen.
Whenever a new connection is created or an existing connection needs our attention, we go deal
with it, then go back to waiting. That way, we perform well when there are many connections and
each one only rarely requires attention.

In a real application (not pseudocode) running on Linux, the "wait for the next event to happen"”
part would be implemented by calling the poll() or epoll() system call. The "start reading/writing
something to a socket" parts would be implemented by calling the recv() or send() system calls in
non-blocking mode.

https://riptutorial.com/ 98

Reference:

[1]. "How does an event loop work?" [Online]. Available : https://www.quora.com/How-does-an-
event-loop-work

Read Eventloop online: https://riptutorial.com/node-js/topic/8652/eventloop

https://riptutorial.com/

99

https://www.quora.com/How-does-an-event-loop-work
https://www.quora.com/How-does-an-event-loop-work
https://riptutorial.com/node-js/topic/8652/eventloop

C_hapter 28:. Exception handling

Examples

Handling Exception In Node.Js

Node.js has 3 basic ways to handle exceptions/errors:

1. try-catch block
2. error as the first argument to a caliback
3. emit &n error event using eventEmitter

try-catch is used to catch the exceptions thrown from the synchronous code execution. If the
caller (or the caller's caller, ...) used try/catch, then they can catch the error. If none of the callers
had try-catch than the program crashes.

If using try-catch on an async operation and exception was thrown from callback of async method
than it will not get caught by try-catch. To catch an exception from async operation callback, it is
preferred to use promises.

Example to understand it better

// ** Example - 1 **
function doSomeSynchronousOperation (req, res) {
if (reg.body.username === "'") {
throw new Error ('User Name cannot be empty');
}
return true;

}

// calling the method above
try {
// synchronous code
doSomeSynchronousOperation (req, res)
catch(e) {
//exception handled here
console.log(e.message) ;

}

// ** Example - 2 **
function doSomeAsynchronousOperation (req, res, cb) {
// imitating async operation
return setTimeout (function () {
cb(null, [1]);
},1000);

try {
// asynchronous code
doSomeAsynchronousOperation (req, res, function(err, rs) {
throw new Error ("async operation exception");
1)
} catch(e) {
// Exception will not get handled here
console.log(e.message) ;

https://riptutorial.com/ 100

}

// The exception is unhandled and hence will cause application to break

callbacks are mostly used in Node.js as callback delivers an event asynchronously. The user
passes you a function (the callback), and you invoke it sometime later when the asynchronous
operation completes.

The usual pattern is that the callback is invoked as a callback(err, result), where only one of err
and result is non-null, depending on whether the operation succeeded or failed.

function doSomeAsynchronousOperation (req, res, callback) {
setTimeout (function () {
return callback (new Error ('User Name cannot be empty'));
}, 1000);
return true;

doSomeAsynchronousOperation (req, res, function(err, result) {
if (err) {
//exception handled here
console.log(err.message) ;

//do some stuff with valid data
P

emit For more complicated cases, instead of using a callback, the function itself can return an
EventEmitter object, and the caller would be expected to listen for error events on the emitter.

const EventEmitter = require('events');

function doSomeAsynchronousOperation (req, res) {

let myEvent = new EventEmitter();

// runs asynchronously
setTimeout (function () {

myEvent .emit ('error', new Error ('User Name cannot be empty'));
}, 1000);

return myEvent;
// Invoke the function
let event = doSomeAsynchronousOperation (req, res);
event.on('error', function(err) {
console.log(err);
}) i
event.on ('done', function (result) {

console.log(result); // true
)i

Unhanded Exception Management

Because Node.js runs on a single process uncaught exceptions are an issue to be aware of when

https://riptutorial.com/ 101

developing applications.

Silently Handling Exceptions

Most of the people let node.js server(s) silently swallow up the errors.

 Silently handling the exception

process.on ('uncaughtException', function (err) {
console.log(err);

}) i

This is bad, it will work but:

+ Root cause will remains unknown, as such will not contribute to resolution of what caused
the Exception (Error).

* In case of database connection (pool) gets closed for some reason this will result in
constant propagation of errors, meaning that server will be running but it will not reconnect to
db.

Returning to Initial state

In case of an " uncaughtException " it is good to restart the server and return it to its initial state,
where we know it will work. Exception is logged, application is terminated but since it will be
running in a container that will make sure that the server is running we will achieve restarting of
the server (returning to the initial working state) .

* Installing the forever (or other CLI tool to make sure that node server runs continuously)

npm install forever -g

» Starting the server in forever

forever start app.Js

Reason why is it started and why we use forever is after the server is terminated
forever process will start the server again.

» Restarting the server

process.on ('uncaughtException', function (err) {
console.log(err);

// some logging mechanisam

I cooo

process.exit (1); // terminates process

https://riptutorial.com/ 102

On a side note there was a way also to handle exceptions with Clusters and Domains.

Domains are deprecated more information here.

Errors and Promises
Promises handle errors differently to synchronous or callback-driven code.

const p = new Promise (function (resolve, reject) ({
reject (new Error ('Oops'));

)i

// anything that is “reject ' ed inside a promise will be available through catch

// while a promise is rejected, ~.then' will not be called

p
.then(() => {
console.log("won't be called");

})
.catch(e => {
console.log(e.message); // output: Oops

})

// once the error is caught, execution flow resumes
.then(() => {
console.log('hello!"'); // output: hello!

)i

currently, errors thrown in a promise that are not caught results in the error being swallowed,
which can make it difficult to track down the error. This can be solved using linting tools like eslint
or by ensuring you always have a catch clause.

This behaviour is deprecated in node 8 in favour of terminating the node process.

Read Exception handling online: https://riptutorial.com/node-js/topic/2819/exception-handling

https://riptutorial.com/ 103

https://nodejs.org/api/domain.html
https://www.npmjs.com/package/eslint-plugin-promise
http://eslint.org/
https://nodejs.org/dist/latest-v8.x/docs/api/deprecations.html#deprecations_dep0018_unhandled_promise_rejections
https://riptutorial.com/node-js/topic/2819/exception-handling

C_hapter 29: Executing files or commands
with Child Processes

Syntax

 child_process.exec(command], options][, callback])
 child_process.execFile(file[, args][, options][, callback])
 child_process.fork(modulePath[, args][, options])
 child_process.spawn(command][, args][, options])
 child_process.execFileSync(file[, args][, options])
 child_process.execSync(command[, options])
 child_process.spawnSync(command|, args][, options])

Remarks

When dealing with child processes, all of the asynchronous methods will return an instance of
chilarrocess, While all the synchronous versions will return the output of whatever was run. Like
other synchronous operations in Node.js, if an error occurs, it will throw.

Examples

Spawning a new process to execute a command

To spawn a new process in which you need unbuffered output (e.g. long-running processes which
might print output over a period of time rather than printing and exiting immediately), use

child_process.spawn ().

This method spawns a new process using a given command and an array of arguments. The
return value is an instance of chi1arrocess, which in turn provides the stdout and stderr properties.
Both of those streams are instances of st ream.readable.

The following code is equivalent to using running the command 1s -1n /usr.

const spawn = require('child_process') .spawn;
const 1ls = spawn('ls', ['-1h', '"/usr']);
ls.stdout.on('data', (data) => {

console.log(stdout: ${data}’);
)i

ls.stderr.on('data', (data) => {
console.log(stderr: ${data}’);
)i

ls.on('close', (code) => {
console.log(child process exited with code ${code}’);

https://riptutorial.com/ 104

https://nodejs.org/api/child_process.html#child_process_class_childprocess
https://nodejs.org/dist/latest/docs/api/child_process.html#child_process_class_childprocess
https://nodejs.org/dist/latest/docs/api/stream.html#stream_class_stream_readable

1)
Another example command:
zip -Ovr "archive" ./image.png
Might be written as:

spawn ('zip', ['-Ovr', '"archive"',k6 './image.png']);

Spawning a shell to execute a command

To run a command in a shell, in which you required buffered output (i.e. it is not a stream), use

child_process.exec. FOr example, if you wanted to run the command cat *.3s file | wec -1, With nO

options, that would look like this:

const exec = require('child_process') .exec;
exec('cat *.js file | wc -1', (err, stdout, stderr) => {
if (err) {
console.error (" exec error: S${err}’);
return;

console.log(stdout: ${stdout}’);
console.log(stderr: ${stderr}’);
)i

The function accepts up to three parameters:

child_process.exec (command[, options] [, callback]);

The command parameter is a string, and is required, while the options object and callback are
both optional. If no options object is specified, then exec will use the following as a default:

encoding: 'utf8',
timeout: O,

maxBuffer: 200*1024,
killSignal: 'SIGTERM',
cwd: null,

env: null

The options object also supports a she11 parameter, which is by default /in/sh on UNIX and
cmd.exe ON Windows, a uia option for setting the user identity of the process, and a gida option for
the group identity.

The callback, which is called when the command is done executing, is called with the three
arguments (err, stdout, stderr). If the command executes successfully, err will be nu11,
otherwise it will be an instance of error, With err.code being the exit code of the process and

err.signal

https://riptutorial.com/ 105

being the signal that was sent to terminate it.

The stdout and stderr arguments are the output of the command. It is decoded with the encoding
specified in the options object (default: string), but can otherwise be returned as a surrer Object.

There also exists a synchronous version of exec, Which is execsync. The synchronous version does
not take a callback, and will return stdout instead of an instance of chiildprocess. If the synchronous
version encounters an error, it will throw and halt your program. It looks like this:

const execSync = require('child_process') .execSync;
const stdout = execSync('cat *.js file | wc -1");
console.log(stdout: ${stdout}’);

Spawning a process to run an executable

If you are looking to run a file, such as an executable, use child_process.execrile. INStead of
spawning a shell like chiild_process.exec Would, it will directly create a new process, which is
slightly more efficient than running a command. The function can be used like so:

const execFile = require('child _process') .execFile;
const child = execFile('node', ['—--version'], (err, stdout, stderr) => {
if (err) {

throw err;

console.log(stdout) ;

}) i

Unlike child process.exec, this function will accept up to four parameters, where the second
parameter is an array of arguments you'd like to supply to the executable:

child process.execFile(file[, args]|[, options][, callback]);

Otherwise, the options and callback format are otherwise identical to child process.exec. The
same goes for the synchronous version of the function:

const execFileSync = require('child process') .execFileSync;
const stdout = execFileSync('node', ['--version']);
console.log(stdout) ;

Read Executing files or commands with Child Processes online: https://riptutorial.com/node-
js/topic/2726/executing-files-or-commands-with-child-processes

https://riptutorial.com/ 106

https://riptutorial.com/node-js/topic/2726/executing-files-or-commands-with-child-processes
https://riptutorial.com/node-js/topic/2726/executing-files-or-commands-with-child-processes

C_hapter 30: Exporting and Consuming
Modules

Remarks

While everything in Node.js is generally done asynchronously, require () iS not one of those things.
Since modules in practice only need to be loaded once, it is a blocking operation and should be
used properly.

Modules are cached after the first time they are loaded. Should you be editing a module in
development, you will need to delete its entry in the module cache in order to use new changes.
That being said, even if a module is cleared out of the module cache, the module itself is not
garbage collected, so care should be taken for its use in production environments.

Examples

Loading and using a module

A module can be "imported”, or otherwise "required" by the require () function. For example, to
load the nttp module that ships with Node.js, the following can be used:

const http = require('http');

Aside from modules that are shipped with the runtime, you can also require modules that you have
installed from npm, such as express. If you had already installed express on your system via npm
install express, yOu could simply write:

const express = require ('express');

You can also include modules that you have written yourself as part of your application. In this
case, to include a file named 1ix. s in the same directory as current file:

const mylib = require('./lib"');

Note that you can omit the extension, and . 5s will be assumed. Once you load a module, the
variable is populated with an object that contains the methods and properties published from the
required file. A full example:

const http = require('http');

// The “http' module has the property 'STATUS_CODES®
console.log (http.STATUS_CODES[404]); // outputs 'Not Found'

// Also contains ' createServer ()’
http.createServer (function(req, res) {

https://riptutorial.com/ 107

res.writeHead (200, {'Content-Type': 'text/html'});
res.write ('<html><body>Module Test</body></html>");
res.end();

}).listen (80);

Creating a hello-world.js module

Node provides the module.exports interface to expose functions and variables to other files. The
most simple way to do so is to export only one object (function or variable), as shown in the first
example.

hello-world.js

module.exports = function (subject) ({
console.log('Hello ' + subject);
}i

If we don't want the entire export to be a single object, we can export functions and variables as
properties of the exports 0Object. The three following examples all demonstrate this in slightly
different ways :

* hello-venus.js : the function definition is done separately then added as a property of
module.exports

* hello-jupiter.js : the functions definitions are directly put as the value of properties of

module.exports

* hello-mars.js : the function definition is directly declared as a property of exports Which is a
short version of module. exports

hello-venus.js

function hello (subject) {
console.log('Venus says Hello ' + subject);

}

module.exports = {
hello: hello
}i

hello-jupiter.js

module.exports = {
hello: function (subject) {
console.log('Jupiter says hello ' + subiject);

by

bye: function (subject) {
console.log('Jupiter says goodbye ' + subject);
}
}i

hello-mars.js

https://riptutorial.com/ 108

exports.hello = function (subject) {
console.log('Mars says Hello ' + subject);
}i

Loading module with directory name
We have a directory named ne110 which includes the following files:
index.js

// hello/index.js
module.exports = function() {
console.log('Hej'");

}i
main.js

// hello/main. js

// We can include the other files we've defined by using the “require()"

var hw = require('./hello-world.js'),

hm = require('./hello-mars.js'),

(.
hv = require('./hello-venus.js'),
hj = require('./hello-jupiter.js'),
hu = require('./index.js"');

method

// Because we assigned our function to the entire "module.exports’ object, we

// can use 1t directly
hw ('World!'"'); // outputs "Hello World!"

// In this case, we assigned our function to the "hello’ property of exports,

// use that here too
hm.hello ('Solar System!'); // outputs "Mars says Hello Solar System!"

// The result of assigning module.exports at once is the same as in hello-world. js

hv.hello ('Milky Way!'); // outputs "Venus says Hello Milky Way!"

hj.hello('Universe!'); // outputs "Jupiter says hello Universe!"
hj.bye ('Universe!'); // outputs "Jupiter says goodbye Universe!"

hu(); //output 'hej'

Invalidating the module cache

In development, you may find that using require () On the same module multiple times always
returns the same module, even if you have made changes to that file. This is because modules
are cached the first time they are loaded, and any subsequent module loads will load from the

cache.

sO we must

To get around this issue, you will have to de1ete the entry in the cache. For example, if you loaded

a module:

var a = require('./a');

https://riptutorial.com/

109

You could then delete the cache entry:

var rpath = require.resolve('./a.js');
delete require.cache[rpath];

And then require the module again:

var a = require('./a');
Do note that this is not recommended in production because the deiete Will only delete the
reference to the loaded module, not the loaded data itself. The module is not garbage collected, so
improper use of this feature could lead to leaking memory.

Building your own modules

You can also reference an object to publicly export and continuously append methods to that
object:

const auth = module.exports = {}

const config = require('../config')
const request = require ('request')
auth.email = function (data, callback) {

// Authenticate with an email address

auth. facebook = function (data, callback) {
// RAuthenticate with a Facebook account

auth.twitter = function (data, callback) {
// Authenticate with a Twitter account

auth.slack = function (data, callback) {
// Authenticate with a Slack account

auth.stack_overflow = function (data, callback) {
// Authenticate with a Stack Overflow account

To use any of these, just require the module as you normally would:

const auth = require('./auth')

module.exports = function (req, res, next) {
auth. facebook (req.body, function (err, user) {
if (err) return next (err)

req.user = user
next ()

})

https://riptutorial.com/ 110

Every module injected only once

NodeJS executes the module only the first time you require it. Any further require functions will re-
use the same Object, thus not executing the code in the module another time. Also Node caches
the modules first time they are loaded using require. This reduces the number of file reads and
helps to speed up the application.

myModule. js

console.log (123

’

)
exports.varl = 4 ;
index.js

var a=require('./myModule') ; // Output 123
var b=require('./myModule') ; // No output
console.log(a.varl) ; // Output 4
console.log(b.varl) ; // Output 4

a.var2 = 5 ;

console.log(b.var2) ; // OQutput 5

Module loading from node_modules

Modules can be required without using relative paths by putting them in a special directory called

node_modules

For example, to require @ module called foo from a file index. §s, you can use the following
directory structure:

index. js
\— node_modules
\- foo
|- foo.]js
\- package. json

Modules should be placed inside a directory, along with a package. json file. The main field of the
package. json file should point to the entry point for your module--this is the file that is imported
when users do require ('your-module'). main defaults to index.js if not provided. Alternatively, you
can refer to files relative to your module simply by appending the relative path to the require call:

require ('your-module/path/to/file').

Modules can also be required from node_modules directories up the file system hierarchy. If we have
the following directory structure:

my-project
\- node_modules
|- foo // the foo module
= coao
\- baz // the baz module
\- node_modules
\- bar // the bar module

https://riptutorial.com/ 111

we will be able to require the module roo from any file within var USINg require (*foo').

Note that node will only match the module that is closest to the file in the filesystem hierarchy,

starting from (the file's current directory/node_modules). Node matches directories this way up to

the file system root.

You can either install new modules from the npm registry or other npm registries, or make your

own.

Folder as a module

Modules can be split across many .js files in the same folder. An example in a my_module folder:

function_one.js

module.exports = function() {
return 1;

}
function_two.js

module.exports = function() {
return 2;

}

index.js
exports.f_one = require('./function_one.js');
exports.f_two = require('./function_two.Jjs');

A module like this one is used by referring to it by the folder name:

var split_module = require('./my_module');

Please note that if you required it by omitting ., or any indication of a path to a folder from the
require function argument, Node will try to load a module from the node_modules folder.

Alternatively you can create in the same folder a package. json file with these contents:

"name": "my_module",
"main": "./your_main_entry_point.js"
This way you are not required to name the main module file "index".

Read Exporting and Consuming Modules online: https://riptutorial.com/node-
jsltopic/547/exporting-and-consuming-modules

https://riptutorial.com/

112

https://riptutorial.com/node-js/topic/547/exporting-and-consuming-modules
https://riptutorial.com/node-js/topic/547/exporting-and-consuming-modules

C_hapter 31: Exporting and Importing Module

In node.|s

Examples

Using a simple module in node.js

What is a node.js module (link to article):

A module encapsulates related code into a single unit of code. When creating a
module, this can be interpreted as moving all related functions into a file.

Now lets see an example. Imagine all files are in same directory:

F”e:printer.js

"use strict";

exports.printHelloWorld = function () {
console.log("Hello World!!!");
}

Another way of using modules:

File animals.js

"use strict";

module.exports = {
lion: function() {
console.log ("ROAARR!!!");
}
i
File: app. s

Run this file by going to your directory and typing: node app. js

"use strict";
//require ('./path/to/module.js') node which module to load
var printer = require('./printer');

var animals = require('./animals');

printer.printHelloWorld(); //prints "Hello World!!!"
animals.lion(); //prints "ROAARR!!!"

Using Imports In ES6

https://riptutorial.com/

113

https://www.sitepoint.com/understanding-module-exports-exports-node-js/

Node.js is built against modern versions of V8. By keeping up-to-date with the latest releases of
this engine, we ensure new features from the JavaScript ECMA-262 specification are brought to
Node.js developers in a timely manner, as well as continued performance and stability
improvements.

All ECMAScript 2015 (ES6) features are split into three groups for shipping, staged, and in
progress features:

All shipping features, which V8 considers stable, are turned on by default on Node.js and do NOT
require any kind of runtime flag. Staged features, which are almost-completed features that are not
considered stable by the V8 team, require a runtime flag: --harmony. In progress features can be
activated individually by their respective harmony flag, although this is highly discouraged unless
for testing purposes. Note: these flags are exposed by V8 and will potentially change without any
deprecation notice.

Currently ES6 supports import statements natively Refer here

So if we have a file called fun. js...

export default function say (what) {
console.log(what);

}

export function sayLoud(whoot) {
say (whoot .toUpperCase ()) ;
}

...and if there was another file named app. 55 Where we want to put our previously defined
functions to use, there are three ways how to import them.

Import default

import say from './fun';
say ('Hello Stack Overflow!!'); // Output: Hello Stack Overflow!!

Imports the say () function because it is marked as the default export in the source file (export
default ..)

Named imports

import { sayLoud } from './fun';
sayLoud ('JS modules are awesome.'); // Output: JS MODULES ARE AWESOME.

Named imports allow us to import exactly the parts of a module we actually need. We do this by
explicitly naming them. In our case by naming saytoud in curly brackets within the import
statement.

Bundled import

import * as i from './fun';

https://riptutorial.com/ 114

https://developer.mozilla.org/en/docs/web/javascript/reference/statements/import

i.say ('What?'); // Output: What?
i.sayLoud ('Whoot!"'); // Output: WHOOT!

If we want to have it all, this is the way to go. By using the syntax + as 1 we have the import
statement provide us with an object i that holds all exports of our run module as correspondingly
named properties.

Paths

Keep in mind that you have to explicitly mark your import paths as relative paths even if the file to
be imported resided in the same directory like the file you are importing into by using .,/. Imports
from unprefixed paths like

import express from 'express';

will be looked up in the local and global node_modu1es folders and will throw an error if no matching
modules are found.

Exporting with ES6 syntax
This is the equivalent of the other example but using ES6 instead.

export function printHelloWorld() {
console.log("Hello World!!!"™);
}

Read Exporting and Importing Module in node.js online: https://riptutorial.com/node-
Jjs/topic/1173/exporting-and-importing-module-in-node-js

https://riptutorial.com/ 115

http://www.riptutorial.com/node-js/example/3787/using-a-simple-module-in-node-js
https://riptutorial.com/node-js/topic/1173/exporting-and-importing-module-in-node-js
https://riptutorial.com/node-js/topic/1173/exporting-and-importing-module-in-node-js

C_hapter 32: File upload

Examples

Single File Upload using multer

Remember to

 create folder for upload (up10ads in example).
 install multer npm i -S multer

server. js.

var express = require ("express");
var multer = require ('multer');
var app = express () ;

var fs = require('fs');

app.get ('/', function (req, res) {
res.sendFile(__dirname + "/index.html");

)i

var storage = multer.diskStorage ({
destination: function (req, file, callback) {
fs.mkdir ('./uploads', function(err) {
if (err) {
console.log(err.stack)
} else {
callback (null, './uploads');

})
s
filename: function (req, file, callback) {
callback (null, file.fieldname + '-' 4+ Date.now());

app.post ('/api/file', function (req, res) {
var upload = multer ({ storage : storage}).single('userFile');
upload (req, res, function (err) {
if (err) {
return res.end("Error uploading file.");
}
res.end ("File is uploaded");

)i

app.listen (3000, function () {
console.log ("Working on port 3000");

index.html:

<form id = "uploadForm"

https://riptutorial.com/ 116

enctype = "multipart/form-data"
"Japi/file"
llpostll

action
method

>
<input type="file" name="userFile" />

<input type="submit" value="Upload File" name="submit">
</form>

Note:

To upload file with extension you can use Node.js path built-in library

For that just require path t0 server. js file:

var path = require('path');
and change:
callback (null, file.fieldname + '-' + Date.now());

adding a file extension in the following way:

callback (null, file.fieldname + '-' + Date.now() + path.extname(file.originalname));

How to filter upload by extension:

In this example, view how to upload files to allow only certain extensions.

For example only images extensions. Just add t0 var upload = multer({ storage :
storage}) .single ('userFile'); fileFilter condition

var upload = multer ({

storage: storage,

fileFilter: function (req, file, callback) {
var ext = path.extname (file.originalname) ;
if (ext !== '.png' && ext !== '.Jpg' && ext !== '.gif' && ext !== '.Jjpeg') {

return callback (new Error ('Only images are allowed'))

}
callback (null, true)

}

}) .single ('userFile');
Now you can upload only image files with png, jpg, gif Or jpeg €XtENSIONS

Using formidable module

Install module and read docs

https://riptutorial.com/ 117

https://nodejs.org/api/path.html#path_path
https://github.com/felixge/node-formidable

npm i formidable@latest

Example of server on 8080 port

var formidable = require('formidable'),
http = require('http'),
util = require('util');

http.createServer (function (req, res) {
if (reqg.url == '/upload' && reqg.method.toLowerCase() == 'post')
// parse a file upload
var form = new formidable.IncomingForm() ;

form.parse (req, function(err, fields, files) {
if (err)
do-smth; // process error

// Copy file from temporary place
// var fs = require('fs');
// fs.rename (file.path, <targetPath>, function (err) {

// Send result on client

res.writeHead (200, {'content-type': 'text/plain'});
res.write ('received upload:\n\n');
res.end(util.inspect ({fields: fields, files: files}));

})i
return;
// show a file upload form

res.writeHead (200, {'content-type': 'text/html'});
res.end (

'<form action="/upload" enctype="multipart/form-data" method="post">"'+

'<input type="text" name="title">
'+
'<input type="file" name="upload" multiple="multiple">
'+
'<input type="submit" value="Upload">'+
'</form>"
)i
}).1listen (8080) ;

Read File upload online: https://riptutorial.com/node-js/topic/4080/file-upload

https://riptutorial.com/

118

https://riptutorial.com/node-js/topic/4080/file-upload

C_hapter 33: Filesystem 1/O

Remarks

In Node.js, resource intensive operations such as I/0O are performed asynchronously, but have a
synchronous counterpart (e.g. there exists a rs.readrile and its counterpart is fs.readrileSync).
Since Node is single-threaded, you should be careful when using synchronous operations,
because they will block the entire process.

If a process is blocked by a synchronous operation, the entire execution cycle (including the event
loop) is halted. That means other asynchronous code, including events and event handlers, will
not run and your program will continue to wait until the single blocking operation has completed.

There are appropriate uses for both synchronous and asynchronous operations, but care must be
taken that they are utilized properly.

Examples
Writing to a file using writeFile or writeFileSync

var fs = require('fs');

// Save the string "Hello world!" in a file called "hello.txt" in
// the directory "/tmp" using the default encoding (utfs8).
// This operation will be completed in background and the callback
// will be called when it is either done or failed.
fs.writeFile('/tmp/hello.txt', 'Hello world!', function(err) {

// If an error occurred, show it and return

if (err) return console.error (err);

// Successfully wrote to the file!
1)

// Save binary data to a file called "binary.txt" in the current
// directory. Again, the operation will be completed in background.
var buffer = new Buffer ([0x48, 0x65, Ox6c, 0x6c, O0x6f 1);
fs.writeFile('binary.txt', buffer, function(err) {

// If an error occurred, show it and return

if (err) return console.error (err);

// Successfully wrote binary contents to the file!
1)

fs.writeFilesync behaves similarly to rs.writerile, but does not take a callback as it completes
synchronously and therefore blocks the main thread. Most node.js developers prefer the
asynchronous variants which will cause virtually no delay in the program execution.

Note: Blocking the main thread is bad practice in node.js. Synchronous function should only be
used when debugging or when no other options are availables.

// Write a string to another file and set the file mode to 0755

https://riptutorial.com/ 119

try {

fs.writeFileSync ('sync.txt', 'anni', { mode: 00755 });
} catch(err) {

// An error occurred

console.error (err) ;

Asynchronously Read from Files
Use the filesystem module for all file operations:

const fs = require('fs');

With Encoding

In this example, read ne110.txt from the directory /tmp. This operation will be completed in the
background and the callback occurs on completion or failure:

fs.readFile('/tmp/hello.txt', { encoding: 'utf8' }, (err, content) => {
// If an error occurred, output it and return
if (err) return console.error (err);

// No error occurred, content is a string
console.log(content) ;

}) i

Without Encoding

Read the binary file vinary.txt from the current directory, asynchronously in the background. Note
that we do not set the 'encoding’ option - this prevents Node.js from decoding the contents into a
string:

fs.readFile('binary', (err, binaryContent) => {
// If an error occurred, output it and return
if (err) return console.error (err);

// No error occurred, content is a Buffer, output it in
// hexadecimal representation.
console.log(content.toString('hex'));

}) i

Relative paths

Keep in mind that, in general case, your script could be run with an arbitrary current working
directory. To address a file relative to the current script, Use _ dirname OF __ filename:

fs.readFile (path.resolve (__dirname, 'someFile'), (err, binaryContent) => {
//Rest of Function

https://riptutorial.com/ 120

Listing Directory Contents with readdir or readdirSync

const fs = require('fs');

// Read the contents of the directory /usr/local/bin asynchronously.
// The callback will be invoked once the operation has either completed
// or failed.
fs.readdir ('/usr/local/bin', (err, files) => {
// On error, show it and return

if (err) return console.error (err);

// files 1s an array containing the names of all entries
// in the directory, excluding '.' (the directory itself)
// and '..' (the parent directory).

// Display directory entries
console.log(files.join (" "));
1)

A synchronous variant is available as readdirsync which blocks the main thread and therefore
prevents execution of asynchronous code at the same time. Most developers avoid synchronous
IO functions in order to improve performance.

let files;

try {

files = fs.readdirSync('/var/tmp');
} catch(err) {

// An error occurred

console.error (err);

Using a generator

const fs = require('fs');

// Iterate through all items obtained via
// 'yield' statements
// A callback is passed to the generator function because it is required by
// the 'readdir' method
function run(gen) {
var iter = gen((err, data) => {
if (err) { iter.throw(err); }

return iter.next (data);

)i

iter.next ();

const dirPath = '/usr/local/bin';

// Execute the generator function

https://riptutorial.com/ 121

run (function* (resume) {
// Emit the list of files in the directory from the generator
var contents = yield fs.readdir (dirPath, resume);
console.log(contents);

1)

Reading from a file synchronously
For any file operations, you will need the filesystem module:

const fs = require('fs');

Reading a String

fs.readFilesync behaves similarly to £s.readrile, but does not take a callback as it completes
synchronously and therefore blocks the main thread. Most node.js developers prefer the
asynchronous variants which will cause virtually no delay in the program execution.

If an encoding Option is specified, a string will be returned, otherwise a surrer Will be returned.

// Read a string from another file synchronously
let content;
try {
content = fs.readFileSync('sync.txt', { encoding: 'utf8' });
} catch(err) {
// An error occurred

console.error (err);

Deleting a file using unlink or unlinkSync
Delete a file asynchronously:

var fs = require('fs');

fs.unlink ('/path/to/file.txt', function(err) {
if (err) throw err;

console.log('file deleted');
}) i

You can also delete it synchronously*:

var fs = require('fs');

fs.unlinkSync ('/path/to/file.txt");
console.log('file deleted');

* avoid synchronous methods because they block the entire process until the execution finishes.

https://riptutorial.com/ 122

Reading a file into a Buffer using streams

While reading content from a file is already asynchronous using the ts.readrile () method,
sometimes we want to get the data in a Stream versus in a simple callback. This allows us to pipe
this data to other locations or to process it as it comes in versus all at once at the end.

const fs = require('fs');

// Store file data chunks in this array

let chunks = [];

// We can use this variable to store the final data
let fileBuffer;

// Read file into stream.Readable
let fileStream = fs.createReadStream('text.txt');

// BAn error occurred with the stream
fileStream.once ('error', (err) => {
// Be sure to handle this properly!
console.error (err);
1)

// File is done being read

fileStream.once('end', () => {
// create the final data Buffer from data chunks;
fileBuffer = Buffer.concat (chunks) ;

// Of course, you can do anything else you need to here, like emit an event!
}) i

// Data is flushed from fileStream in chunks,
// this callback will be executed for each chunk
fileStream.on ('data', (chunk) => {

chunks.push (chunk); // push data chunk to array

// We can perform actions on the partial data we have so far!
}) i

Check Permissions of a File or Directory

fs.access () determines whether a path exists and what permissions a user has to the file or
directory at that path. rs.access doesn't return a result rather, if it doesn't return an error, the path
exists and the user has the desired permissions.

The permission modes are available as a property on the rs object, fs.constants

* fs.constants.F_OK - Has read/write/execute permissions (If no mode is provided, this is the
default)

* fs.constants.R_OK - Has read permissions

* fs.constants.W_OK - Has write permissions

* fs.constants.x_OK - Has execute permissions (Works the same as ts.constants.¥_ok ON
Windows)

https://riptutorial.com/ 123

Asynchronously

var fs = require('fs');
var path = '/path/to/check"';

// checks execute permission
fs.access (path, fs.constants.X_OK, (err) => {
if (err) {
console.log("%s doesn't exist", path);
} else {
console.log('can execute %s', path);
}
1)
// Check if we have read/write permissions
// When specifying multiple permission modes
// each mode is separated by a pipe : " |°
fs.access (path, fs.constants.R_OK | fs.constants.W_OK, (err) => {
if (err) {
console.log("%s doesn't exist", path);
} else {
console.log('can read/write %s', path);

)i

S_ynchronously

fs.access also has a synchronous version ts.accesssync. When using fs.accesssync you must
enclose it within a try/catch block.

// Check write permission

try {
fs.accessSync (path, fs.constants.W_OK);
console.log('can write %s', path);

}
catch (err) {
console.log("%s doesn't exist", path);

Avoiding race conditions when creating or using an existing directory

Due to Node's asynchronous nature, creating or using a directory by first:

1. checking for its existence with fs.stat (), then
2. creating or using it depending of the results of the existence check,

can lead to a race condition if the folder is created between the time of the check and the time of
the creation. The method below wraps fs.mkdir () and fs.mkdirsync () IN error-catching wrappers

that let the exception pass if its code is rex1sT (already exists). If the error is something else, like
rrerM (pemission denied), throw or pass an error like the native functions do.

Asynchronous version with £s.mkdir ()

https://riptutorial.com/ 124

https://www.wikiwand.com/en/Race_condition#/File_systems

var fs = require('fs');

function mkdir (dirPath, callback) {
fs.mkdir (dirPath, (err) => {

callback (err && err.code !== 'EEXIST' ? err : null);
}) i
}
mkdir ('./existingDir', (err) => {
if (err)

return console.error (err.code);
// Do something with °./existingDir' here

)i
Synchronous version with £s.mkdirsync()

function mkdirSync (dirPath) ({
try {
fs.mkdirSync (dirPath);
} catch(e) {
if (e.code !== 'EEXIST') throw e;

mkdirSync ('./existing-dir"');
// Do something with °./existing-dir’® now

Checking if a file or a directory exists

Asynchronously

var fs = require('fs');

fs.stat ('path/to/file', function (err) {
if (lerr) {
console.log('file or directory exists');

}
else 1if (err.code === 'ENOENT') {
console.log('file or directory does not exist');

Synchronously

here, we must wrap the function call in a try/catch block to handle error.

var fs = require('fs');

try {
fs.statSync ('path/to/file");
console.log('file or directory exists');

https://riptutorial.com/

125

}
catch (err) {
if (err.code === 'ENOENT') {
console.log('file or directory does not exist');

Cloning afile using streams

This program illustrates how one can copy a file using readable and writable streams using the
createReadStream(), and createnritestream() functions provided by the file system module.

//Require the file System module
var fs = require('fs');

/*
Create readable stream to file in current directory (__dirname) named 'node.txt'
Use utf8 encoding
Read the data in 16-kilobyte chunks
=/
var readable = fs.createReadStream(_ _dirname + '/node.txt', { encoding: 'utf8', highWaterMark:
16 * 1024 });

// create writable stream
var writable = fs.createWriteStream(__dirname + '/nodeCopy.txt');

// Write each chunk of data to the writable stream

readable.on('data', function (chunk) {
writable.write (chunk) ;

)i

Copying files by piping streams

This program copies a file using readable and a writable stream with the pipe () function provided
by the stream class

// require the file system module
var fs = require('fs');

/*
Create readable stream to file in current directory named 'node.txt'
Use utf8 encoding
Read the data in 16-kilobyte chunks

*/
var readable = fs.createReadStream(__dirname + '/node.txt', { encoding: 'utf8', highWaterMark:
16 * 1024 });

// create writable stream
var writable = fs.createWriteStream(__dirname + '/nodePipe.txt');

// use pipe to copy readable to writable
readable.pipe (writable) ;

Changing contents of a text file

https://riptutorial.com/ 126

Example. It will be replacing the word emai1 t0 @ name in a text file index.txt with simple RegExp

replace (/email/gim, 'name')

var fs = require('fs');

fs.readFile('index.txt', 'utf-8', function(err, data) {
if (err) throw err;

var newValue = data.replace(/email/gim, 'name');

fs.writeFile ('index.txt', newValue, 'utf-8', function(err, data) {
if (err) throw err;
console.log('Done!");
})
})

Determining the line count of a text file

app.Js

const readline = require('readline');
const fs = require('fs');

var file = 'path.to.file';
var linesCount = 0;
var rl = readline.createInterface ({
input: fs.createReadStream(file),
output: process.stdout,
terminal: false
1)
rl.on('line', function (line) {
linesCount++; // on each linebreak, add +1 to 'linesCount'
1)
rl.on('close', function () {
console.log(linesCount); // print the result when the 'close' event is called

)i

Usage:

node app

Reading afile line by line

app.Js

const readline = require('readline');
const fs = require('fs');

var file = 'path.to.file';

var rl = readline.createlInterface ({
input: fs.createReadStream(file),
output: process.stdout,

https://riptutorial.com/ 127

terminal: false

}) i

rl.on('line', function (line) {
console.log(line) // print the content of the line on each linebreak

}) i

Usage:
node app

Read Filesystem 1/O online: https://riptutorial.com/node-js/topic/489/filesystem-i-o

https://riptutorial.com/ 128

https://riptutorial.com/node-js/topic/489/filesystem-i-o

C_hapter 34. Getting started with Nodes
profiling

Introduction

The aim of this post is to get started with profiling nodejs application and how to make sense of
this results to capture a bug or a memory leak. A nodejs running application is nothing but a v8
engine processes which is in many terms similar to a website running on a browser and we can
basically capture all the metrics which are related to a website process for a node application.

The tool of my preference is chrome devtools or chrome inspector coupled with the node-
inspector.

Remarks

The node-inspector fails to attach to the node bebug process sometimes in which case you will not
be able to get the debug breakpoint in devtools .Try refreshing the devtools tab multiple times and
wait for some seconds to see if it is in debug mode.

If not restart the node-inspector from command line.

Examples

Profiling a simple node application

Step 1 : Install the node-inspector package using npm globally on you machine
$ npm install -g node-inspector

Step 2 : Start the node-inspector server

$ node-inspector

Step 3 : Start debugging your node application

$ node —--debug-brk your/short/node/script.js

Step 4 : Open http://127.0.0.1:8080/?port=5858 in the Chrome browser. And you will see a chrom-
dev tools interface with your nodejs application source code in left panel . And since we have used
debug break option while debugging the application the code execution will stop at the first line of
code.

https://riptutorial.com/ 129

http://127.0.0.1:8080/?port=5858

@0 e @Nade Inspector - file:)fjUs: »

~ = [127.0.0.1:8080/?ws=127.0.0.1:80808&port=5858
Q, Network | Sources | Profiles Console

|50urces | Content scri... Snippets |E|| app.js X | VM94 app.js B0 I, 7~ ¥
* () (core modules) 1 {function {exports, require, module, _ filename, __dirname) | ® Watch Expre
L 2| * File z app.js v Call Stack
v file:// 3| * Description : Basic express application.
Tl:lUﬁers!allen!Prn_iects.,fblog,fnuc 4|h-'* [anonymous
5|par express = require{'express');
’Dnﬂde—mﬂdmes 6|var path = require('path'); Module._con
» Jroutes 7
H:Isewice:i g var routes = reqguire('./routes/index'); Module._ext
= app.js 18| var app = express(); Madule.load
11
12|/ wview engine setup Module._loal
13 app.set('views", path.join{__dirname, “views'));
14| app.set('view engine’, 'hjs'); Module.runh
E app.uselexpress,static(path.join(__dirname, ‘public®})); listonTimeo
17 | app.use('/', routes); ¥ Scope Variat
18 ¥ Local
19 // catch 484 and forward to error handler . |
20 app.use{function{req, res, next) { —dirname
21 war err = new Error{'Not Found®); —filenam
— - 10 app: unde
. {} Line 5, Column 1 B EXpOrts: |

Step 5 : This is the easy part where you switch to the profiling tab and start profiling the
application . In case you want get the profile for a particular method or flow make sure the code
execution is break-pointed just before that piece of code is executed.

LI @Node Inspector - file:/fUs: ®

)

&« - C [4127.0.0.1:8080/?ws=127.0.0.1:8080&port=5858
Q, Network Sources | Profiles| Console

Select profiling type

'. Collect JavaScript CPU Profile
CPU profiles show where the execution time is spent in your page's JavaScript ful

() Take Heap Snapshot
Heap snapshot profiles show memory distribution among your page’s JavaScript
related DOM nodes.

Record Heap Allocations
Record JavaScript object allocations over time. Use this profile type to isolate me

-§! -*I Start | I Load |

Step 6 : Once you have recorded your CPU profile or heap dump/snapshot or heap allocation you
can then view the results in the same window or save them to local drive for later analysis or

https://riptutorial.com/ 130

https://i.stack.imgur.com/jzeJH.png
https://i.stack.imgur.com/QKnPh.png

comparison with other profiles.

You can use this articles to know how to read the profiles :
* Reading CPU Profiles
e Chrome CPU profiler and Heap profiler

Read Getting started with Nodes profiling online: https://riptutorial.com/node-js/topic/9347/getting-
started-with-nodes-profiling

https://riptutorial.com/ 131

http://commandlinefanatic.com/cgi-bin/showarticle.cgi?article=art037
https://developer.chrome.com/devtools/docs/profiles
https://riptutorial.com/node-js/topic/9347/getting-started-with-nodes-profiling
https://riptutorial.com/node-js/topic/9347/getting-started-with-nodes-profiling

C_hapter 35: Good coding style

Remarks

| would recommend to a beginner to start with this style of coding. And if anybody can suggest a
better way(p.s i opted this technique and is working efficiently for me in an app used by more then

100k users), feel free for any suggestions. TIA.

Examples

Basic program for signup

Through this example, it will be explained to divide the node.js code into different
modules/folders for better undertandibility. Following this technique makes it easier for other
developers to understand the code as he can directly refer to concerned file instead of going

through whole code. The major use is when you are working in a team and a new developer joins

at a later stage, it will get easier for him to gel up with the code itself.

index.js :- This file will manage server connection.

//Import Libraries

var express = require ('express'),
session = require ('express-session'),
mongoose = require ('mongoose'),
request = require ('request');

//Import custom modules
var userRoutes = require('./app/routes/userRoutes');
var config = require('./app/config/config');

//Connect to Mongo DB
mongoose.connect (config.getDBString()) ;

//Create a new Express application and Configure it
var app = express();

//Configure Routes
app.use (config.API_PATH, userRoutes());

//Start the server
app.listen(config.PORT) ;

console.log('Server started at - '+ config.URL+ ":" +config.PORT);

config.js:-This file will manage all the configuration related params which will remain same

throughout.

var config = {

VERSION: 1,

BUILD: 1,

URL: 'http://127.0.0.1"',

https://riptutorial.com/

132

API_PATH : '/api',

PORT : process.env.PORT || 8080,
DB : {
//MongoDB configuration
HOST : 'localhost',
PORT : '27017°',
DATABASE : 'db'
by
/*
* Get DB Connection String for connecting to MongoDB database
v

getDBString : function () {
return 'mongodb://'+ this.DB.HOST +':'+ this.DB.PORT +'/'+ this.DB.DATABASE;
b

/*
* Get the http URL
=/
getHTTPUrl : function () {
return 'http://' + this.URL + ":" + this.PORT;

module.exports = config;

user.js:- Model file where schema is defined

var mongoose = require ('mongoose');
var Schema = mongoose.Schema;

//Schema for User
var UserSchema = new Schema ({
name: {
type: String,
// required: true
by
email: {
type: String
by
password: {
type: String,
//required: true
by
dob: {
type: Date,
//required: true
by
gender: {
type: String, // Male/Female
// required: true
}
}) i

//Define the model for User
var User;
if (mongoose.models.User)
User = mongoose.model ('User');
else

User = mongoose.model ('User', UserSchema);

https://riptutorial.com/ 133

//Export the User Model
module.exports = User;

userController:- This file contains the function for user signUp

var User = require('../models/user');
var crypto = require('crypto');

//Controller for User
var UserController = {

//Create a User
create: function(req, res) {

var repassword = reqg.body.repassword;

var password = req.body.password;

var userEmail = reqg.body.email;

//Check if the email address already exists

User.find({"email": userEmail},
if (usr.length > 0) {
//Email Exists

res.json ('Email already
return;

}

else

{
//New Email

function (err,

exists');

//Check for same passwords

if (password != repassword) {

usr) {

res.json ('Passwords does not match');

return;

//Generate Password hash based on shal

var shasum = crypto.createHash('shal');

shasum.update (req.body.password) ;

var passwordHash = shasum.digest ('hex');

//Create User

var user = new User ();
user.name = reg.body.name;
user.email = reqg.body.email;

user.password = passwordHash;

user.dob = Date.parse (reqg.body.dob)

user.gender = reqg.body.gender;

//Validate the User

user.validate (function (err) {

if (err) {
res.json(err) ;
return;

}else(

//Finally save the User

user.save (function (err) {

if (err)

{

res.json(err) ;

return;

nw .,
’

https://riptutorial.com/

134

}

//Remove Password before sending User details

user.password = undefined;
res.json (user) ;
return;

module.exports = UserController;

userRoutes.js:- This the route for userController

var express = require ('express');
var UserController = require('../controllers/userController');

//Routes for User
var UserRoutes = function (app)
{

var router = express.Router();

router.route ('/users')
.post (UserController.create);

return router;

module.exports = UserRoutes;

The above example may appear too big but if a beginner at node.js with a little blend of express

knowledge tries to go through this will find it easy and really helpful.

Read Good coding style online: https://riptutorial.com/node-js/topic/6489/good-coding-style

https://riptutorial.com/

135

https://riptutorial.com/node-js/topic/6489/good-coding-style

C_hapter 36: Graceful Shutdown

Examples

Graceful Shutdown - SIGTERM

By using server.close() and process.exit(), we can catch the server exception and do a graceful
shutdown.

var http = require('http');

var server = http.createServer (function (req, res) {

setTimeout (function () { //simulate a long request
res.writeHead (200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}, 4000);

}).1listen (9090, function (err) {
console.log('listening http://localhost:9090/"');

console.log('pid is ' + process.pid);
}) i
process.on ('SIGTERM', function () {
server.close (function () {

process.exit (0);
)i
)i

Read Graceful Shutdown online: https://riptutorial.com/node-js/topic/5996/graceful-shutdown

https://riptutorial.com/ 136

https://riptutorial.com/node-js/topic/5996/graceful-shutdown

C_hapter 37: grunt

Remarks

Further reading:

The Installing grunt guide has detailed information about installing specific, production or in-
development, versions of Grunt and grunt-cli.

The Configuring Tasks guide has an in-depth explanation on how to configure tasks, targets,
options and files inside the Gruntfile, along with an explanation of templates, globbing patterns and
importing external data.

The Creating Tasks guide lists the differences between the types of Grunt tasks and shows a
number of sample tasks and configurations.

Examples

Introduction To GruntJs

Grunt is a JavaScript Task Runner, used for automation of repetitive tasks like minification,
compilation, unit testing, linting, etc.

In order to get started, you'll want to install Grunt's command line interface (CLI) globally.
npm install -g grunt-cli

Preparing a new Grunt project: A typical setup will involve adding two files to your project:
package.json and the Gruntfile.

package.json: This file is used by npm to store metadata for projects published as npm modules.
You will list grunt and the Grunt plugins your project needs as devDependencies in this file.

Gruntfile: This file is named Gruntfile.js and is used to configure or define tasks and load Grunt
plugins.

Example package. json:

{

"name": "my-project-name",

"version": "0.1.0",

"devDependencies": {
"grunt": "~0.4.5",
"grunt-contrib-jshint": "~0.10.0",
"grunt-contrib-nodeunit": "~0.4.1",
"grunt-contrib-uglify": "~0.5.0"

https://riptutorial.com/ 137

http://gruntjs.com/installing-grunt
http://gruntjs.com/configuring-tasks
http://gruntjs.com/creating-tasks

Example gruntfile:

module.exports = function (grunt) {
// Project configuration.
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),
uglify: {
options: {
banner: '/*! <%= pkg.name %> <%= grunt.template.today ("yyyy-mm-dd") %> */\n'
by
build: {
src: 'src/<%= pkg.name %>.js',
dest: 'build/<%= pkg.name %>.min.js’'

)i

// Load the plugin that provides the "uglify" task.
grunt .loadNpmTasks ('grunt-contrib-uglify"');

// Default task(s).
grunt.registerTask ('default', ['uglify']);

}i

Installing gruntplugins

Adding dependcy

To use a gruntplugin, you first need to add it as a dependency to your project. Let's use the jshint
plugin as an example.

npm install grunt-contrib-jshint --save-dev

The --save-dev Option is used to add the plugin in the package. json, this way the plugin is always
installed after a npm install.

Loading the plugin
You can load your plugin in the gruntfile file using 10adnpmrasks.

grunt.loadNpmTasks ('grunt-contrib-jshint');

Configuring the task

You configure the task in the gruntfile adding a property called ;snint to the object passed to

grunt.initConfig.

grunt.initConfig({
jshint: {
all: ['Gruntfile.js', 'lib/**/*.js', 'test/**/*.js']

https://riptutorial.com/ 138

P

Don't forget you can have other properties for other plugins you are using.
Running the task

To just run the task with the plugin you can use the command line.
grunt jshint

Or you can add jshint to another task.
grunt.registerTask ('default', ['jshint']);

The default task runs with the grunt command in the terminal without any options.

Read grunt online: https://riptutorial.com/node-js/topic/6059/grunt

https://riptutorial.com/ 139

https://riptutorial.com/node-js/topic/6059/grunt

C_hapter 38: Hack

Examples

Add new extensions to require()
You can add new extensions to require () by extending require.extensions.

For a XML example:

// Add .xml for require ()

require.extensions['.xml'] =
const fs = require('fs')
const xml2ijs = require('xml2js')

(module, filename) => {

module.exports = (callback) => {
// Read required file.
fs.readFile(filename, 'utf8', (err, data) => {
if (err) {
callback (err)
return
}
// Parse it.
xml2js.parseString(data, (err, result) => {
callback (null, result)

})

If the content of he11o.xm1 is following:

<?xml version="1.0" encoding="UTF-8"7?>
<foo>

<bar>baz</bar>

<qux />
</foo>

You can read and parse it through require ():

require ('./hello') ((err, =ml)
if (err)
throw err;
console.log(err) ;

1)

It prints { foo: { bar: ['baz' 1, qux: ['' 1 } }.

Read Hack online: https://riptutorial.com/node-js/topic/6645/hack

https://riptutorial.com/ 140

https://riptutorial.com/node-js/topic/6645/hack

C_hapter 39: Handling POST request In
Node.|s

Remarks

Node.js uses streams to handle incoming data.

Quoting from the docs,

A stream is an abstract interface for working with streaming data in Node.js. The
stream module provides a base API that makes it easy to build objects that implement
the stream interface.

To handle in request body of a POST request, use the request 0Object, which is a readable stream.
Data streams are emitted as data events on the request object.

request.on('data', chunk => {
buffer += chunk;
1)
request.on('end', () => {
// POST request body is now available as ‘buffer’
1)

Simply create an empty buffer string and append the buffer data as it received via data events.

NOTE

1. Buffer data received on data events is of type Buffer

2. Create new buffer string to collect buffered data from data events for every request i.e.
create nurrer String inside the request handler.

Examples

Sample node.js server that just handles POST requests

'use strict';
const http = require('http');

const PORT = 8080;
const server = http.createServer ((request, response) => {
let buffer = '';
request.on('data', chunk => {
buffer += chunk;
1)
request.on('end', () => {
const responseString = "Received string ${buffer}’;
console.log (' Responding with: ${responseString});

https://riptutorial.com/ 141

https://nodejs.org/api/stream.html#stream_stream
https://nodejs.org/api/buffer.html

response.writeHead (200, "Content-Type: text/plain");
response.end (responseString) ;

1)
}).listen (PORT, () => {
console.log(Listening on ${PORT}");

}) i

Read Handling POST request in Node.js online: https://riptutorial.com/node-js/topic/5676/handling-
post-request-in-node-js

https://riptutorial.com/ 142

https://riptutorial.com/node-js/topic/5676/handling-post-request-in-node-js
https://riptutorial.com/node-js/topic/5676/handling-post-request-in-node-js

C_hapter 40: How modules are loaded

Examples

Global Mode

If you installed Node using the default directory, while in the global mode, NPM installs packages
INtO /usr/local/lib/node_modules. If you type the following in the shell, NPM will search for,
download, and install the latest version of the package named sax inside the directory

/usr/local/lib/node_modules/express.

$ npm install —-g express

Make sure that you have sufficient access rights to the folder. These modules will be available for
all node process which will be running in that machine

In local mode installation. Npm will down load and install modules in the current working folders by
creating a new folder called node_modules for example if you are in /home/user/apps/my_app & NEW
folder will be created called node_modules /home/user/apps/my_app/node_modules if its not already exist

Loading modules

When we refer the module in the code, node first looks up the node_moduie folder inside the
referenced folder in required statement If the module name is not relative and is not a core
module, Node will try to find it inside the node_moduies folder in the current directory. For instance, if
you do the following, Node will try to look for the file . /node_modules/myModule. js:

var myModule = require ('myModule.js');

If Node fails to find the file, it will look inside the parent folder called .. /node_modules/myModule. js. If
it fails again, it will try the parent folder and keep descending until it reaches the root or finds the
required module.

You can also omit the . 5s extension if you like to, in which case node will append the . js extension
and will search for the file.

Loading a Folder Module

You can use the path for a folder to load a module like this:
var myModule = require('./myModuleDir');

If you do so, Node will search inside that folder. Node will presume this folder is a package and will
try to look for a package definition. That package definition should be a file named package. json. If

https://riptutorial.com/ 143

that folder does not contain a package definition file named package. json, the package entry point
will assume the default value of index. 55, and Node will ook, in this case, for a file under the path

./myModuleDir/index. js.
The last resort if module is not found in any of the folders is the global module installation folder.

Read How modules are loaded online: https://riptutorial.com/node-js/topic/7738/how-modules-are-
loaded

https://riptutorial.com/ 144

https://riptutorial.com/node-js/topic/7738/how-modules-are-loaded
https://riptutorial.com/node-js/topic/7738/how-modules-are-loaded

C_hapter 41: http

Examples

http server

A basic example of HTTP server.

write following code in http_server.js file:

var http = require('http');
var httpPort = 80;
http.createServer (handler) .listen (httpPort, start_callback);

function handler (req, res) {

var clientIP = reqg.connection.remoteAddress;

var connectUsing = req.connection.encrypted ? 'SSL' : 'HTTP';

console.log('Request received: '+ connectUsing + ' ' + reg.method + ' ' + req.url);
console.log('Client IP: ' + clientIP);

res.writeHead (200, "OK", {'Content-Type': 'text/plain'});

res.write ("OK") ;

res.end();

return;

function start_callback () {
console.log('Start HTTP on port ' + httpPort)

then from your http_server.js location run this command:
node http_server.js
you should see this result:
> Start HTTP on port 80
now you need to test your server, you need to open your internet browser and navigate to this url:
http://127.0.0.1:80
if your machine running Linux server you can test it like this:
curl 127.0.0.1:80

you should see following result:

https://riptutorial.com/ 145

ok

in your console, that running the app, you will see this results:

> Request received: HTTP GET /
> Client IP: ::ffff:127.0.0.1

http client

a basic example for http client:

write the follwing code in http_client.js file:

var http = require('http');

var options = {
hostname: '127.0.0.1"',
port: 80,
path: '/',

method: 'GET'
bi

var req = http.request (options, function(res) {
console.log ('STATUS: ' + res.statusCode);
console.log ('HEADERS: ' + JSON.stringify(res.headers));
res.setEncoding ('utf8"');
res.on('data', function (chunk) {
console.log('Response: ' + chunk);

res.on('end', function (chunk) {
console.log('Response ENDED') ;

reqg.on('error', function(e) {
console.log('problem with request: ' + e.message);

reqg.end() ;
then from your http_client.js location run this command:

node http_client.js

you should see this result:

> STATUS: 200

> HEADERS: {"content-type":"text/plain","date":"Thu, 21 Jul 2016 11:27:17
GMT", "connection":"close", "transfer-encoding":"chunked"}

> Response: OK

> Response ENDED

note: this example depend on http server example.

https://riptutorial.com/ 146

Read http online: https://riptutorial.com/node-js/topic/2973/http

https://riptutorial.com/ 147

https://riptutorial.com/node-js/topic/2973/http

C_hapter 42: Installing Node.|s

Examples

Install Node.js on Ubuntu

Using the apt package manager

sudo apt-get update

sudo apt-get install nodejs

sudo apt-get install npm

sudo 1n -s /usr/bin/nodejs /usr/bin/node

the node & npm versions in apt are outdated. This is how you can update them:
sudo npm install -g npm

sudo npm install -g n
sudo n stable # (or lts, or a specific version)

Eng the latest of specific version (e.g. LTS
6.x) directly from nodesource

curl -sL https://deb.nodesource.com/setup_6.x | sudo —-E bash -
apt—-get install -y nodeijs

Also, for the right way to install global npm modules, set the personal directory for them
(eliminates the need for sudo and avoids EACCES errors):

mkdir ~/.npm-global

echo "export PATH=~/.npm-global/bin:$PATH" >> ~/.profile
source ~/.profile

npm config set prefix '~/.npm-global'

Installing Node.js on Windows

Standard installation
All Node.js binaries, installers, and source files can be downloaded here.

You can download just the node.exe runtime or use the Windows installer (.ms1), which will also
install npm, the recommended package manager for Node.js, and configure paths.

Installation by package manager

You can also install by package manager Chocolatey (Software Management Automation).

https://riptutorial.com/ 148

https://nodejs.org/en/download/
https://chocolatey.org/

choco install nodejs.install
More information about current version, you can find in the choco repository here.

Using Node Version Manager (nvm)

Node Version Manager, otherwise known as nvm, is a bash script that simplifies the management
of multiple Node.js versions.

To install nvm, use the provided install script:

$ curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

For windows there is a nvm-windows package with an installer. This GithHub page has the details
for installing and using the nvm-windows package.

After installing nvm, run "nvm on" from command line. This enables nvm to control the node
versions.

Note: You may need to restart your terminal for it to recognize the newly installed »nvm command.

Then install the latest Node version:
$ nvm install node
You can also install a specific Node version, by passing the major, minor, and/or patch versions:

$ nvm install 6
$ nvm install 4.2

To list the versions available for install:

S nvm ls-remote

You can then switch versions by passing the version the same way you do when installing:
$ nvm use 5

You can set a specific version of Node that you installed to be the default version by entering:

$ nvm alias default 4.2

To display a list of Node versions that are installed on your machine, enter:

S nvm 1ls

To use project-specific node versions, you can save the version in .nvmrc file. This way, starting to

https://riptutorial.com/ 149

https://chocolatey.org/packages/nodejs.install
https://github.com/creationix/nvm
https://github.com/coreybutler/nvm-windows

work with another project will be less error-prone after fetching it from its repository.

$ echo "4.2" > .nvmrc

$ nvm use

Found '/path/to/project/.nvmrc' with version <4.2>
Now using node v4.2 (npm v3.7.3)

When Node is installed via nvm we don't have to use sudo to install global packages since they are

installed in home folder. Thus npm i -g http-server WOrks without any permission errors.

Install Node.js From Source with APT package manager
Prerequisites

sudo apt-get install build-essential
sudo apt-get install python

[optional]
sudo apt-get install git

Get source and build

cd ~
git clone https://github.com/nodejs/node.git

OR For the latest LTS Node.js version 6.10.2

cd ~
wget https://nodejs.org/dist/v6.3.0/node-v6.10.2.tar.gz
tar -xzvf node-v6.10.2.tar.gz

Change to the source directory such as in cd ~/node-v6.10.2

./configure
make
sudo make install

Installing Node.js on Mac using package manager

Homebrew

You can install Node.js using the Homebrew package manager.

Start by updating brew:

brew update

You may need to change permissions or paths. It's best to run this before proceeding:

https://riptutorial.com/

150

http://brew.sh

brew doctor

Next you can install Node.js by running:

brew install node

Once Node.js is installed, you can validate the version installed by running:

node -v

Macports

You can also install node.js through Macports.

First update it to make sure the lastest packages are referenced:

sudo port selfupdate

Then install nodejs and npm

sudo port install nodejs npm

You can now run node through CLI directly by invoking node. Also, you can check your current
node version with

node -v

Installing using MacOS X Installer

You can find the installers on Node.|s download page. Normally, Node.js recommends two
versions of Node, the LTS version (long term support) and the current version (latest release). If
you are new to Node, just go for the LTS and then click the macintosh 1nstaller button to download
the package.

If you want to find other NodeJS releases, go here, choose your release then click download.
From the download page, look for a file with extension .pkg.

Once you downloaded the file (with extension .pxg ofcourse), double click it to install. The installer
packed with node. 3s and npm, by default, the package will install both but you can customize which
one to install by clicking the customize button in the tnstaiiation Type Step. Other than that, just
follow the installation instructions, it's pretty straightforward.

Check iIf Node is installed

https://riptutorial.com/ 151

https://www.macports.org/
https://nodejs.org/en/download/
https://nodejs.org/en/download/releases/

Open termina1 (if you don't know how to open your terminal, look at this wikihow). In the terminal
type node --version then enter. Your terminal will look like this if Node is installed:

$ node --version
v7.2.1

The v7.2.1 is your Node.js version, if you receive the message command not found: node iNstead of
that, then it's mean there is a problem with your installation.

Installing Node.js on Raspberry PI
To install v6.x update the packages

curl -sL https://deb.nodesource.com/setup_6.x | sudo —-E bash -

Using the apt package manager

sudo apt-get install -y nodeijs

Installing with Node Version Manager under Fish Shell with Oh My Fish!

Node Version Manager (nvm) greatly simplifies the management of Node.js versions, their
installation, and removes the need for sudo Wwhen dealing with packages (e.g. npm insta1ll ...).
Fish Shell (£1sn) "is a smart and user-friendly command line shell for OS X, Linux, and the rest of
the family" that is a popular alternative among programmers to common shells such as basn.
Lastly, Oh My Fish (omf) allows for customizing and installing packages within Fish shell.

This guide assumes you are already using Fish as your shell.

Install nvm

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.4/install.sh | bash

Install Oh My Fish

curl -L https://github.com/oh-my-fish/oh-my-fish/raw/master/bin/install | fish
(Note: You will be prompted to restart your terminal at this point. Go ahead and do so now.)
Install plugin-nvm for Oh My Fish

We will install plugin-nvm via Oh My Fish to expose nvm capabilities within the Fish shell:

omf install nvm

Install Node.js with Node Version Manager

You are now ready to use nvm. YOu may install and use the version of Node.js of your liking. Some
examples:

https://riptutorial.com/ 152

http://www.wikihow.com/Get-to-the-Command-Line-on-a-Mac
https://github.com/creationix/nvm
https://fishshell.com/
https://github.com/oh-my-fish/oh-my-fish
https://github.com/derekstavis/plugin-nvm

Install the most recent Node version: nvm install node
Install 6.3.1 specifically: nvm instal1l 6.3.1

List installed verisons: nvm 1s

Switch to a previously installed 4.3.1: nvn use 4.3.1

Final Notes

Remember again, that we no longer need sudo When dealing with Node.js using this method! Node
versions, packages, and so on are installed in your home directory.

Install Node.js from source on Centos, RHEL and Fedora
Prerequisites

o git

* clang and clang++ 3.4" Or gcc and g++ 4.8"

* Python 2.6 or 2.7
* GNU Make 3.81"

Get source

Node.js v6.x LTS

git clone -b v6.x https://github.com/nodejs/node.git

Node.js v7.Xx

git clone -b v7.x https://github.com/nodejs/node.git

Build

cd node
./configure

make —-3jX

su —-c make install

X - the number of processor cores, greatly speeds up the build

Cleanup [Optional]

cd
rm -rf node

Installing Node.js with n
First, there is a really nice wrapper for setting up » on your system. Just run:

curl -L https://git.io/n-install | bash

https://riptutorial.com/ 153

to install n. Then install binaries in a variety of ways:

latest

n latest

stable

n stable

Its

n lts

Any other version

n <version>

€.9.n 4.4.7

If this version is already installed, this command will activate that version.
Switching versions

n by itself will produce a selection list of installed binaries. Use up and down to find the one you
want and Enter to activate it.

Read Installing Node.js online: https://riptutorial.com/node-js/topic/1294/installing-node-js

https://riptutorial.com/ 154

https://riptutorial.com/node-js/topic/1294/installing-node-js

C_hapter 43: Interacting with Console

Syntax
» console.log([data][, ...])
» console.error([data][, ...])

» console.time(label)
» console.timeEnd(label)

Examples

Logging

Console Module

Similar to the browser environment of JavaScript node.js provides a console module which
provides simple logging and debugging possibilities.

The most important methods provided by the console module are console.1og, console.error and
console.time. But there are several others like console.info.

console.log

The parameters will be printed to the standard output (stdout) with a new line.

console.log('Hello World');

» console.log('Hello World")

Hello World

console.error

The parameters will be printed to the standard error (stderr) with a new line.
console.error ('Oh, sorry, there is an error.');

> console.error("Oh, sorry, error");

oh, sorry, error

console.time, console.timeEnd

console.time Starts a timer with an unique lable that can be used to compute the duration of an
operation. When you call conso1e.timernd With the same label, the timer stops and it prints the
elapsed time in milliseconds to stdout.

https://riptutorial.com/ 155

http://i.stack.imgur.com/ebKzm.png
http://i.stack.imgur.com/tYA8Q.png

> console.time("label");

= console.timeEnd (" 1abel");
Tabel: 9297.320ms

It is possible to use the process module to write directly into the standard output of the console.
Therefore it exists the method process.stdout .write. Unlike console.10g this method does not add a
new line before your output.

So in the following example the method is called two times, but no new line is added in between
their outputs.

out.write(456");

One can use terminal (control) codes to issue specific commands like switching colors or
positioning the cursor.

[31mThis will be red");

General

Reset \033[0m
Hicolor \033[1m
Underline \033(4m

Inverse \033[7m

Font Colors

Black \033[30m
Red \033[31m
Green \033[32m

https://riptutorial.com/ 156

http://i.stack.imgur.com/lAryO.png
http://i.stack.imgur.com/DlAXq.png
http://i.stack.imgur.com/EfFXm.png

Yellow \033[33m
Blue \033[34m
Magenta \033[35m
Cyan \033[36m

White \033[37m

Background Colors

Black \033[40m
Red \033[41m
Green \033[42m

Yellow \033[43m
Blue \033[44m
Magenta \033[45m
Cyan \033[46m

White \033[47m

Read Interacting with Console online: https://riptutorial.com/node-js/topic/5935/interacting-with-
console

https://riptutorial.com/ 157

https://riptutorial.com/node-js/topic/5935/interacting-with-console
https://riptutorial.com/node-js/topic/5935/interacting-with-console

Examples

Use PM2 as a process manager

PM2 lets you run your nodejs scripts forever. In the event that your application crashes, PM2 will
also restart it for you.

Install PM2 globally to manager your nodejs instances

npm install pm2 -g

Navigate to the directory in which your nodejs script resides and run the following command each
time you want to start a nodejs instance to be monitored by pm2:

pm2 start server.js —-name "appl"

Useful commands for monitoring the process

1. List all nodejs instances managed by pm2

pm2 list

[tknew: ~/Unitech/pm2]
Process listing

O e N 0 T

2. Stop a particular nodejs instance

pm2 stop <instance named>

3. Delete a particular nodejs instance

https://riptutorial.com/ 158

http://i.stack.imgur.com/q0X0u.png

pm2 delete <instance name>
4. Restart a particular nodejs instance
pm2 restart <instance name>

5. Monitoring all nodejs instances

pm2 monit

monitoring :

web-ui
[5] [cluster_mode]

® check-online [0%
[4] [fork_mode] 11 .258 MB

@ interface-api 11T
[3] [cluster_mode]

@ interface-api (HEERRRRN
[2] [cluster_mode]

e interface-api FLLERELERTLLY
[1] [cluster_mode]

@ interface-api 11111
[0] [cluster_mode]

6. Stop pm2

pm2 kill

7. As opposed to restart, which kills and restarts the process, reload achieves a 0-second-
downtime reload

pm2 reload <instance name>

8. View logs

pm2 logs <instance_name>

Running and stopping a Forever daemon
To start the process:

$ forever start index.js

warn: —-minUptime not set. Defaulting to: 1000ms

warn: —-—spinSleepTime not set. Your script will exit if it does not stay up for at least
1000ms

info: Forever processing file: index.js

List running Forever instances:

https://riptutorial.com/ 159

http://i.stack.imgur.com/y2LKx.png

S forever list

info: Forever processes running

|data: | index | uid | command | script | forever pid]|id | logfile

|uptime |

[=== | —————— | ————= | ———— [=mmmm [== [=== |-
| |

|data: | [0] | f4Kt | /usr/bin/nodejs | src/index.js|2131 |

2146|/root/.forever/f4Kt.log | 0:0:0:11.485 |

Stop the first process:

$ forever stop 0
$ forever stop 2146
$ forever stop —--uid f4Kt

$ forever stop —--pidFile 2131

Continuous running with nohup

An alternative to forever on Linux is nohup.
To start a nohup instance

1. cd to the location of app. s or wwwfolder
2. run nohup nodejs app.js &

To kill the process

1. run ps -efigrep nodejs
2.%ill -9 <the process number>

Process Mangement with Forever
Installation

npm install forever -g
cd /node/project/directory

Usages
forever start app.Js

Read Keep a node application constantly running online: https://riptutorial.com/node-
Jjs/topic/2820/keep-a-node-application-constantly-running

https://riptutorial.com/ 160

https://riptutorial.com/node-js/topic/2820/keep-a-node-application-constantly-running
https://riptutorial.com/node-js/topic/2820/keep-a-node-application-constantly-running

C_hapter 45: Koa Framework v2

Examples
Hello World example

const Koa = require('koa')

const app = new Koa ()

app.use (async ctx => {
ctx.body = 'Hello World'

})

app.listen (8080)

Handling errors using middleware

app.use (async (ctx, next) => {
try {
await next () // attempt to invoke the next middleware downstream

} catch (err) {
handleError (err, ctx) // define your own error handling function
}
})

Read Koa Framework v2 online: https://riptutorial.com/node-js/topic/6730/koa-framework-v2

https://riptutorial.com/ 161

https://riptutorial.com/node-js/topic/6730/koa-framework-v2

C_hapter 46: Lodash

Introduction

Lodash is a handy JavaScript utility library.
Examples

Filter a collection

The code snippet below shows the various ways you can filter on an array of objects using lodash.

let lodash = require('lodash');
var countries = [
{"key": "DE", "name": "Deutschland", "active": false},
{"key": "ZA", "name": "South Africa", "active": true}
1i
var filteredByFunction = lodash.filter (countries, function (country) {
return country.key === "DE";
1)
// => [{"key": "DE", "name": "Deutschland"}];
var filteredByObjectProperties = lodash.filter (countries, { "key": "DE" });
// => [{"key": "DE", "name": "Deutschland"}];
var filteredByProperties = lodash.filter (countries, ["key", "ZA"]);
// => [{"key": "ZA", "name": "South Africa"}];
var filteredByProperty = lodash.filter (countries, "active");
// => [{"key": "ZA", "name": "South Africa"}];

Read Lodash online: https://riptutorial.com/node-js/topic/9161/lodash

https://riptutorial.com/ 162

https://riptutorial.com/node-js/topic/9161/lodash

C_hapter 47. Loopback - REST Based

connector

Introduction

Rest based connectors and how to deal with them. We all know Loopback does not provide

elegance to REST based connections

Examples
Adding a web based connector

//This example gets the response from iTunes

{

"rest": {
"name": "rest",
"connector": "rest",

"debug": true,

"options": {
"useQuerystring": true,
"timeout": 10000,

"headers": {
"accepts": "application/json",
"content-type": "application/json"
}
by
"operations": [

{
"template": {
"method": "GET",

"url": "https://itunes.apple.com/search",

"query": {
"term": "{keyword}",
"country": "{country=IN}",
"media": "{itemType=music}",
"limit": "{limit=10}",
"explicit": "false"
}
}y
"functions": {
"search": [
"keyword",
"country",
"itemType",
"limit"

}
by
{
"template": {

"method": "GET",
"url": "https://itunes.apple.com/lookup",
"query": {

https://riptutorial.com/

163

"id": "{id}"
}
bo
"functions": {
"findById": [
"id"

Read Loopback - REST Based connector online: https://riptutorial.com/node-
Jjs/topic/9234/loopback---rest-based-connector

https://riptutorial.com/ 164

https://riptutorial.com/node-js/topic/9234/loopback---rest-based-connector
https://riptutorial.com/node-js/topic/9234/loopback---rest-based-connector

C_hapter 48: metalsmith

Examples

Build a simple blog

Assuming that you have node and npm installed and available, create a project folder with a valid
package. json. Install the necessary dependencies:

npm install --save-dev metalsmith metalsmith-in-place handlebars

Create a file called nuiid. js at the root of your project folder, containing the following:

var metalsmith = require('metalsmith');
var handlebars = require ('handlebars');
var inPlace = require('metalsmith-in-place');

Metalsmith (___dirname)
.use (inPlace ('handlebars'))
.build(function(err) {
if (err) throw err;
console.log('Build finished!');

}) i

Create a folder called src at the root of your project folder. Create index.nhtml in src, cONtaining the
following:

title: My awesome blog

<hl>{{ title }}</hl>

Running node build.js Will now build all files in src. After running this command, you'll have
index.html IN your build folder, with the following contents:

<hl>My awesome blog</hl>

Read metalsmith online: https://riptutorial.com/node-js/topic/6111/metalsmith

https://riptutorial.com/ 165

https://riptutorial.com/node-js/topic/6111/metalsmith

Syntax

 db.collection.insertOne(document, options(w, wtimeout, j, serializeFuntions,
forceServerObjectld, bypassDocumentValidation), callback)

 db.collection.insertMany([documents], options(w, wtimeout, j, serializeFuntions,
forceServerObijectld, bypassDocumentValidation), callback)

* db.collection.find(query)

 db.collection.updateOne(filter, update, options(upsert, w, wtimeout, j,
bypassDocumentValidation), callback)

 db.collection.updateMany(filter, update, options(upsert, w, wtimeout, j), callback)

 db.collection.deleteOne(filter, options(upsert, w, wtimeout, j), callback)

 db.collection.deleteMany(filter, options(upsert, w, wtimeout, j), callback)

Parameters

document
documents
query
filter
callback
options

w
wtimeout
]

upsert
multi

serializeFunctions

forceServerObjectld

bypassDocumentValidation

A javascript object representing a document

An array of documents

An object defining a search query

An object defining a search query

Function to be called when the operation is done
(optional) Optional settings (default: null)

(optional) The write concern

(optional) The write concern timeout. (default: null)
(optional) Specify a journal write concern (default: false)
(optional) Update operation (default: false)

(optional) Update one/all documents (default: false)
(optional) Serialize functions on any object (default: false)

(optional) Force server to assign _id values instead of driver
(default: false)

(optional) Allow driver to bypass schema validation in MongoDB

https://riptutorial.com/

166

3.2 or higher (default: false)

Examples

Connect to MongoDB
Connect to MongoDB, print 'Connected!" and close the connection.

const MongoClient = require ('mongodb') .MongoClient;
var url = 'mongodb://localhost:27017/test"';

MongoClient.connect (url, function(err, db) { // MongoClient method 'connect'
if (err) throw new Error (err);
console.log("Connected!");
db.close(); // Don't forget to close the connection when you are done

)i

MongoClient method connect ()

MongoClient.connect(url, options, callback)

url string A string specifying the server ip/hostname, port and database
options object (optional) Optional settings (default: null)
callback Function Function to be called when the connection attempt is done

The ca11back function takes two arguments

* err : Error - If an error occurs the err argument will be defined
* db : Object - The MongoDB instance

Insert a document
Insert a document called 'myFirstDocument’ and set 2 properties, greetings and farewell

const MongoClient = require ('mongodb') .MongoClient;
const url = 'mongodb://localhost:27017/test';

MongoClient.connect (url, function (err, db) {
if (err) throw new Error (err);
db.collection('myCollection') .insertOne ({ // Insert method 'insertOne'
"myFirstDocument": {
"greetings": "Hellu",

https://riptutorial.com/ 167

"farewell": "Bye"
}
}, function (err, result) {
if (err) throw new Error (err);
console.log("Inserted a document into the myCollection collection!");
db.close(); // Don't forget to close the connection when you are done
1)
1)

Collection method insertone ()

db.collection(collection).insertOne(document, options, callback)

collection String A string specifying the collection

document object The document to be inserted into the collection

options object (optional) Optional settings (default: null)

callback Function Function to be called when the insert operation is done

The ca11back function takes two arguments

* err: Error - If an error occurs the err argument will be defined
* result : Object - An object containing details about the insert operation

Read a collection
Get all documents in the collection 'myCaollection’ and print them to the console.

const MongoClient = require ('mongodb') .MongoClient;
const url = 'mongodb://localhost:27017/test’;

MongoClient.connect (url, function (err, db) {
if (err) throw new Error (err);
var cursor = db.collection('myCollection').find(); // Read method 'find'
cursor.each (function (err, doc) {
if (err) throw new Error (err);
if (doc != null) {
console.log(doc); // Print all documents
} else {
db.close(); // Don't forget to close the connection when you are done

Collection method £ina()

https://riptutorial.com/

168

db.collection(collection).find()

collection string A string specifying the collection

Update a document
Find a document with the property | greetings: 'mellu' } and change itto { greetings: 'whut?' }

const MongoClient = require ('mongodb') .MongoClient;
const url = 'mongodb://localhost:27017/test';

MongoClient.connect (url, function (err, db) {
if (err) throw new Error (err);
db.collection('myCollection') .updateOne ({ // Update method 'updateOne'
greetings: "Hellu" },
{ $set: { greetings: "Whut?" }},
function (err, result) {
if (err) throw new Error (err);
db.close(); // Don't forget to close the connection when you are done
1)

Collection method updateone ()

db.collection(collection).updateOne(filter, update, options. callback)

filter object Specifies the selection critera

update object Specifies the modifications to apply

options object (optional) Optional settings (default: null)
callback Function Function to be called when the operation is done

The ca11back function takes two arguments

* orr : Error - If an error occurs the err argument will be defined
* db : Object - The MongoDB instance

Delete a document
Delete a document with the property { greetings: 'whut?' }

const MongoClient = require ('mongodb') .MongoClient;

https://riptutorial.com/ 169

const url = 'mongodb://localhost:27017/test';

MongoClient.connect (url, function (err, db) {
if (err) throw new Error (err);
db.collection('myCollection') .deleteOne (// Delete method 'deleteOne'
{ greetings: "Whut?" },
function (err, result) {
if (err) throw new Error (err);
db.close(); // Don't forget to close the connection when you are done

Collection method geileteone ()

db.collection(collection).deleteOne(filter, options, callback)

filter object A document specifying the selection critera
options object (optional) Optional settings (default: null)
callback Function Function to be called when the operation is done

The ca11back function takes two arguments

» orr: Error - If an error occurs the err argument will be defined
* db : Object - The MongoDB instance

Delete multiple documents
Delete ALL documents with a 'farewell’ property set to 'okay'.

const MongoClient = require ('mongodb') .MongoClient;
const url = 'mongodb://localhost:27017/test’;

MongoClient.connect (url, function (err, db) {
if (err) throw new Error (err);
db.collection('myCollection') .deleteMany (// MongoDB delete method 'deleteMany'
{ farewell: "okay" }, // Delete ALL documents with the property 'farewell: okay'
function (err, result) {
if (err) throw new Error (err);
db.close(); // Don't forget to close the connection when you are done

Collection method geileteMany ()

db.collection(collection).deleteMany(filter, options, callback)

https://riptutorial.com/ 170

filter document A document specifying the selection critera
options object (optional) Optional settings (default: null)
callback function Function to be called when the operation is done

The ca11back function takes two arguments

* orr : Error - If an error occurs the err argument will be defined
* db : object - The MongoDB instance

Simple connect

MongoDB.connect ('mongodb://localhost:27017/databaseName’', function (error, database) {
if (error) return console.log(error);
const collection = database.collection('collectionName') ;
collection.insert ({key: 'value'}, function(error, result) ({
console.log(error, result);
1)
1)

Simple connect, using promises

const MongoDB = require ('mongodb');

MongoDB.connect ('mongodb://localhost:27017/databaseName"')

.then (function (database) {
const collection = database.collection('collectionName');
return collection.insert ({key: 'value'});

})

.then (function (result) {
console.log(result);

1)

Read Mongodb integration online: https://riptutorial.com/node-js/topic/5002/mongodb-integration

https://riptutorial.com/ 171

https://riptutorial.com/node-js/topic/5002/mongodb-integration

C_hapter 50: MongoDB Integration for
Node.|s/Express.|s

Introduction

MongoDB is one of the most popular NoSQL databases, thanks to the help of the MEAN stack.
Interfacing with a Mongo database from an Express app is quick and easy, once you understand
the kinda-wonky query syntax. We'll use Mongoose to help us out.

Remarks

More information can be found here: http://mongoosejs.com/docs/guide.html
Examples

Installing MongoDB

npm install —--save mongodb
npm install —--save mongoose //A simple wrapper for ease of development

In your server file (normally named index.js or server.js)

const express = require ('express');

const mongodb = require ('mongodb') ;

const mongoose = require ('mongoose');

const mongoConnectString = 'http://localhost/database name';
mongoose.connect (mongoConnectString, (err) => ({

if (err) {
console.log('Could not connect to the database');
}
1)

Creating a Mongoose Model

const Schema = mongoose.Schema;
const ObjectId = Schema.Types.ObjectId;

const Article = new Schema ({
title: {
type: String,
unique: true,
required: [true, 'Article must have title']
by
author: {
type: ObjectId,
ref: 'User'

https://riptutorial.com/ 172

http://mongoosejs.com/docs/guide.html

}
P

module.exports = mongoose.model ('Article, Article);

Let's dissect this. MongoDB and Mongoose use JSON(actually BSON, but that's irrelevant here)
as the data format. At the top, I've set a few variables to reduce typing.

| create a new schema and assign it to a constant. It's simple JSON, and each attribute is another
Object with properties that help enforce a more consistent schema. Unique forces new instances
being inserted in the database to, obviously, be unique. This is great for preventing a user creating
multiple accounts on a service.

Required is another, declared as an array. The first element is the boolean value, and the second
the error message should the value being inserted or updated fail to exist.

Objectlds are used for relationships between Models. Examples might be 'Users have many
Comments'. Other attributes can be used instead of Objectld. Strings like a username is one
example.

Lastly, exporting the model for use with your API routes provides access to your schema.

Querying your Mongo Database

A simple GET request. Let's assume the Model from the example above is in the file

./db/models/Article. Js

const express = require ('express');
const Articles = require('./db/models/Article');
module.exports = function (app) {

const routes = express.Router();

routes.get ('/articles', (req, res) => {
Articles.find () .1limit (5) .lean () .exec(
if (doc.length > 0) {
res.send({ data: doc });

(err, doc) => {

} else {
res.send ({ success: false, message: 'No documents retrieved' });

}
)i
)i

app.use('/api', routes);
bi

We can now get the data from our database by sending an HTTP request to this endpoint. A few
key things, though:

1. Limit does exactly what it looks like. I'm only getting 5 documents back.
2. Lean strips away some stuff from the raw BSON, reducing complexity and overhead. Not
required. But useful.

https://riptutorial.com/ 173

3. When using rind instead of rindone, confirm that the doc.1ength is greater than 0. This is
because rina always returns an array, so an empty array will not handle your error unless it
is checked for length

4. | personally like to send the error message in that format. Change it to suit your needs.
Same thing for the returned document.

5. The code in this example is written under the assumption that you have placed it in another
file and not directly on the express server. To call this in the server, include these lines in
your server code:

const app = express();
require ('./path/to/this/file") (app) //

Read MongoDB Integration for Node.js/Express.js online: https://riptutorial.com/node-
js/topic/9020/mongodb-integration-for-node-js-express-js

https://riptutorial.com/ 174

https://riptutorial.com/node-js/topic/9020/mongodb-integration-for-node-js-express-js
https://riptutorial.com/node-js/topic/9020/mongodb-integration-for-node-js-express-js

C_hapter 51: Mongoose Library

Examples

Connect to MongoDB Using Mongoose
First, install Mongoose with:

npm install mongoose

Then, add it to server. js as dependencies:

var mongoose = require ('mongoose');
var Schema = mongoose.Schema;

Next, create the database schema and the name of the collection:

var schemaName = new Schema ({
request: String,
time: Number

b A

collection: 'collectionName'

i)
Create a model and connect to the database:

var Model = mongoose.model ('Model', schemaName);
mongoose.connect ('mongodb://localhost:27017/dbName"') ;

Next, start MongoDB and run server. js USING node server.js

To check if we have successfully connected to the database, we can use the events open, error

from the mongoose.connection ObjeCt.

var db = mongoose.connection;

db.on('error', console.error.bind(console, 'connection error:'));

db.once ('open', function() {
// we're connected!
)i

Save Data to MongoDB using Mongoose and Express.js Routes

Setup

First, install the necessary packages with:

https://riptutorial.com/

npm install express cors mongoose

Ed e

Then, add dependencies to your server. js file, create the database schema and the name of the
collection, create an Express.js server, and connect to MongoDB:

var express = require ('express');
var cors = require('cors'); // We will use CORS to enable cross origin domain requests.
var mongoose = require ('mongoose');

var Schema = mongoose.Schema;
var app = express|();

var schemaName = new Schema ({
request: String,
time: Number
boo A
collection: 'collectionName'
1)

var Model = mongoose.model ('Model', schemaName) ;
mongoose.connect ('mongodb://localhost:27017/dbName"') ;

var port = process.env.PORT || 8080;
app.listen(port, function() {
console.log('Node.js listening on port ' + port);

1)
Now add Express.js routes that we will use to write the data:

app.get ('/save/:query', cors(), function(req, res) {
var query = reg.params.query;

var savedata = new Model ({
'request': query,
'time': Math.floor (Date.now() / 1000) // Time of save the data in unix timestamp
format
}) .save (function (err, result) {
if (err) throw err;

if (result) {
res.json (result)

b
b

Here the query variable will be the <query> parameter from the incoming HTTP request, which will
be saved to MongoDB:

var savedata = new Model ({
'request': query,

74000

https://riptutorial.com/ 176

If an error occurs while trying to write to MongoDB, you will receive an error message on the
console. If all is successful, you will see the saved data in JSON format on the page.

/]
}) .save (function (err, result) {
if (err) throw err;

if (result) {
res.json (result)
t
})
I/ oo

Now, you need to start MongoDB and run your server. js file Using node server.js.

Usage

To use this to save data, go to the following URL in your browser:
http://localhost:8080/save/<query>

Where <query> is the new request you wish to save.

Example:

http://localhost:8080/save/JavaScript%20is%$20Awesome

Output in JISON format:

__ws 0,
request: "JavaScript is Awesome",
time: 1469411348,

_id: "57957014b93bc8640£f2c78c4"

Find Data in MongoDB Using Mongoose and Express.js Routes

Setup

First, install the necessary packages with:

npm install express cors mongoose

ad e

https://riptutorial.com/ 177

Then, add dependencies to server. js, Create the database schema and the name of the collection,
create an Express.js server, and connect to MongoDB:

var express = require ('express');
var cors = require('cors'); // We will use CORS to enable cross origin domain requests.
var mongoose = require ('mongoose');

var Schema = mongoose.Schema;
var app = express|();

var schemaName = new Schema ({
request: String,
time: Number

bro Ao
collection: 'collectionName'

}) i

var Model = mongoose.model ('Model', schemaName);
mongoose.connect ('mongodb://localhost:27017/dbName"') ;

var port = process.env.PORT || 8080;
app.listen (port, function() {
console.log('Node.js listening on port ' + port);

}) i
Now add Express.js routes that we will use to query the data:

app.get ('/find/:query', cors(), function(req, res) {
var query = req.params.query;

Model.find ({
'request': query
}, function(err, result) {
if (err) throw err;
if (result) {
res.json (result)
} else {
res.send (JSON.stringify ({
error : 'Error'

1))

})

Assume that the following documents are in the collection in the model:

"_id" : ObjectId("578abe97522ad414b8eeb55a"),
"request" : "JavaScript is Awesome",
"time" : 1468710551

"_id" : ObjectId("578abe%522ad414b8eeb55b"),
"request" : "JavaScript is Awesome",
"time" : 1468710555

"_id" : ObjectId("578abeal0522ad414b8eeb55c"),

https://riptutorial.com/ 178

"request" : "JavaScript is Awesome",
"time" : 1468710560

And the goal is to find and display all the documents containing "savascript is awesome" Under the
"request" key.

For this, start MongoDB and run server.js With node server.js:

Usage

To use this to find data, go to the following URL in a browser:

http://localhost:8080/find/<query>

Where <query> is the search query.

Example:
http://localhost:8080/find/JavaScript%20is%$20Awesome
Output:

[{
_id: "578abe97522ad414b8eeb55a",

request: "JavaScript is Awesome",
time: 1468710551,
v: 0

_id: "578abe9%522ad414b8eeb55b",

request: "JavaScript is Awesome",
time: 1468710555,
v: 0

_id: "578abeal0522ad414b8eeb55c",

request: "JavaScript is Awesome",
time: 1468710560,
v: 0

}]

Find Data in MongoDB Using Mongoose, Express.js Routes and $text
Operator

Setup

First, install the necessary packages with:

https://riptutorial.com/ 179

npm install express cors mongoose

Ed e

Then, add dependencies to server. js, Create the database schema and the name of the collection,

create an Express.js server, and connect to MongoDB:

var express = require ('express');
var cors = require('cors'); // We will use CORS to enable cross origin domain requests.
var mongoose = require ('mongoose');

var Schema = mongoose.Schema;
var app = express|();

var schemaName = new Schema ({
request: String,
time: Number
boo A
collection: 'collectionName'
1)

var Model = mongoose.model ('Model', schemaName) ;
mongoose.connect ('mongodb://localhost:27017/dbName"') ;

var port = process.env.PORT || 8080;
app.listen(port, function() {

console.log('Node.js listening on port ' + port);
}) i

Now add Express.js routes that we will use to query the data:

app.get ('/find/:query', cors(), function(req, res) {
var query = reg.params.query;

Model.find ({
'request': query
}, function(err, result) {
if (err) throw err;
if (result) {
res.json (result)
} else {
res.send (JSON.stringify ({
error : 'Error'

1)

b
b

Assume that the following documents are in the collection in the model:

"_id" : ObjectId("578abe97522ad414b8eebb5a"),
"request" : "JavaScript is Awesome",
"time" : 1468710551

https://riptutorial.com/

180

"_id" : ObjectId("578abe9b522ad414b8eeb55b"),
"request" : "JavaScript is Awesome",
"time" : 1468710555

"_id" : ObjectId("578abeal0522ad414b8eeb55c"),
"request" : "JavaScript is Awesome",
"time" : 1468710560

And that the goal is to find and display all the documents containing only "Javascript" word under
the "request" key.

To do this, first create a text index for "request " in the collection. For this, add the following code to

server. js.

schemaName.index ({ request: 'text' });

And replace:

Model.find ({
'request': query
}, function(err, result) {

With:

Model. find ({
Stext: {
$search: query

}

}, function(err, result) {

Here, we are using stext and ssearch MONgoDB operators for find all documents in collection
collectionName Which contains at least one word from the specified find query.

Usage

To use this to find data, go to the following URL in a browser:

http://localhost:8080/find/<query>

Where <query> is the search query.

Example:

http://localhost:8080/find/JavaScript

Output:

https://riptutorial.com/ 181

[{
_id: "578abe97522ad414b8eeb55a",

request: "JavaScript is Awesome",
time: 1468710551,
v: O

_id: "578abe%522ad414b8eeb55b",

request: "JavaScript is Awesome",
time: 1468710555,
v: O

_id: "578abeal0522ad414b8eeb55c",

request: "JavaScript is Awesome",
time: 1468710560,
v: O

}H]

Indexes in models.

MongoDB supports secondary indexes. In Mongoose, we define these indexes within our schema.

Defining indexes at schema level is necessary when we need to create compound indexes.

Mongoose Connection

var strConnection = 'mongodb://localhost:27017/dbName’;
var db = mongoose.createConnection (strConnection)

Creating a basic schema

var Schema = require ('mongoose') .Schema;
var usersSchema = new Schema ({
username: {
type: String,
required: true,
unique: true
}y
email: {
type: String,
required: true
}y
password: {
type: String,
required: true
}y
created: {
type: Date,
default: Date.now

)i

var usersModel = db.model ('users', usersSchema);
module.exports = usersModel;

By default, mongoose adds two new fields into our model, even when those are not defined in the

https://riptutorial.com/

182

model. Those fields are:
_id

Mongoose assigns each of your schemas an _id field by default if one is not passed into the
Schema constructor. The type assigned is an Objectld to coincide with MongoDB's default
behavior. If you don't want an _id added to your schema at all, you may disable it using this option.

var usersSchema = new Schema ({
username: {
type: String,
required: true,
unique: true

boo A
_id: false

)i

__vorversionKey

The versionKey is a property set on each document when first created by Mongoose. This keys
value contains the internal revision of the document. The name of this document property is
configurable.

You can easy disable this field in the model configuration:

var usersSchema = new Schema ({
username: {
type: String,
required: true,
unique: true

b A

versionKey: false

)i

Compound indexes

We can create another indexes besides those Mongoose creates.

usersSchema.index ({username: 1 });
usersSchema.index ({email: 1 });

In these case our model have two more indexes, one for the field username and another for email
field. But we can create compound indexes.

usersSchema.index ({username: 1, email: 1 });

Index performance impact

By default, mongoose always call the ensurelndex for each index sequentially and emit an 'index’
event on the model when all the ensurelndex calls succeeded or when there was an error.

In MongoDB ensurelndex is deprecated since 3.0.0 version, now is an alias for createlndex.

https://riptutorial.com/ 183

Is recommended disable the behavior by setting the autolndex option of your schema to false, or
globally on the connection by setting the option config.autolndex to false.

usersSchema.set ('autoIndex', false);

Useful Mongoose functions
Mongoose contains some built in functions that build on the standard find ().

doc.find ({'some.value':5}, function (err, docs) {
//returns array docs

doc.findOne ({'some.value':5}, function (err, doc) {
//returns document doc

doc.findById(obj._id, function (err, doc) {
//returns document doc

find data in mongodb using promises

Setup

First, install the necessary packages with:

npm install express cors mongoose

gd e

Then, add dependencies to server. js, Create the database schema and the name of the collection,
create an Express.js server, and connect to MongoDB:

var express = require ('express');
var cors = require('cors'); // We will use CORS to enable cross origin domain requests.
var mongoose = require ('mongoose');

var Schema = mongoose.Schema;
var app = express|();

var schemaName = new Schema ({
request: String,
time: Number

b A
collection: 'collectionName'

)i

var Model = mongoose.model ('Model', schemaName);
mongoose.connect ('mongodb://localhost:27017/dbName") ;

https://riptutorial.com/ 184

var port = process.env.PORT || 8080;
app.listen (port, function() {

console.log('Node.js listening on port ' + port);
1)

app.use (function (err, req, res, next) {
console.error (err.stack);
res.status (500) .send ('Something broke!');
}) i

app.use (function (req, res, next) {
res.status (404) .send('Sorry cant find that!');
}) i

Now add Express.js routes that we will use to query the data:

app.get ('/find/:query', cors(), function(req, res, next) {
var query = redg.params.query;

Model. find ({
'request': query
1)
.exec() //remember to add exec, queries have a .then attribute but aren't promises
.then (function (result) {
if (result) {
res.json (result)
} else {
next () //pass to 404 handler

})
.catch (next) //pass to error handler

b

Assume that the following documents are in the collection in the model:

"_id" : ObjectId("578abe97522ad414b8eeb55a"),
"request" : "JavaScript is Awesome",
"time" : 1468710551

"_id" : ObjectId("578abe9%522ad414b8eeb55b"),
"request" : "JavaScript is Awesome",
"time" : 1468710555

"_id" : ObjectId("578abeal0522ad414b8eeb55c"),
"request" : "JavaScript is Awesome",
"time" : 1468710560

And the goal is to find and display all the documents containing "Javascript is awesome" Under the
"request" key.

For this, start MongoDB and run server. js With node server. js:

https://riptutorial.com/ 185

Usage

To use this to find data, go to the following URL in a browser:

http://localhost:8080/find/<query>

Where <query> is the search query.

Example:
http://localhost:8080/find/JavaScript%20is%20Awesome
Output:

f
_id: "578abe97522ad414b8eeb55a",

request: "JavaScript is Awesome",
time: 1468710551,
v: 0O

_id: "578abe%b522ad414b8eeb55b",

request: "JavaScript is Awesome",
time: 1468710555,
v: 0O

_id: "578abea0522ad414b8eeb55c",

request: "JavaScript is Awesome",
time: 1468710560,
v: 0O

H

Read Mongoose Library online: https://riptutorial.com/node-js/topic/3486/mongoose-library

https://riptutorial.com/

186

https://riptutorial.com/node-js/topic/3486/mongoose-library

C_hapter 52: MSSQL Intergration

Introduction

To integrate any database with nodejs you need a driver package or you can call it a npm module
which will provide you with basic API to connect with the database and perform interactions .
Same is true with mssqgl database , here we will integrate mssql with nodejs and perform some
basic queries on SQL tabels.

Remarks

We have assumed that we will have a local instance of mssql database server running on local
machine . You can refer this document to do the same .

Also make sure you appropriate user created with privileges added as well.

Examples

Connecting with SQL via. mssql npm module

We will start with creating a simple node application with a basic structure and then connecting
with local sql server database and performing some queries on that database.

Step 1: Create a directory/folder by the name of project which you intent to create. Initialize a
node application using npm init command which will create a package.json in current directory .

mkdir mySglApp

//folder created

cd mwSglApp

//change to newly created directory

npm init

//answer all the question ..

npm install

//This will complete quickly since we have not added any packages to our app.

Step 2: Now we will create a App.js file in this directory and install some packages which we are
going to need to connect to sql db.

sudo gedit App.Jjs

//This will create App.js file , you can use your fav. text editor :)
npm install --save mssql

//This will install the mssgl package to you app

Step 3: Now we will add a basic configuration variable to our application which will be used by
mssql module to establish a connection .

console.log("Hello world, This is an app to connect to sgl server.");

https://riptutorial.com/ 187

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-ubuntu

var config = {
"user": "myusername", //default is sa
"password": "yourStrong(!)Password",
"server": "localhost", // for local machine
"database": "staging", // name of database
"options": {
"encrypt": true

sql.connect (config, err => {
if (err) {
throw err ;

}

console.log("Connection Successful !");

new sql.Request () .query('select 1 as number', (err, result) => {
//handle err
console.dir (result)
// This example uses callbacks strategy for getting results.

sgql.on('error', err => {
// ... error handler
console.log("Sgl database connection error " ,err);

})

Step 4: This is the easiest step ,where we start the application and the application will connect to
the sgl server and print out some simple results .

node App.Jjs

// Output :

// Hello world, This is an app to connect to sgl server.
// Connection Successful !

// 1

To use promises or async for query execution refer the official documents of the mssq|
package :

e Promises
e Async/Await

Read MSSQL Intergration online: https://riptutorial.com/node-js/topic/9884/mssql-intergration

https://riptutorial.com/ 188

https://www.npmjs.com/package/mssql#promises
https://www.npmjs.com/package/mssql#async-await
https://riptutorial.com/node-js/topic/9884/mssql-intergration

C_hapter 53: Multithreading

Introduction

Node.js has been designed to be single threaded. So for all practical purposes, applications that
launch with Node will run on a single thread.

However, Node.js itself runs multi-threaded. 1/0 operations and the like will run from a thread pool.
Further will any instance of a node application run on a different thread, therefore to run multi-
threaded applications one launches multiple instances.

Remarks

Understanding the Event Loop is important to understand how and why to use multiple threads.

Examples

Cluster

The c1uster module allows one to start the same application multiple times.

Clustering is desirable when the different instances have the same flow of execution and don't
depend on one another. In this scenario, you have one master that can start forks and the forks (or
children). The children work independently and have their one space of Ram and Event Loop.

Setting up clusters can be beneficial for websites / APIs. Any thread can serve any customer, as it
doesn't depend on other threads. A Database (like Redis) would be used to share Cookies, as
variables can't be shared! between the threads.

// runs in each instance
var cluster = require('cluster');
var numCPUs = require('os') .cpus () .length;

console.log('I am always called');

if (cluster.isMaster) {
// runs only once (within the master);

console.log('I am the master, launching workers!');
for(var i = 0; i < numCPUs; i++) cluster.fork();
} else {

// runs in each fork
console.log('I am a fork!'");

// here one could start, as an example, a web server

}

console.log('I am always called as well');

https://riptutorial.com/ 189

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Child Process

Child Processes are the way to go when one wants to run processes independently with different
initialization and concerns. Like forks in clusters, a chiid_process runs in its thread, but unlike forks,

it has a way to communicate with its parent.

The communication goes both ways, so parent and child can listen for messages and send

messages.

Parent (../parent.js)

var child_process = require('child_process');
console.log (' [Parent]', 'initalize');

var childl = child_process.fork(__dirname + '/child');
childl.on('message', function (msg) {
console.log('[Parent]', 'Answer from child: ', msqg);

)i
// one can send as many messages as one want
childl.send('Hello'"); // Hello to you too :)

childl.send('Hello'"); // Hello to you too :)

// one can also have multiple children
var child2 = child_process.fork(_ _dirname + '/child');

Child (../child js)

// here would one initialize this child
// this will be executed only once
console.log('[Child]"', 'initalize');

// here one listens for new tasks from the parent
process.on ('message', function (messageFromParent) ({

//do some intense work here

console.log('[Child]"', 'Child doing some intense work');

if (messageFromParent == 'Hello') process.send('Hello to you too :

else process.send('what?');

b

Next to message one can listen to many events like 'error’, ‘connected’ or ‘disconnect'.

Starting a child process has a certain cost associated with it. One would want to spawn as few of

them as possible.

Read Multithreading online: https://riptutorial.com/node-js/topic/10592/multithreading

https://riptutorial.com/

190

https://nodejs.org/api/child_process.html#child_process_class_childprocess
https://riptutorial.com/node-js/topic/10592/multithreading

C_hapter 54: Mysqgl Connection Pool

Examples

Using a connection pool without database

Achieving multitenancy on database server with multiple databases hosted on it.

Multitenancy is common requirement of enterprise application nowadays and creating connection
pool for each database in database server is not recommended. so, what we can do instead is
create connection pool with database server and than switch between databases hosted on
database server on demand.

Suppose our application has different databases for each firm hosted on database server. We will
connect to respective firm database when user hits the application. here is the example on how to

do that:-

var pool = mysqgl.createPool ({
connectionLimit : 10,
host : 'example.org',
user : 'bobby',
password : 'pass'

)i

pool.getConnection (function (err, connection) {
if (err) {
return cb(err);
}
connection.changeUser ({database : "firml"});
connection.query ("SELECT * from history", function(err, data) {
connection.release () ;
cb(err, data);
1)
1)

Let me break down the example:-

When defining pool configuration i did not gave the database name but only gave database server
i.e

connectionLimit : 10,

host : 'example.org',
user : 'bobby',
password : 'pass'

so when we want to use the specific database on database server, we ask the connection to hit
database by using:-

https://riptutorial.com/ 191

connection.changeUser ({database : "firml"});

you can refer the official documentation here

Read Mysqgl Connection Pool online: https://riptutorial.com/node-js/topic/6353/mysql-connection-
pool

https://riptutorial.com/ 192

https://github.com/mysqljs/mysql#switching-users-and-altering-connection-state
https://riptutorial.com/node-js/topic/6353/mysql-connection-pool
https://riptutorial.com/node-js/topic/6353/mysql-connection-pool

C_hapter 55: MySQL integration

Introduction

In this topic you will learn how to integrate with Node.js using MYSQL database management tool.
You will learn various ways to connect and interact with data residing in mysqgl using a nodejs
program and script.

Examples

Query a connection object with parameters

When you want to use user generated content in the SQL, it with done with parameters. For
example for searching user with the name aminadav you should do:

var username = 'aminadav';
var querystring = 'SELECT name, email from users where name = ?';
connection.query (querystring, [username], function(err, rows, fields) {

if (err) throw err;
if (rows.length) {
rows.forEach (function (row) {
console.log(row.name, 'email address is', row.email);

}) i
} else {
console.log('There were no results.');

}
)i

Using a connection pool

a. Running multiple queries at same time

All queries in MySQL connection are done one after another. It means that if you want to do 10
gueries and each query takes 2 seconds then it will take 20 seconds to complete whole execution.
The solution is to create 10 connection and run each query in a different connection. This can be
done automatically using connection pool

var pool = mysqgl.createPool ({
connectionLimit : 10,
host : 'example.org',
user : 'bobby',
password : 'pass',
database : 'schema'

}) i

for(var i=0;i<10;1i++) {
pool.query ('SELECT °~ as example', function(err, rows, fields) {
if (err) throw err;
console.log(rows[0] .example); //Show 1

https://riptutorial.com/ 193

It will run all the 10 queries in parallel.

When you use poo1 you don't need the connection anymore. You can query directly the pool.
MySQL module will search for the next free connection to execute your query.

b. Achieving multi-tenancy on database server with different
databases hosted on it.

Multitenancy is a common requirement of enterprise application nowadays and creating
connection pool for each database in database server is not recommended. so, what we can do
instead is create connection pool with database server and then switch them between databases
hosted on database server on demand.

Suppose our application has different databases for each firm hosted on database server. We will
connect to respective firm database when user hits the application. Here is the example on how to
do that:-

var pool = mysqgl.createPool ({
connectionLimit : 10,
host : 'example.org',
user : 'bobby',
password : 'pass'

)i

pool.getConnection (function (err, connection) {
if (err) {
return cb(err);
}
connection.changeUser ({database : "firml"});
connection.query ("SELECT * from history", function(err, data) {
connection.release () ;
cb(err, data);
1)
1)

Let me break down the example:-

When defining pool configuration i did not gave the database name but only gave database server
i.e

connectionLimit : 10,

host : 'example.org',
user : 'bobby',
password : 'pass'

so when we want to use the specific database on database server, we ask the connection to hit
database by using:-

https://riptutorial.com/ 194

connection.changeUser ({database : "firml"});
you can refer the official documentation here

Connect to MySQL

One of the easiest ways to connect to MySQL is by using =<1 module. This module handles the
connection between Node.js app and MySQL server. You can install it like any other module:

npm install --save mysql

Now you have to create a mysqgl connection, which you can later query.

const mysgl = require('mysqgl');
const connection = mysqgl.createConnection ({
host : 'localhost',
user : 'me',
password : 'secret',
database : 'database_schema'

)i
connection.connect () ;

// Execute some query statements
// I.e. SELECT * FROM FOO

connection.end() ;
In the next example you will learn how to query the connection Object.

Query a connection object without parameters

You send the query as a string and in response callback with the answer is received. The callback
gives you error, array of rows and fields. Each row contains all the column of the returned table.
Here is a snippet for the following explanation.

connection.query ('SELECT name,email from users', function(err, rows, fields) {
if (err) throw err;

console.log('There are:', rows.length,' users');

console.log('First user name is:',rows[0].name)

}) i

Run a number of queries with a single connection from a pool

There may be situations where you have setup a pool of MySQL connections, but you have a
number of queries you would like to run in sequence:

SELECT 1;
SELECT 2;

https://riptutorial.com/ 195

https://github.com/mysqljs/mysql#switching-users-and-altering-connection-state
https://github.com/mysqljs/mysql

You could just run then using poo1.query as seen elsewhere, however if you only have one free
connection in the pool you must wait until a connection becomes available before you can run the
second query.

You can, however, retain an active connection from the pool and run as many queries as you
would like using a single connection using pool.getConnection:

pool.getConnection (function (err, conn) {
if (err) return callback (err);

conn.query ('SELECT 1 AS seq', function (err, rows) {

if (err) throw err;

conn.query ('SELECT 2 AS seq', function (err, rows) {

if (err) throw err;

conn.release();
callback () ;

Note: You must remember to reiease the connection, otherwise there is one less MySQL
connection available to the rest of the pool!

For more information on pooling MySQL connections check out the MySQL docs.

Return the query when an error occurs

You can attach the query executed to your err object when an error occurs:

var g = mysqgl.query ('SELECT "name’ FROM "“pokedex™ WHERE "id® = ?2', [25], function (err,
result) {
if (err) {
// Table 'test.pokedex' doesn't exist
err.query = g.sqgl; // SELECT '"name’ FROM 'pokedex' WHERE "id’ = 25

callback (err) ;

}
else {
callback (null, result);
}
1)

Export Connection Pool

// db.js
const mysgl = require('mysqgl');

const pool = mysqgl.createPool ({

connectionLimit : 10,

host : 'example.org',
user : 'bob',
password : 'secret',

https://riptutorial.com/ 196

http://www.riptutorial.com/node-js/example/4587/using-a-connection-pool
https://www.npmjs.com/package/mysql#pooling-connections

database : 'my_db'
1)

module.export = {
getConnection: (callback) => {
return pool.getConnection (callback);

// app.Js
const db = require('./db'");

db.getConnection((err, conn) => {
conn.query ('SELECT something from sometable', (error, results, fields) => {

// get the results
conn.release();
1)
1)

Read MySQL integration online: https://riptutorial.com/node-js/topic/1406/mysql-integration

https://riptutorial.com/ 197

https://riptutorial.com/node-js/topic/1406/mysql-integration

Chapter 56: N-API

Introduction

The N-API is a new and better way for creating native module for NodeJS. N-API is in early stage
so it may have inconsistent documentation.

Examples

Hello to N-API

This module register hello function on hello module. hello function prints Hello world on console
with princ£ and return 1373 from native function into javascript caller.

#include <node_api.h>
#include <stdio.h>

napi_value say_hello (napi_env env, napi_callback_info info)
{
napi_value retval;
printf ("Hello world\n");
napi_create_number (env, 1373, &retval);
return retval;
void init (napi_env env, napi_value exports, napi_value module, void* priv)

{

napi_status status;

napi_property_descriptor desc = {
/*
* String describing the key for the property, encoded as UTF8.
v
.utf8name = "hello",
/*

* Set this to make the property descriptor object's value property
* to be a JavaScript function represented by method.
* If this is passed in, set value, getter and setter to NULL (since these members
won't be used).
v
.method = say_hello,
/*
* A function to call when a get access of the property is performed.
* If this is passed in, set value and method to NULL (since these members won't be

used) .
* The given function is called implicitly by the runtime when the property is
accessed
* from JavaScript code (or if a get on the property is performed using a N-API call).
v
.getter = NULL,
/*

https://riptutorial.com/ 198

* A function to call when a set access of the property is performed.
* If this is passed in, set value and method to NULL (since these members won't be
used) .
* The given function is called implicitly by the runtime when the property is set
* from JavaScript code (or if a set on the property is performed using a N-API call).
v
.setter = NULL,
/*
* The value that's retrieved by a get access of the property if the property is a
data property.
* If this is passed in, set getter, setter, method and data to NULL (since these
members won't be used).
v
.value = NULL,
/*
* The attributes associated with the particular property. See
napi_property_attributes.

=/
.attributes = napi_default,
/*
* The callback data passed into method, getter and setter if this function is
invoked.
=/
.data = NULL
}i
/*
* This method allows the efficient definition of multiple properties on a given object.
=/
status = napi_define_properties(env, exports, 1, &desc);
if (status != napi_ok)
return;

NAPI_MODULE (hello, init)

Read N-API online: https://riptutorial.com/node-js/topic/10539/n-api

https://riptutorial.com/ 199

https://riptutorial.com/node-js/topic/10539/n-api

C_hapter 57: Node JS Localization

Introduction

Its very easy to maintain localization nodejs express

Examples

using i18n module to maintains localization in node js app

Lightweight simple translation module with dynamic json storage. Supports plain vanilla node.js
apps and should work with any framework (like express, restify and probably more) that exposes
an app.use() method passing in res and req objects. Uses common __ ('...") syntax in app and
templates. Stores language files in json files compatible to webtranslateit json format. Adds new
strings on-the-fly when first used in your app. No extra parsing needed.

express + i18n-node + cookieParser and avoid concurrency issues

// usual requirements

var express = require ('express'),
i18n = require('il8n'),
app = module.exports = express();

il8n.configure ({
// setup some locales - other locales default to en silently
locales: ['en', 'ru', 'de'],

// sets a custom cookie name to parse locale settings from

cookie: 'yourcookiename',
// where to store json files - defaults to './locales'
directory: _ dirname + '/locales'

}) i

app.configure (function () {
// you will need to use cookieParser to expose cookies to reqg.cookies
app.use (express.cookieParser());

// 118n init parses req for language headers, cookies, etc.
app.use (118n.init);

}) i

// serving homepage
app.get ('/', function (req, res) {
res.send(res._ ('Hello World'));

}) i

// starting server
if (!module.parent) {
app.listen(3000);

t

https://riptutorial.com/ 200

Read Node JS Localization online: https://riptutorial.com/node-js/topic/9594/node-js-localization

https://riptutorial.com/ 201

https://riptutorial.com/node-js/topic/9594/node-js-localization

C_hapter 58: Node server without framework

Remarks

Though Node has many framework to help you getting your server up and running, mainly:
Express: The most used framework

Total: The ALL-IN-ONE UNITY framework, that have everything and do not depend on any other
framework or module.

But, there is always no one size fits all, so developer may need to build his/her own server, without
any other dependency.

If the app i accessed through external server, CORS could be an issue, a code to avoid it had
been provided.

Examples

Framework-less node server

var http = require('http');
var fs = require('fs');
var path = require('path');

http.createServer (function (request, response) {
console.log('request ', request.url);

var filePath

'.' + request.url;

if (filePath == './")
filePath = './index.html';
var extname = String(path.extname (filePath)) .tolLowerCase () ;
var contentType = 'text/html';
var mimeTypes = {
'.html': 'text/html',
'.js': 'text/javascript',
'.css': 'text/css',
'.json': 'application/json',

'.png': 'image/png',
'.Jpg': 'image/jpg’',
'.gif': 'image/gif',

'.wav': 'audio/wav',
'.mpd': 'video/mp4',
'.woff': 'application/font-woff',
'.ttf': 'applilcation/font-ttf',
'.eot': 'application/vnd.ms-fontobject',
'.otf': 'application/font-otf',
'.svg': 'application/image/svg+xml'
bi
contentType = mimeTypes[extname] || 'application/octect-stream';

https://riptutorial.com/ 202

https://nodejs.org/en/
http://expressjs.com/
https://www.totaljs.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

fs.readFile(filePath, function(error, content) {
if (error) {
if (error.code == 'ENOENT') {
fs.readFile('./404.html', function(error, content) {
response.writeHead (200, { 'Content-Type': contentType });
response.end(content, 'utf-8');
1)
}
else {
response.writeHead (500) ;
response.end('Sorry, check with the site admin for error: '+error.code+' ..\n');
response.end () ;

}
else {
response.writeHead (200, { 'Content-Type': contentType });
response.end(content, 'utf-8');
}
1)

}).listen (8125);
console.log('Server running at http://127.0.0.1:8125/");

Overcoming CORS Issues

// Website you wish to allow to connect to
response.setHeader ('Access-Control-Allow-Origin', '*');

// Request methods you wish to allow
response.setHeader ('Access-Control-Allow-Methods', 'GET, POST, OPTIONS, PUT, PATCH, DELETE');

// Request headers you wish to allow
response.setHeader ('Access-Control-Allow-Headers', 'X-Requested-With,content-type');

// Set to true if you need the website to include cookies in the requests sent
// to the API (e.g. in case you use sessions)
response.setHeader ('Access-Control-Allow-Credentials', true);

Read Node server without framework online: https://riptutorial.com/node-js/topic/5910/node-
server-without-framework

https://riptutorial.com/ 203

https://riptutorial.com/node-js/topic/5910/node-server-without-framework
https://riptutorial.com/node-js/topic/5910/node-server-without-framework

C_hapter 59: Node.js (express.js) with
angular.js Sample code

Introduction

This example shows how to create a basic express app and then serve AngularJS.

Examples

Creating our project.
We're good to go so, we run, again from console:

mkdir our_project
cd our_project

Now we're in the place where our code will live. To create the main archive of our project you can
run

Ok, but how we create the express skeleton project?
It's simple:
npm install —-g express express—generator

Linux distros and Mac should use sudo to install this because they're installed in the nodejs
directory which is only accessible by the root user. If everything went fine we can, finally, create
the express-app skeleton, just run

express

This command will create inside our folder an express example app. The structure is as follow:

bin/
public/
routes/
views/

app.js
package. json

Now if we run npm start an go to hitp://localhost:3000 we'll see the express app up and running,
fair enough we've generated an express app without too much trouble, but how can we mix this
with AngularJS?.

https://riptutorial.com/ 204

http://localhost:3000

How express works, briefly?

Express is a framework built on top of Nodejs, you can see the official documentation at the
Express Site. But for our purpose we need to know that Express is the responsible when we type,
for example, http://localhost:3000/home of rendering the home page of our application. From the
recently created app created we can check:

FILE: routes/index.Js
var express = require ('express');
var router = express.Router();

/* GET home page. */

router.get ('/', function(reqg, res, next) {
res.render ('index', { title: 'Express' });

}) i

module.exports = router;

What this code is telling us is that when the user goes to hitp://localhost:3000 it must render the
index view and pass a JSON with a title property and value Express. But when we check the
views directory and open index.jade we can see this:

extends layout
block content
hl= title
p Welcome to #{title}

This is another powerful Express feature, template engines, they allow you to render content in
the page by passing variables to it or inherit another template so your pages are more compact
and better understandable by others. The file extension is .jade as far as | know Jade changed
the name for Pug, basically is the same template engine but with some updates and core
modifications.

Installing Pug and updating Express template engine.

Ok, to start using Pug as the template engine of our project we need to run:

npm install --save pug

This will install Pug as a dependency of our project and save it to package.json. To use it we
need to modify the file app.js:

var app = express|();

// view engine setup

app.set ('views', path.join(__dirname, 'views'));
app.set ('view engine', 'pug');

And replace the line of view engine with pug and that's all. We can run again our project with npm
start and we'll see that everything is working fine.

https://riptutorial.com/ 205

http://expressjs.com
http://localhost:3000/home
http://localhost:3000

How AngularJS fits in all of this?

AngularJsS is an Javascript MVW(Model-View-Whatever) Framework mainly used to create SPA
(Simple Page Application) installing is fairly simple, you can go to AngularJS website and
download the latest version which is v1.6.4.

After we downloaded AngularJS when should copy the file to our public/javascripts folder inside
our project, a little explanation, this is the folder that serves the static assets of our site, images,
css, javacript files and so on. Of course this is configurable through the app.js file, but we'll keep it
simple. Now we create a file named ng-app.js, the file where our application will live, inside our
javascripts public folder, just where AngularJS lives. To bring AngularJS up we need to modify the
content of views/layout.pug as follow:

doctype html
html (ng-app="'first-app')
head
title= title
link (rel='stylesheet', href='/stylesheets/style.css')
body (ng-controller="'indexController')
block content

script (type='text-javascript', src='javascripts/angular.min.js"')
script (type='text-javascript', src='javascripts/ng-app.js')

What are we doing here?, well, we're including AngularJS core and our recently created file ng-
app.js so when the template is rendered it will bring AngularJS up, notice the use of the ng-app
directive, this is telling AngularJS that this is our application name and it should stick to it.

So, the content of our ng-app.js will be:

angular.module ('first—-app', [1)
.controller ('indexController', ['S$Sscope', indexController]);

function indexController ($scope) {
$Sscope.name = 'sigfried';

}

We're using the most basic AngularJS feature here, two-way data binding, this allows us to
refresh the content of our view and controller instantly, this is a very simple explanation, but you
can make a research in Google or StackOverflow to see how it really works.

So, we have the basic blocks of our AngularJS application, but there is something we got to do,
we need to update our index.pug page to see the changes of our angular app, let's do it:

extends layout
block content
div (ng-controller="'indexController"')
hl= title
p Welcome {{name}}
input (type='text' ng-model='name')

Here we're just binding the input to our defined property name in the AngularJS scope inside our

https://riptutorial.com/ 206

https://angularjs.org

controller:

Sscope.name = 'sigfried';

The purpose of this is that whenever we change the text in the input the paragraph above will
update it content inside the {{name}}, this is called interpolation, again another AngularJS feature
to render our content in the template.

So, all is setup, we can now run npm start go to http://localhost:3000 and see our express
application serving the page and AngularJS managing the application frontend.

Read Node.js (express.js) with angular.js Sample code online: https://riptutorial.com/node-
Jjs/topic/9757/node-js--express-js--with-angular-js-sample-code

https://riptutorial.com/ 207

http://localhost:3000
https://riptutorial.com/node-js/topic/9757/node-js--express-js--with-angular-js-sample-code
https://riptutorial.com/node-js/topic/9757/node-js--express-js--with-angular-js-sample-code

C_hapter 60: Node.JS and MongoDB.

Remarks

These are the basic CRUD operations for using mongo db with nodejs.
Question: Are there other ways you can do what is done here ??
Answer : Yes, there are numerous way to do this.

Question: Is using mongoose necessary ??

Answer : No. There are other packages available which can help you.
Question: Where can | get full documentation of mongoose ??

Answer: Click Here

Examples

Connecting To a Database

To connect to a mongo database from node application we require mongoose.

Installing Mongoose Go to the toot of your application and install mongoose by

npm install mongoose

Next we connect to the database.

var mongoose = require ('mongoose');

//connect to the test database running on default mongod port of localhost
mongoose.connect ('mongodb://localhost/test");

//Connecting with custom credentials
mongoose.connect ('mongodb://USER:PASSWORDE@HOST : PORT/DATABASE"') ;

//Using Pool Size to define the number of connections opening
//Also you can use a call back function for error handling
mongoose.connect ('mongodb://localhost:27017/consumers’',
{server: { poolSize: 50 }},
function (err) {
if (err) {
console.log('error in this')
console.log(err);
// Do whatever to handle the error
} else {

https://riptutorial.com/

208

http://mongoosejs.com/docs/api.html

console.log('Connected to the database');

)i

Creating New Collection
With Mongoose, everything is derived from a Schema. Lets create a schema.

var mongoose = require ('mongoose');
var Schema = mongoose.Schema;

var AutoSchema = new Schema ({
name : String,
countOf: Number,

1)

// defining the document structure

// by default the collection created in the db would be the first parameter we use (or the
plural of it)
module.exports = mongoose.model ('Auto', AutoSchema) ;

// we can over write it and define the collection name by specifying that in the third

parameters.
module.exports = mongoose.model ('Auto', AutoSchema, 'collectionName');

// We can also define methods in the models.

AutoSchema.methods.speak = function () {
var greeting = this.name
? "Hello this is " + this.name+ " and I have counts of "+ this.countOf

"I don't have a name";
console.log(greeting) ;

}

mongoose.model ('Auto', AutoSchema, 'collectionName');

Remember methods must be added to the schema before compiling it with mongoose.model() like
done above ..

Inserting Documents
For inserting a new document in the collection, we create a object of the schema.

var Auto = require ('models/auto')
var autoObj = new Auto ({

name: "NewName",

countOf: 10
1)

We save it like the following

autoObj.save (function(err, insertedAuto) {
if (err) return console.error(err);
insertedAuto.speak () ;
// output: Hello this is NewName and I have counts of 10

https://riptutorial.com/ 209

K

This will insert a new document in the collection

Reading

Reading Data from the collection is very easy. Getting all data of the collection.

var Auto = require ('models/auto')
Auto.find({}, function (err, autos) {
if (err) return console.error (err);
// will return a Jjson array of all the documents in the collection
console.log (autos);

3]
Reading data with a condition

Auto.find ({countOf: {S$gte: 5}}, function (err, autos) {
if (err) return console.error (err);
// will return a Jjson array of all the documents in the collection whose count is
greater than 5
console.log (autos);

H)

You can also specify the second parameter as object of what all fields you need

Auto.find({}, {name:1}, function (err, autos) {
if (err) return console.error (err);
// will return a Jjson array of name field of all the documents in the collection
console.log (autos);

})

Finding one document in a collection.

Auto.findOne ({name:"newName"}, function (err, auto) {
if (err) return console.error(err);
//will return the first object of the document whose name is "newName"
console.log(auto);

})

Finding one document in a collection by id .

Auto.findById (123, function (err, auto) {
if (err) return console.error (err);
//will return the first json object of the document whose id is 123
console.log(auto);

})

Updating

For updating collections and documents we can use any of these methods:

https://riptutorial.com/ 210

Methods

e update()

* updateOne()
* updateMany()
* replaceOne()

Update()

The update() method modifies one or many documents (update parameters)

db.lights.update (
{ room: "Bedroom" 1},
{ status: "On" }

This operation searches the 'lights' collection for a document where roon is Bedroom (1st
parameter). It then updates the matching documents status property to On (2nd parameter) and
returns a WriteResult object that looks like this:

{ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 }

Ed ateOne

The UpdateOne() method modifies ONE document (update parameters)

db.countries.update (
{ country: "Sweden" },
{ capital: "Stockholm" }

This operation searches the ‘countries’ collection for a document where country is Sweden (1st
parameter). It then updates the matching documents property capital to Stockholm (2nd
parameter) and returns a WriteResult object that looks like this:

{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }

Ed ateMany

The UpdateMany() method modifies multible documents (update parameters)

https://riptutorial.com/ 211

db. food.updateMany (
{ sold: { s$lt: 10 } 1},
{ $set: { sold: 55 } }

This operation updates all documents (in a 'food’ collection) where so14 is lesser than 10 *(1st
parameter) by setting so14 to 55. It then returns a WriteResult object that looks like this:

{ "acknowledged" : true, "matchedCount" : a, "modifiedCount" : b }

a = Number of matched documents
b = Number of modified documents

%placeOne

Replaces the first matching document (replacement document)

This example collection called countries contains 3 documents:

{ "_id" : 1, "country" : "Sweden" }
{ "_id" : 2, "country" : "Norway" }
{ "_id" : 3, "country" : "Spain" }

The following operation replaces the document { country: "spain" } With document { country:
"Finland" }

db.countries.replaceOne (
{ country: "Spain" 1},
{ country: "Finland" }

And returns:

{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }

The example collection countries now contains:

{ "_id"™ : 1, "country" : "Sweden" }

{ "_id"™ : 2, "country" : "Norway" }

{ "_id"™ : 3, "country" : "Finland" }
Deleting

Deleting documents from a collection in mongoose is done in the following manner.

Auto.remove ({_id:123}, function(err, result) {
if (err) return console.error(err);

https://riptutorial.com/ 212

console.log(result); // this will specify the mongo default delete result.
1)

Read Node.JS and MongoDB. online: https://riptutorial.com/node-js/topic/7505/node-js-and-
mongodb-

https://riptutorial.com/ 213

https://riptutorial.com/node-js/topic/7505/node-js-and-mongodb-
https://riptutorial.com/node-js/topic/7505/node-js-and-mongodb-

C_hapter 61: Node.|s Architecture & Inner
Workings

Examples

Node.js - under the hood

Application & NPM Modules

Binding beween
JavaScript & C/C++ - C/C++ Bindings

Ly V8 libuv c-ares crypto

machine code

EompHES JavaScript into

)

Cross-platform Async Async support for DNS OpenSSL
Network & File /0 requests

Node.js - in motion

https://riptutorial.com/ 214

http://i.stack.imgur.com/psKx9.png

Main thread

requests 'Sl » result

[1]]
- ra
. 1
. 1
. 1
. 1
. 1
b=
. 1
. 1

s

yes

operatio

Read Node.js Architecture & Inner Workings online: https://riptutorial.com/node-
js/topic/5892/node-js-architecture---inner-workings

https://riptutorial.com/ 215

http://i.stack.imgur.com/mW5Hp.png
https://riptutorial.com/node-js/topic/5892/node-js-architecture---inner-workings
https://riptutorial.com/node-js/topic/5892/node-js-architecture---inner-workings

C_hapter 62: Node.js code for STDIN and
STDOUT without using any library

Introduction

This is a simple program in node.js to which takes input from the user and prints it to the console.

The process object is a global that provides information about, and control over, the current
Node.js process. As a global, it is always available to Node.js applications without using require().

Examples

Program

The process.stdin property returns a Readable stream equivalent to or associated with stdin.

The process.stdout property returns a Writable stream equivalent to or associated with stdout.

process.stdin.resume ()
console.log('Enter the data to be displayed ');
process.stdin.on('data', function(data) { process.stdout.write (data) })

Read Node.js code for STDIN and STDOUT without using any library online:
https://riptutorial.com/node-js/topic/8961/node-js-code-for-stdin-and-stdout-without-using--any-
library

https://riptutorial.com/ 216

https://riptutorial.com/node-js/topic/8961/node-js-code-for-stdin-and-stdout-without-using--any-library
https://riptutorial.com/node-js/topic/8961/node-js-code-for-stdin-and-stdout-without-using--any-library

C_hapter 63: Node.|s Desigh Fundamental

Examples

The Node.js philosophy

Small Core, Small Module :-

Build small and single purpose modules not in term of code size only, but also in term of scope
that serves a single purpose

a — "Small is beautiful"
b - "Make each program do one thing well."

The Reactor Pattern

The Reactor Pattern is the heart of the node. s asynchronous nature. Allowed the system to be
implemented as a single-threaded process with a series of event generators and event handlers,
with the help of event loop that runs continuously.

The non-blocking I/0 engine of Node.js —libuv -

The Observer Pattern(EventEmitter) maintains a list of dependents/observers and notifies them

var events = require('events');
var eventEmitter = new events.EventEmitter();

var ringBell = function ringBell ()
{

console.log('tring tring tring');
}

eventEmitter.on ('doorOpen', ringBell) ;

eventEmitter.emit ('doorOpen') ;

Read Node.js Design Fundamental online: https://riptutorial.com/node-js/topic/6274/node-js-
design-fundamental

https://riptutorial.com/ 217

https://riptutorial.com/node-js/topic/6274/node-js-design-fundamental
https://riptutorial.com/node-js/topic/6274/node-js-design-fundamental

C_hapter 64. Node.|s Error Management

Introduction

We will learn how to create Error objects and how to throw & handle errors in Node.js

Future edits related to best practices in error handling.

Examples

Creating Error object

new Error(message)

Creates new error object, where the value message IS being set to nessage property of the created
object. Usually the nessage arguments are being passed to Error constructor as a string. However if
the message argument is object not a string then Error constructor calls .tostring () method of the
passed object and sets that value to nessage property of the created error object.

var err = new Error ("The error message");
console.log(err.message); //prints: The error message
console.log(err);

//output

//Error: The error message

// at ...

Each error object has stack trace. Stack trace contains the information of error message and
shows where the error happened (the above output shows the error stack). Once error object is
created the system captures the stack trace of the error on current line. To get the stack trace use
stack property of any created error object. Below two lines are identical:

console.log(err);
console.log(err.stack);

Throwing Error

Throwing error means exception if any exception is not handled then the node server will crash.

The following line throws error:
throw new Error ("Some error occurred");
or

var err = new Error ("Some error occurred");
throw err;

https://riptutorial.com/ 218

or

throw "Some error occurred";

The last example (throwing strings) is not good practice and is not recommended (always throw
errors which are instances of Error object).

Note that if you throw an error in your, then the system will crash on that line (if there is no
exception handlers), no any code will be executed after that line.

var a = 5;

var err = new Error ("Some error message");

throw err; //this will print the error stack and node server will stop
a++; //this line will never be executed

console.log(a); //and this one also

But in this example:

var a = 5;

var err = new Error ("Some error message");

console.log(err); //this will print the error stack

at+;

console.log(a); //this line will be executed and will print 6

try...catch block

try...catch block is for handling exceptions, remember exception means the thrown error not the
error.

try {
var a = 1;
b++; //this will cause an error because be is undefined
console.log(b); //this line will not be executed

} catch (error) {
console.log(error); //here we handle the error caused in the try block

In the try block b++ cause an error and that error passed to catch block which can be handled
there or even can be thrown the same error in catch block or make little bit modification then
throw. Let's see next example.

try {
var a = 1;
b++;
console.log(b);
} catch (error) {
error.message = "b variable is undefined, so the undefined can't be incremented"

throw error;

In the above example we modified the nessage property of error object and then throw the modified

error.

https://riptutorial.com/

219

You can through any error in your try block and handle it in the catch block:

try {
var a = 1;
throw new Error ("Some error message");

console.log(a); //this line will not be executed;

} catch (error) {

console.log(error); //will be the above thrown error

Read Node.js Error Management online: https://riptutorial.com/node-js/topic/8590/node-js-error-

management

220

https://riptutorial.com/

https://riptutorial.com/node-js/topic/8590/node-js-error-management
https://riptutorial.com/node-js/topic/8590/node-js-error-management

C_hapter 65: Node.js Performance

Examples

Event Loop

Blocking Operation Example

let loop = (i, max) => {
while (i < max) 1i++
return i

// This operation will block Node.]js

// Because, it's CPU-bound

// You should be careful about this kind of code
loop (0, letl2)

mn-Blocking IO Operation Example

let 1 =0

const step = max => {
while (i < max) 1++
console.log('i = %d', 1i)

const tick = max => process.nextTick (step, max)
// this will postpone tick run step's while-loop to event loop cycles

// any other IO-bound operation (like filesystem reading) can take place
// in parallel

tick (le+6)
tick (le+7)
console.log('this will output before all of tick operations. i = %d', 1)

console.log('because tick operations will be postponed')
tick (1le+8)

https://riptutorial.com/

221

THE NODE.JS SYSTEM

NODE.JS
APPLICATION BINDINGS

(NODE API1) EVENT
QUEUE

JAVASCRIPT

In simpler terms, Event Loop is a single-threaded queue mechanism which executes your CPU-
bound code until end of its execution and 10-bound code in a non-blocking fashion.

However, Node.js under the carpet uses multi-threading for some of its operations through libuv
Library.

Performance Considerations

» Non-blocking operations will not block the queue and will not effect the performance of the
loop.

» However, CPU-bound operations will block the queue, so you should be careful not to do
CPU-bound operations in your Node.js code.

Node.js non-blocks IO because it offloads the work to the operating system kernel, and when the
IO operation supplies data (as an event), it will notify your code with your supplied callbacks.

Increase maxSockets

Basics

require ('http') .globalAgent .maxSockets = 25
// You can change 25 to Infinity or to a different value by experimenting
Node.js by default is using maxsockets = Infinity at the same time (since v0.12.0). Until Node

v0.12.0, the default was maxsockets = 5 (see v0.11.0). So, after more than 5 requests they will be
gueued. If you want concurrency, increase this number.

https://riptutorial.com/ 222

https://i.stack.imgur.com/mWb6l.png
http://libuv.org/
https://nodejs.org/dist/v0.12.0/docs/api/http.html#http_agent_maxsockets
https://nodejs.org/dist/v0.11.0/docs/api/http.html#http_agent_maxsockets

Setting your own agent

nttp APl is using a "Global Agent”. You can supply your own agent. Like this:

const http = require('http')
const myGloriousAgent = new http.Agent ({ keepAlive: true })
myGloriousAgent .maxSockets = Infinity

http.request ({ ..., agent: myGloriousAgent }, ...)

T_urning off Socket Pooling entirely

const http = require('http')

const options = {..... }
options.agent = false
const request = http.request (options)

?tfalls

* You should do the same thing for nttps API if you want the same effects

» Beware that, for example, AWS will use 50 instead of tnfinity.

Enable gzip

const http = require('http')

const fs = require('fs')
const zlib = require('zlib')
http.createServer ((request, response) => {
const stream = fs.createReadStream('index.html")

const acceptsEncoding = request.headers|['accept-encoding']

let encoder = {
hasEncoder : false,
contentEncoding: {},
createEncoder : () => throw 'There i1s no encoder'

if (lacceptsEncoding) {
acceptsEncoding = ''

if (acceptsEncoding.match (/\bdeflate\b/)) {

encoder = {
hasEncoder : true,
contentEncoding: { 'content-encoding': 'deflate' },
createEncoder : zlib.createDeflate

https://riptutorial.com/

223

https://nodejs.org/api/http.html#http_class_http_agent
http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/node-configuring-maxsockets.html

}
} else if (acceptsEncoding.match (/\bgzip\b/)) {

encoder = {
hasEncoder : true,
contentEncoding: { 'content-encoding': 'gzip' },
createEncoder : zlib.createGzip

response.writeHead (200, encoder.contentEncoding)

if (encoder.hasEncoder) {
stream = stream.pipe (encoder.createEncoder())

stream.pipe (response)

}) .listen (1337)

Read Node.js Performance online: https://riptutorial.com/node-js/topic/9410/node-js-performance

https://riptutorial.com/ 224

https://riptutorial.com/node-js/topic/9410/node-js-performance

C_hapter 66: Node.|s v6 New Features and
Improvement

Introduction

With node 6 becoming the new LTS version of node. We can see an number of improvements to
the language through the new ES6 standards introduces. We'll be walking through some of the
new features introduced and examples of how to implement them.

Examples
Default Function Parameters

function addTwo (a, b = 2) {
return a + b;

}

addTwo (3) // Returns the result 5

With the addition of default function parameters you can now make arguments optional and have
them default to a value of your choice.

Rest Parameters

function argumentLength(...args) {
return args.length;

}

argumentLength (5) // returns 1
argumentLength (5, 3) //returns 2
argumentLength (5, 3, 6) //returns 3

By prefacing the last argument of your function with ... all arguments passed to the function are
read as an array. In this example we get pass in multiple arguments and get the length of the array
created from those arguments.

Spread Operator

function myFunction(x, vy, z) { }
var args = [0, 1, 2];
myFunction(...args);

The spread syntax allows an expression to be expanded in places where multiple arguments (for
function calls) or multiple elements (for array literals) or multiple variables are expected. Just like
the rest parameters simply preface your array with . ..

https://riptutorial.com/ 225

Arrow Functions
Arrow function is the new way of defining a function in ECMAScript 6.

// traditional way of declaring and defining function
var sum = function(a,b)

{

return atb;

}

// Arrow Function
let sum = (a, b)=> atb;

//Function defination using multiple lines
let checkIfEven = (a) => {
if(a % 2 ==20)
return true;
else
return false;

"this" in Arrow Function

this in function refers to instance object used to call that function but this in arrow function is
equal to this of function in which arrow function is defined.

Let's understand using diagram
Global/Windows Object

i

this this

Fu nctic& Armu:h\

5 X

this this

this refers to instance of
function

Constructor Function

Understanding using examples.

var normalFn = function () {
console.log(this) // refers to global/window object.

https://riptutorial.com/ 226

https://i.stack.imgur.com/iRsl1.jpg

var arrowFn = () => console.log(this); // refers to window or global object as function is
defined in scope of global/window object

var service = {
constructorFn : function () {
console.log(this); // refers to service as service object used to call method.

var nestedFn = function () {
console.log(this); // refers window or global object because no instance object
was used to call this method.
}
nestedFn () ;
b

arrowkFn : function () {
console.log(this); // refers to service as service object was used to call method.
let fn = () => console.log(this); // refers to service object as arrow function

defined in function which is called using instance object.
fn();

}

// calling defined functions
constructorFn();

arrowFn () ;
service.constructorFn();
service.arrowFn () ;

In arrow function, this is lexical scope which is the scope of function where arrow function is
defined.

The first example is the traditional way of defining functions and hence, this refers to
global/window object.

In the second example this is used inside arrow function hence this refers to the scope where it is

defined(which is windows or global object). In the third example this is service object as service

object is used to call the function.

In fourth example, arrow function in defined and called from the function whose scope is service,

hence it prints service object.
Note: - global object is printed in Node.Js and windows object in browser.

Read Node.js v6 New Features and Improvement online: https://riptutorial.com/node-
Jjs/topic/8593/node-js-v6-new-features-and-improvement

https://riptutorial.com/

227

https://riptutorial.com/node-js/topic/8593/node-js-v6-new-features-and-improvement
https://riptutorial.com/node-js/topic/8593/node-js-v6-new-features-and-improvement

C_hapter 67: Node.js with CORS

Examples

Enable CORS in express.|s

As node.js is often used to build API, proper CORS setting can be a life saver if you want to be
able to request the API from different domains.

In the exemple, we'll set it up for the wider configuration (authorize all request types from any
domain.

In your server.js after initializing express:

// Create express server
const app = express();

app.use((req, res, next) => {
res.header ('Access-Control-Allow-Origin', '*');

// authorized headers for preflight requests
// https://developer.mozilla.org/en-US/docs/Glossary/preflight_request

res.header ('Access-Control-Allow-Headers', 'Origin, X-Requested-With, Content-Type,
Accept');
next () ;
app.options('*', (req, res) => {
// allowed XHR methods
res.header ('Access-Control-Allow-Methods', 'GET, PATCH, PUT, POST, DELETE, OPTIONS');

res.send () ;
)i
)i

Usually, node is ran behind a proxy on production servers. Therefore the reverse proxy server
(such as Apache or Nginx) will be responsible for the CORS config.

To conveniently adapt this scenario, it's possible to only enable node.js CORS when it's in
development.

This is easily done by checking nope_gnv:

const app = express();

if (process.env.NODE_ENV === 'development') {
// CORS settings
}

Read Node.js with CORS online: https://riptutorial.com/node-js/topic/9272/node-js-with-cors

https://riptutorial.com/

228

https://riptutorial.com/node-js/topic/9272/node-js-with-cors

C_hapter 68: Node.JS with ES6

Introduction

ES6, ECMAScript 6 or ES2015 is the latest specification for JavaScript which introduces some
syntactic sugar to the language. It's a big update to the language and introduces a lot of new
features

More details on Node and ES6 can be found on their site hitps://nodejs.org/en/docs/es6/

Examples

Node ES6 Support and creating a project with Babel

The whole ES6 spec is not yet implemented in its entirety so you will only be able to use some of
the new features. You can see a list of the current supported ES6 features at http://node.green/

Since NodeJS v6 there has been pretty good support. So if you using NodeJS v6 or above you
can enjoy using ES6. However, you may also want to use some of the unreleased features and
some from beyond. For this you will need to use a transpiler

It is possible to run a transpiler at run time and build, to use all of the ES6 features and more. The
most popular transpiler for JavaScript is called Babel

Babel allows you to use all of the features from the ES6 specification and some additional not-in-

spec features with 'stage-0' such as import thing from 'thing instead oOf var thing =
require ('thing')

If we wanted to create a project where we use 'stage-0' features such as import we would need to
add Babel as a transpiler. You'll see projects using react and Vue and other commonJS based
patterns implement stage-0 quite often.

create a new node project

mkdir my-es6-app
cd my-es6-app
npm init

Install babel the ES6 preset and stage-0

npm install --save-dev babel-preset-es2015 babel-preset-stage-2 babel-cli babel-register

Create a new file called server.js and add a basic HTTP server.

import http from 'http'

http.createServer ((req, res) => {
res.writeHead (200, {'Content-Type': 'text/plain'})

https://riptutorial.com/ 229

http://www.ecma-international.org/ecma-262/6.0/
https://github.com/lukehoban/es6features
https://nodejs.org/en/docs/es6/
http://node.green/
https://babeljs.io/

res.end('Hello World\n"')
}).listen (3000, '127.0.0.1")

console.log('Server running at http://127.0.0.1:3000/")

Note that we use an import http from 'http' thisis a stage-0 feature and if it works it means we've
got the transpiler working correctly.

If you run node server. js it will fail not knowing how to handle the import.

Creating a .babelrc file in the root of your directory and add the following settings

"presets": ["es2015", "stage-2"],
"plugins": []
}

you can now run the server with node src/index.js --exec babel-node

Finishing off it is not a good idea to run a transpiler at runtime on a production app. We can
however implement some scripts in our package.json to make it easier to work with.

"scripts": {
"start": "node dist/index.js",
"dev": "babel-node src/index.js",
"build": "babel src -d dist",
"postinstall": "npm run build"
by

The above will on npm insta11 build the transpiled code to the dist directory allow npm start to use
the transpiled code for our production app.

npm run dev Will boot the server and babel runtime which is fine and preferred when working on a
project locally.

Going one further you could then install nodemon npm install nodemon --save-dev t0 Watch for
changes and then reboot the node app.

This really speeds up working with babel and NodeJS. In you package.json just update the "dev"
script to use nodemon

"dev": "nodemon src/index.js —--exec babel-node",

Use JS es6 on your NodeJS app

JS es6 (also known as es2015) is a set of new features to JS language aim to make it more
intuitive when using OOP or while facing modern development tasks.

Prerequisites:

https://riptutorial.com/ 230

1. Check out the new esb6 features at http://es6-features.org - it may clarify to you if you really
intend to use it on your next NodeJS app

2. Check the compatibility level of your node version at http://node.green
3. If all is ok - let's code on!

Here is a very short sample of a simple he11o woria app with JS es6

'use strict'
class Program
{

constructor ()

{
this.message = 'hello es6 :)';
}
print ()
{

setTimeout (() =>

{
console.log(this.message) ;
this.print () ;

}, Math.random() * 1000);

}

new Program() .print () ;

You can run this program and observe how it print the same message over and over again.

Now.. let break it down line by line:

'use strict'

This line is actually required if you intend to use js es6. strict mode, intentionally, has different
semantics from normal code (please read more about it on MDN - https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Strict_mode)

class Program

Unbelievable - a c1ass keyword! Just for a quick reference - before es6 the only way do define a
class in js was with the... function keyword!

function MyClass() // class definition

{
}

var myClassObject = new MyClass(); // generating a new object with a type of MyClass

https://riptutorial.com/ 231

http://es6-features.org
http://node.green
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode)

When using OOP, a class is a very fundamental ability which assist the developer to represent a
specific part of a system (breaking down code is crucial when the code is getting larger.. for
instance: when writing server-side code)

constructor ()

{

this.message = 'hello es6 :)';

You got to admit - this is pretty intuitive! This is the c'tor of my class - this unique "function™ will
occur every time an object is created from this particular class (in our program - only once)

print ()

{
setTimeout (() => // this is an 'arrow' function
{

console.log(this.message) ;

this.print (); // here we call the 'print' method from the class template itself (a
recursion in this particular case)

}, Math.random() * 1000);

Because print is defined in the class scope - it is actually a method - which can be invoked from
either the object of the class or from within the class itself!

So.. till now we defined our class.. time to use it:

new Program() .print ();

Which is truly equals to:

var prog = new Program(); // define a new object of type 'Program'

prog.print (); // use the program to print itself

In conclusion: JS es6 can simplify your code - make it more intuitive and easy to understand
(comparing with the previous version of JS).. you may try to re-write an existing code of yours and
see the difference for yourself

ENJOY 3)

Read Node.JS with ES6 online: https://riptutorial.com/node-js/topic/5934/node-js-with-es6

https://riptutorial.com/ 232

https://riptutorial.com/node-js/topic/5934/node-js-with-es6

C_hapter 69: Node.js with Oracle

Examples

Connect to Oracle DB
A very easy way to connect to an ORACLE database is by using or-c1=4> module. This module
handles the connection between your Node.js app and Oracle server. You can install it like any

other module:

npm install oracledb

Now you have to create an ORACLE connection, which you can later query.

const oracledb = require('oracledb');

oracledb.getConnection (

{

user : "oli",
password : "password",
connectString : "ORACLE_DEV_DB_TNS_NAME"
s
connExecute

)i

The connectString "ORACLE_DEV_DB_TNA_ NAME" may live in a tnsnames.org file in the same
directory or where your oracle instant client is installed.

If you don't have any oracle instant client installed on you development machine you may follow
the instant client installation guide for your Operating SyStem.

Query a connection object without parameters

Use may now use the connExecute-Function for executing a query. You have the option to get the
guery result as an object or array. The result ist printed to console.log.

function connExecute (err, connection)
{
if (err) {
console.error (err.message) ;
return;
}
sgql = "select 'test' as cl, 'oracle' as c2 from dual";
connection.execute(sql, {}, { outFormat: oracledb.OBJECT }, // or oracledb.ARRAY
function (err, result)
{
if (err) {
console.error (err.message) ;
connRelease (connection) ;

return;

https://riptutorial.com/ 233

https://github.com/oracle/node-oracledb
https://github.com/oracle/node-oracledb/blob/master/INSTALL.md#which-instructions-to-follow

}

console.log(result.metabData) ;
console.log(result.rows) ;
connRelease (connection) ;

Since we used a non-pooling connection, we have to release our connection again.

function connRelease (connection)

{

connection.close (
function (err) {
if (err) {
console.error (err.message) ;

The output for an object will be

[{ name: 'Cl' }, { name: 'C2' }]
[{ Cl: 'test', C2: 'oracle' }]

and the output for an array will be

[{ name: 'Cl' }, { name: 'C2' }]
[["test', 'oracle']]

Using a local module for easier querying

To simplify your querying from ORACLE-DB, you may want to call your query like this:

const oracle = require('./oracle.js');

const sqgl = "select 'test' as cl, 'oracle' as c2 from dual";
oracle.queryObject (sql, {}, {})
.then (function (result) {
console.log(result.rows[0]['C2']);
})
.catch (function (err) {
next (err) ;

)i

Building up the connection and executing is included in this oracle.js file with content as follows:

'use strict';
const oracledb = require('oracledb');

const oracleDbRelease = function (conn) {
conn.release (function (err) {
if (err)
console.log(err.message) ;
1)

https://riptutorial.com/ 234

}i

function queryArray(sgl, bindParams, options) {
options.isAutoCommit = false; // we only do SELECTs

return new Promise (function (resolve, reject) {
oracledb.getConnection (

{

user g Welid",
password : "password",
connectString : "ORACLE_DEV_DB_TNA_NAME"

})
.then (function (connection) {
//console.log("sgl log: " + sgl + " params " + bindParams) ;
connection.execute (sgl, bindParams, options)
.then (function (results) {
resolve (results) ;
process.nextTick (function () {
oracleDbRelease (connection) ;
)i
})

.catch (function (err) {
reject (err) ;

process.nextTick (function () {
oracleDbRelease (connection) ;
})i
P
})
.catch (function (err) {
reject (err) ;

1)

function queryObject (sgl, bindParams, options) {
options['outFormat'] = oracledb.OBJECT; // default is oracledb.ARRAY

return queryArray (sgl, bindParams, options);

module.exports = queryArray;
module.exports.queryArray = queryArray;
module.exports.queryObject = queryObject;

Note that you have both methods queryArray and queryObject to call on your oracle object.

Read Node.js with Oracle online: https://riptutorial.com/node-js/topic/8248/node-js-with-oracle

https://riptutorial.com/ 235

https://riptutorial.com/node-js/topic/8248/node-js-with-oracle

C_hapter 70: NodeJS Beginner Guide

Examples

Hello World !

Place the following code into a file name heilioworid. js
console.log("Hello World");

Save the file, and execute it through Node.js:
node helloworld.js

Read NodeJS Beginner Guide online: https://riptutorial.com/node-js/topic/7693/nodejs-beginner-
guide

https://riptutorial.com/ 236

https://riptutorial.com/node-js/topic/7693/nodejs-beginner-guide
https://riptutorial.com/node-js/topic/7693/nodejs-beginner-guide

C_hapter /1: NodeJS Frameworks

Examples

Web Server Frameworks

Express

var express = require ('express');
var app = express();

app.get ('/', function (req, res) {
res.send('Hello World!"'");
)i

app.listen (3000, function () {

console.log('Example app listening on port 3000!'"');
1)

Koa

var koa = require('koa');
koa () ;

var app

app.use (function * (next) {

var start = new Date;

yield next;

var ms = new Date - start;

console.log('%s %s - %s', this.method, this.url, ms);
1)

app.use (function * () {
this.body = 'Hello World';
}) i

app.listen(3000);
Command Line Interface Frameworks

Commander.js

var program = require ('commander');

program
.version('0.0.1")

program
.command ('hi"'")
.description('initialize project configuration')
.action (function () {

https://riptutorial.com/

237

console.log('Hi my Friend!!!"');

}) i

program
.command ('bye [name]')
.description('initialize project configuration')
.action (function (name) {
console.log('Bye ' + name + '. It was good to see you!');

}) i

program
.command ('*")
.action (function (env) {
console.log('Enter a Valid command') ;
terminate (true);

}) i

program.parse (process.argv) ;

Vorpal.js

const vorpal = require('vorpal') ();
vorpal
.command ('foo', 'Outputs "bar".')

.action (function(args, callback) {
this.log('bar');
callback () ;

1)

vorpal
.delimiter ('myapp$")
.show () ;

Read NodeJS Frameworks online: https://riptutorial.com/node-js/topic/6042/nodejs-frameworks

https://riptutorial.com/ 238

https://riptutorial.com/node-js/topic/6042/nodejs-frameworks

C_hapter 72: Nodejs History

Introduction

Here we are going to discuss about the history of Node.js, version information and it's current
status.

Examples

Key events in each year

2009

3rd March : The project was named as "node”

1st October : First very early preview of npm, the Node package

manager

8th November : Ryan Dahl's (Creator of Node.js) Original Node.js Talk at JSConf 2009

2010

Express: A Node.js web development framework
Socket.io initial release

28th April : Experimental Node.js Support on Heroku
28th July : Ryan Dahl's Google Tech Talk on Node.js
20th August : Node.js 0.2.0 released

2011

31st March : Node.js Guide
1st May : npm 1.0: Released
1st May : Ryan Dahl's AMA on Reddit
10th July : The Node Beginner Book, an introduction to Node.js, is completed.
o A comprehensive Node.js tutorial for beginners.
16th August : LinkedIn uses Node.|s
o LinkedIn launched its completely overhauled mobile app with new features and new
parts under the hood.
5th October : Ryan Dahl talks about the history of Node.js and why he created it
5th December : Node.js in production at Uber
- Uber Engineering Manager Curtis Chambers explains why his company completely re-
engineered their application using Node.js to increase efficiency and improve the
partner and customer experience.

https://riptutorial.com/ 239

https://github.com/nodejs/node-v0.x-archive/commit/19478ed4b14263c489e872156ca55ff16a07ebe0
https://groups.google.com/forum/?hl=en#!topic/nodejs/erDWyS4xPw8
https://groups.google.com/forum/?hl=en#!topic/nodejs/erDWyS4xPw8
https://groups.google.com/forum/?hl=en#!topic/nodejs/erDWyS4xPw8
https://www.youtube.com/watch?v=ztspvPYybIY
https://blog.heroku.com/archives/2010/4/28/node_js_support_experimental
https://www.youtube.com/watch?v=F6k8lTrAE2g
https://groups.google.com/forum/#!topic/nodejs/wEDF_X12HVc
https://nodejs.org/en/blog/npm/npm-1-0-released/
https://www.reddit.com/r/node/comments/h1m2o/i_am_ryan_dahl_creator_of_nodejs_ama/
http://nodebeginner.org/index.html
http://venturebeat.com/2011/08/16/linkedin-node/
https://www.youtube.com/watch?v=SAc0vQCC6UQ
https://www.joyent.com/developers/videos/node-js-office-hours-curtis-chambers-uber

2012

» 30th January : Node.js creator Ryan Dahl steps away from Node’s day-to-day
o 25th June : Node.js v0.8.0 [stable] is out
» 20th December : Hapi, a Node.|s framework is released

2013

30th April : The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.js
17th May : How We Built eBay’s First Node.js Application
15th November : PayPal releases Kraken, a Node.|s framework
22nd November : Node.js Memory Leak at Walmart
o Eran Hammer of Wal-Mart labs came to the Node.js core team complaining of a
memory leak he had been tracking down for months.
19th December : Koa - Web framework for Node.js

2014

15th January : TJ Fontaine takes over Node project
23rd October : Node.|s Advisory Board
- Joyent and several members of the Node.js community announced a proposal for a
Node.js Advisory Board as a next step towards a fully open governance model for the
Node.js open source project.
19th November : Node.js in Flame Graphs - Netflix
28th November : 10.js — Evented I/O for V8 Javascript

2015

Q1

* 14th January : 10.js 1.0.0
» 10th Febraury : Joyent Moves to Establish Node.js Foundation
o Joyent, IBM, Microsoft, PayPal, Fidelity, SAP and The Linux Foundation Join Forces to
Support Node.js Community With Neutral and Open Governance
e 27th Febraury : 10.js and Node.|s reconciliation proposal

Q2

e 14th April : npm Private Modules
» 28th May : Node lead TJ Fontaine is stepping down and leaving Joyent
» 13th May : Node.js and io.js are merging under the Node Foundation

https://riptutorial.com/ 240

https://groups.google.com/forum/#!topic/nodejs/hfajgpvGTLY
https://nodejs.org/en/blog/release/v0.8.0/
http://hueniverse.com/2012/12/20/hapi-a-prologue/
http://blog.mongodb.org/post/49262866911/the-mean-stack-mongodb-expressjs-angularjs-and
http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-first-node-js-application/
https://github.com/krakenjs/kraken-js/releases/tag/v0.6.1
http://www.joyent.com/blog/walmart-node-js-memory-leak
https://nodejs.org/en/blog/uncategorized/tj-fontaine-new-node-lead/
https://www.joyent.com/blog/node-js-advisory-board
http://techblog.netflix.com/2014/11/nodejs-in-flames.html
https://iojs.org/
https://github.com/nodejs/node/commit/b82bb600370db7207a39e53329af228f6af3ffa1
http://www.joyent.com/about/press/joyent-moves-to-establish-nodejs-foundation
https://github.com/nodejs/node/issues/978
https://www.npmjs.com/private-modules
http://venturebeat.com/2015/05/08/node-lead-tj-fontaine-is-stepping-down-and-leaving-joyent-too/
https://github.com/nodejs/node/issues/1664#issuecomment-101828384

Q3

* 2nd August : Trace - Node.js performance monitoring and debugging
o Trace is a visualized microservice monitoring tool that gets you all the metrics you
need when operating microservices.
e 13th August: 4.0 is the new 1.0

Q4

e 12th October : Node v4.2.0, first Long Term Support release
» 8th December : Apigee, RisingStack and Yahoo join the Node.js Foundation
» 8th & 9th December : Node Interactive

o The first annual Node.js conference by the Node.js Foundation

2016
Q1

» 10th February : Express becomes an incubated project
e 23rd March : The leftpad incident
e 29th March : Google Cloud Platform joins the Node.js Foundation

Q2

e 26th April : npm has 210.000 users

Q3

e 18th July : CJ Silverio becomes the CTO of npm
e 1st August : Trace, the Node.js debugging solution becomes generally available
» 15th September : The first Node Interactive in Europe

Q4

» 11th October : The yarn package manager got released
» 18th October : Node.js 6 becomes the LTS version

Reference

1. "History of Node.js on a Timeline" [Online]. Available : [https://blog.risingstack.com/history-
of-node-js]

Read Nodejs History online: https://riptutorial.com/node-js/topic/8653/nodejs-history

https://riptutorial.com/ 241

http://trace.risingstack.com/
https://medium.com/node-js-javascript/4-0-is-the-new-1-0-386597a3436d#.pjnzem4ar
https://nodejs.org/en/blog/release/v4.2.0/
http://finance.yahoo.com/news/apigee-risingstack-yahoo-join-node-170000939.html
http://events.linuxfoundation.org/events/node-interactive/program/schedule
https://nodejs.org/en/blog/announcements/foundation-express-news/
http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://nodejs.org/en/blog/announcements/welcome-google/
http://blog.npmjs.org/post/143451680695/how-many-npm-users-are-there
http://blog.npmjs.org/post/147604242320/npm-has-a-new-cto
https://trace.risingstack.com/
https://medium.com/@nodejs/news-from-the-node-js-ecosystem-6141bb3b2f10
https://code.facebook.com/posts/1840075619545360
https://medium.com/@nodejs/node-js-v6-transitions-to-lts-be7f18c17159
https://blog.risingstack.com/history-of-node-js%5D
https://blog.risingstack.com/history-of-node-js%5D
https://riptutorial.com/node-js/topic/8653/nodejs-history

C_hapter /3: NodeJs Routing

Introduction

How to set up basic Express web server under the node js and Exploring the Express router.

Remarks

At last, Using Express Router you can use routing facility in you application and it is easy to
implement.

Examples

Express Web Server Routing

Creating Express Web Server
Express server came handy and it deeps through many user and community. It is getting popular.

Lets create a Express Server. For Package Management and Flexibility for Dependency We will
use NPM(Node Package Manager).

1. Go to the Project directory and create package.json file. package.json { "name":
"expressRouter", "version": "0.0.1", "scripts": { "start": "node Server.js" }, "dependencies": {
"express": ""4.12.3"} }

2. Save the file and install the express dependency using following command npm install. This
will create node_modules in you project directory along with required dependency.

3. Let's create Express Web Server. Go to the Project directory and create server.js file.
server.js

var express = require("express"); var app = express();
/[Creating Router() object
var router = express.Router();

/I Provide all routes here, this is for Home page.

router.get ("/", function (req, res) {
res.json ({"message" : "Hello World"});

D

app.use("/api",router);

https://riptutorial.com/ 242

/I Listen to this Port

app.listen(3000,function(){ console.log("Live at Port 3000"); });

For more detail on setting node server you can see [here][1l].

4. Run the server by typing following command.
node server.js

If Server runs successfully, you will se something like this.

@ & @ pralad@pralad: ~/reactjs/routing-express

pralad@pralad:~/reactjs/routing-express$ node server.
Live at Port 3000

5. Now go to the browser or postman and made a request
http://localhost:3000/api/

The output will be

https://riptutorial.com/ 243

https://i.stack.imgur.com/3ITls.png
http://localhost:3000/api/

B localhost:3000/apif x
< C 1Y | @ localhost:2000/api/

{"message":"Hello World"}

That is all, the basic of Express routing.
Now let's handle the GET,POST etc.

Change yous server.js file like

var express = require ("express");
var app = express|();

//Creating Router () object
var router = express.Router();
// Router middleware, mentioned it before defining routes.
router.use (function(req, res, next) {
console.log("/" + req.method);
next () ;
1)
// Provide all routes here, this is for Home page.
router.get ("/", function (req, res) {

res.json ({"message" : "Hello World"});

1)
app.use ("/api", router) ;

app.listen (3000, function () {
console.log("Live at Port 3000");
1)

https://riptutorial.com/ 244

https://i.stack.imgur.com/9sCpz.png

Now if you restart the server and made the request to

http://localhost:3000/api/

You Will see something like

@ & & pralad@pralad: ~freactjs/routing-express

pralad@pralad:~/reactjs/routing-expressS node server.js
Live at Port 3000

‘GET

Accessing Parameter in Routing

You can access the parameter from url also, Like http://example.com/api/:name/. So name
parameter can be access. Add the following code into your server.js

router.get ("/user/:1d", function (req, res) {
res.json ({"message" : "Hello "+reg.params.id});
)i

Now restart server and go to [hitp://localhost:3000/api/user/Adem][4], the output will be like

https://riptutorial.com/ 245

https://i.stack.imgur.com/3ERM7.png
http://example.com/api/:name/
http://localhost:3000/api/user/Adem%5D%5B4%5D

/. localhost:3000/api x \D

< C O |® localhost:3000/api/user/Adem

{"message":"Hello Adem"}

Read NodeJs Routing online: https://riptutorial.com/node-js/topic/9846/nodejs-routing

https://riptutorial.com/ 246

https://i.stack.imgur.com/TNuOh.png
https://riptutorial.com/node-js/topic/9846/nodejs-routing

C_hapter /4. NodeJS with Redis

Remarks

We have covered the basic and most commonly used operations in node_redis. You can use this
module to leverage the full power of Redis and create really sophisticated Node.js apps. You can
build many interesting things with this library such as a strong caching layer, a powerful Pub/Sub
messaging system and more. To know more about the library check out their documentation.

Examples

Getting Started

node_redis, as you may have guessed, is the Redis client for Node.js. You can install it via npm
using the following command.

npm install redis

Once you have installed node_redis module you are good to go. Let’s create a simple file, app.js,
and see how to connect with Redis from Node.js.

app.js

var redis = require('redis');
client = redis.createClient(); //creates a new client

By default, redis.createClient() will use 127.0.0.1 and 6379 as the hostname and port respectively.
If you have a different host/port you can supply them as following:

var client = redis.createClient (port, host);

Now, you can perform some action once a connection has been established. Basically, you just
need to listen for connect events as shown below.

client.on('connect', function() {
console.log('connected');
)i

So, the following snippet goes into app.js:

var redis = require('redis');
var client = redis.createClient ();
client.on('connect', function() {

console.log('connected');
)i

https://riptutorial.com/ 247

https://www.npmjs.com/package/redis
https://www.npmjs.com/package/redis

Now, type node app in the terminal to run the app. Make sure your Redis server is up and running
before running this snippet.

Storing Key-Value Pairs

Now that you know how to connect with Redis from Node.js, let's see how to store key-value pairs
in Redis storage.

Storing Strings

All the Redis commands are exposed as different functions on the client object. To store a simple
string use the following syntax:

client.set ('framework', 'AngulardS');
Or
client.set (['framework', 'AngulardS']);

The above snippets store a simple string AngularJS against the key framework. You should note
that both the snippets do the same thing. The only difference is that the first one passes a variable
number of arguments while the later passes an args array to ciient.set () function. You can also
pass an optional callback to get a notification when the operation is complete:

client.set ('framework', 'AngularJS', function(err, reply) {
console.log(reply);

}) i

If the operation failed for some reason, the rr argument to the callback represents the error. To
retrieve the value of the key do the following:

client.get ('framework', function(err, reply) {
console.log(reply);
1)

client.get () lets you retrieve a key stored in Redis. The value of the key can be accessed via the
callback argument reply. If the key doesn’t exist, the value of reply will be empty.

Storing Hash

Many times storing simple values won’t solve your problem. You will need to store hashes
(objects) in Redis. For that you can use nmset () function as following:

client.hmset ('frameworks', 'javascript', 'AngularJS', 'css', 'Bootstrap', 'node', 'Express');

client.hgetall ('frameworks', function(err, object) {
console.log(object) ;

}) i

https://riptutorial.com/ 248

The above snippet stores a hash in Redis that maps each technology to its framework. The first
argument to nnset () iS the name of the key. Subsequent arguments represent key-value pairs.
Similarly, ngeta11 () IS used to retrieve the value of the key. If the key is found, the second
argument to the callback will contain the value which is an object.

Note that Redis doesn’t support nested objects. All the property values in the object will be
coerced into strings before getting stored. You can also use the following syntax to store objects in
Redis:

client.hmset ('frameworks', {

'javascript': 'AngulardS',
'css': 'Bootstrap',
'node': 'Express'

}) i

An optional callback can also be passed to know when the operation is completed.

All the functions (commands) can be called with uppercase/lowercase equivalents. For example,
client.hmset () @nd client.HuseT () are the same. Storing Lists

If you want to store a list of items, you can use Redis lists. To store a list use the following syntax:

client.rpush(['frameworks', 'angularjs', 'backbone'], function(err, reply) {
console.log(reply); //prints 2
}) i

The above snippet creates a list called frameworks and pushes two elements to it. So, the length
of the list is now two. As you can see | have passed an args array to rpush. The first item of the
array represents the name of the key while the rest represent the elements of the list. You can
also use 1push () instead of rpush () to push the elements to the left.

To retrieve the elements of the list you can use the 1range () function as following:

client.lrange ('frameworks', 0, -1, function(err, reply) {
console.log(reply); // ['angularjs', 'backbone']
1)

Just note that you get all the elements of the list by passing -1 as the third argument to 1range (). If
you want a subset of the list, you should pass the end index here.

Storing Sets

Sets are similar to lists, but the difference is that they don't allow duplicates. So, if you don’t want
any duplicate elements in your list you can use a set. Here is how we can modify our previous
snippet to use a set instead of list.

client.sadd(['tags', 'angularjs', 'backbonejs', 'emberjs'], function(err, reply) {
console.log(reply); // 3
1)

https://riptutorial.com/ 249

As you can see, the sadd () function creates a new set with the specified elements. Here, the
length of the set is three. To retrieve the members of the set, use the smempers () function as
following:

client.smembers ('tags', function(err, reply) {
console.log(reply);
}) i

This snippet will retrieve all the members of the set. Just note that the order is not preserved while
retrieving the members.

This was a list of the most important data structures found in every Redis powered app. Apart from
strings, lists, sets, and hashes, you can store sorted sets, hyperLogLogs, and more in Redis. If
you want a complete list of commands and data structures, visit the official Redis documentation.
Remember that almost every Redis command is exposed on the client object offered by the
node_redis module.

Some more important operations supported by node_redis.

Checking the Existence of Keys

Sometimes you may need to check if a key already exists and proceed accordingly. To do so you
can use exists () function as shown below:

client.exists ('key', function(err, reply) {
if (reply === 1) {
console.log('exists"');
} else {
console.log('doesn\'t exist');
}
1)

Deleting and Expiring Keys

At times you will need to clear some keys and reinitialize them. To clear the keys, you can use del
command as shown below:

client.del ('frameworks', function(err, reply) {
console.log(reply);
}) i

You can also give an expiration time to an existing key as following:

client.set ('keyl', 'wvall');
client.expire('keyl', 30);

The above snippet assigns an expiration time of 30 seconds to the key key1.

Incrementing and Decrementing

https://riptutorial.com/ 250

Redis also supports incrementing and decrementing keys. To increment a key use incr () function
as shown below:

client.set ('keyl', 10, function() {
client.incr('keyl', function(err, reply) {
console.log(reply); // 11
}) i
}) i

The incr () function increments a key value by 1. If you need to increment by a different amount,
you can use incrby () function. Similarly, to decrement a key you can use the functions like decr ()
and decrby ().

Read NodeJS with Redis online: https://riptutorial.com/node-js/topic/7107/nodejs-with-redis

https://riptutorial.com/ 251

https://riptutorial.com/node-js/topic/7107/nodejs-with-redis

C_hapter /5. npm

Introduction

Node Package Manager (npm) provides following two main functionalities: Online repositories for

node.js packages/modules which are searchable on search.nodejs.org. Command line utility to
install Node.js packages, do version management and dependency management of Node.js

packages.

Syntax

* npm <command> where <command> is one of:

o add-user

adduser
apihelp
author
bin

> bugs

C
cache
completion
config

o ddp

dedupe
deprecate
docs

edit

- explore

faq
find
find-dupes
get

o help

help-search
home

i

install

o info

init
isntall
issues
la

o link

list

https://riptutorial.com/

252

https://docs.npmjs.com/cli/adduser
https://docs.npmjs.com/cli/adduser
https://docs.npmjs.com/cli/cache
https://docs.npmjs.com/cli/config
https://docs.npmjs.com/cli/dedupe
https://docs.npmjs.com/cli/dedupe
https://docs.npmjs.com/cli/config
https://docs.npmjs.com/cli/help
https://docs.npmjs.com/cli/help-search
http://www.riptutorial.com/node-js/example/1588/installing-packages
http://www.riptutorial.com/node-js/example/1588/installing-packages
http://www.riptutorial.com/node-js/example/2257/setting-up-a-package-configuration
https://docs.npmjs.com/cli/link
http://www.riptutorial.com/node-js/example/8732/listing-currently-installed-packages

o |l

o In

o login

o s

o outdated
o owner

o pack

o prefix

o prune

o publish
or

o rb

o rebuild
o remove
o repo

o restart
o rm

o root

o run-script
oS

o se

o search
o set

o show

o shrinkwrap
o star

o stars

o start

o stop

o submodule
o tag

o test

o tst

o un

o uninstall
o unlink

o unpublish
o unstar

o up

o update
oV

o version
o view

o whoami

Parameters

https://riptutorial.com/ 253

https://docs.npmjs.com/cli/owner
http://www.riptutorial.com/node-js/example/8731/removing-extraneous-packages
http://www.riptutorial.com/node-js/example/1588/installing-packages
https://docs.npmjs.com/cli/rebuild
https://docs.npmjs.com/cli/rebuild
https://docs.npmjs.com/cli/repo
https://docs.npmjs.com/cli/restart
https://docs.npmjs.com/cli/rm
http://www.riptutorial.com/node-js/example/4592/running-scripts
https://docs.npmjs.com/cli/search
https://docs.npmjs.com/cli/search
https://docs.npmjs.com/cli/search
https://docs.npmjs.com/cli/config
https://docs.npmjs.com/cli/star
https://docs.npmjs.com/cli/stars
https://docs.npmjs.com/cli/start
https://docs.npmjs.com/cli/stop
https://docs.npmjs.com/cli/submodule
https://docs.npmjs.com/cli/tag
https://docs.npmjs.com/cli/test
https://docs.npmjs.com/cli/test
http://www.riptutorial.com/node-js/example/2153/uninstalling-packages
http://www.riptutorial.com/node-js/example/2153/uninstalling-packages
https://docs.npmjs.com/cli/link
https://docs.npmjs.com/cli/unpublish
https://docs.npmjs.com/cli/star
https://docs.npmjs.com/cli/update
https://docs.npmjs.com/cli/update
https://docs.npmjs.com/cli/version
https://docs.npmjs.com/cli/version
https://docs.npmjs.com/cli/view
https://docs.npmjs.com/cli/whoami

access npm publish —--access=public
bin npm bin -g

edit npm edit connect
help npm help init
init npm init

install npm install

link npm link

prune npm prune
publish npm publish ./
restart npm restart
start npm start

stop npm start
update npm update
version npm version
Examples

Installing packages

Introduction

Package is a term used by npm to denote tools that developers can use for their projects. This
includes everything from libraries and frameworks such as jQuery and AngularJS to task runners
such as Gulp.js. The packages will come in a folder typically called node_moduies, which will also
contain a package. json file. This file contains information regarding all the packages including any
dependencies, which are additional modules needed to use a particular package.

Npm uses the command line to both install and manage packages, so users attempting to use
npm should be familiar with basic commands on their operating system i.e.: traversing directories
as well as being able to see the contents of directories.

https://riptutorial.com/ 254

https://docs.npmjs.com/cli/access
https://docs.npmjs.com/cli/bin
https://docs.npmjs.com/cli/edit
https://docs.npmjs.com/cli/help
https://docs.npmjs.com/cli/init
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/link
https://docs.npmjs.com/cli/prune
https://docs.npmjs.com/cli/publish
https://docs.npmjs.com/cli/restart
https://docs.npmjs.com/cli/start
https://docs.npmjs.com/cli/stop
https://docs.npmjs.com/cli/update
https://docs.npmjs.com/cli/version

Installing NPM

Note that in order to install packages, you must have NPM installed.

The recommended way to install NPM is to use one of the installers from the Node.|s download
page. You can check to see if you already have node.js installed by running either the npm -v or
the npm version command.

After installing NPM via the Node.js installer, be sure to check for updates. This is because NPM
gets updated more frequently than the Node.js installer. To check for updates run the following
command:

npm install npm@latest —-g

How to install packages

To install one or more packages use the following:

npm install <package-name>
or
npm 1 <package—-name>...

e.g. to install lodash and express
npm install lodash express

Note: This will install the package in the directory that the command line is currently in,
thus it is important to check whether the appropriate directory has been chosen

If you already have a package. json file in your current working directory and dependencies are
defined in it, then npm insta11 will automatically resolve and install all dependencies listed in the
file. You can also use the shorthand version of the npm insta11 command which iS: npm 1

If you want to install a specific version of a package use:

npm install <name>@<version>

e.g. to install version 4.11.1 of the package lodash
npm install lodash@4.11.1

If you want to install a version which matches a specific version range use:

npm install <name>@<version range>

e.g. to install a version which matches "version >= 4.10.1" and "version < 4.11.1"
of the package lodash
npm install lodash@">=4.10.1 <4.11.1"

https://riptutorial.com/ 255

https://nodejs.org/en/download/
https://nodejs.org/en/download/

If you want to install the latest version use:

npm install <name>@latest

The above commands will search for packages in the central npm repository at npmjs.com. If you
are not looking to install from the npm registry, other options are supported, such as:

packages distributed as a tarball
npm install <tarball file>
npm install <tarball url>

packages available locally
npm install <local path>

packages available as a git repository
npm install <git remote url>

packages available on GitHub
npm install <username>/<repository>

packages available as gist (need a package.json)
npm install gist:<gist-id>

packages from a specific repository
npm install --registry=http://myreg.mycompany.com <package name>

packages from a related group of packages
See npm scope
npm install @<scope>/<name> (@<version>)

Scoping is useful for separating private packages hosted on private registry from
public ones by setting registry for specific scope

npm config set @mycompany:registry http://myreg.mycompany.com

npm install @mycompany/<package name>

Usually, modules will be installed locally in a folder named node_modulies, Which can be found in
your current working directory. This is the directory require () Will use to load modules in order to
make them available to you.

If you already created a package. json file, you can use the --save (shorthand -s) option or one of its
variants to automatically add the installed package to your package. json as a dependency. If
someone else installs your package, npm Will automatically read dependencies from the

package. json file and install the listed versions. Note that you can still add and manage your
dependencies by editing the file later, so it's usually a good idea to keep track of dependencies, for
example using:

npm install --save <name> # Install dependencies
or
npm install -S <name> # shortcut version --save
or

npm 1 -S <name>

In order to install packages and save them only if they are needed for development, not for
running them, not if they are needed for the application to run, follow the following command:

https://riptutorial.com/ 256

https://www.npmjs.com/

npm install --save-dev <name> # Install dependencies for development purposes
or

npm install -D <name> # shortcut version --save-dev

or

npm i -D <name>

Installing dependencies

Some modules do not only provide a library for you to use, but they also provide one or more
binaries which are intended to be used via the command line. Although you can still install those
packages locally, it is often preferred to install them globally so the command-line tools can be
enabled. In that case, npn Will automatically link the binaries to appropriate paths (e.g.
/usr/local/bin/<name>) SO they can be used from the command line. To install a package globally,
use:

npm install --global <name>
or

npm install —-g <name>

or

npm i1 -g <name>

e.g. to install the grunt command line tool
npm install -g grunt-cli

If you want to see a list of all the installed packages and their associated versions in the current
workspace, use:

npm list
npm list <name>

Adding an optional name argument can check the version of a specific package.

Note: If you run into permission issues while trying to install an npm module globally, resist the
temptation to issue a sudo npm install -g ... t0 overcome the issue. Granting third-party scripts to
run on your system with elevated privileges is dangerous. The permission issue might mean that
you have an issue with the way npn itself was installed. If you're interested in installing Node in
sandboxed user environments, you might want to try using nvim.

If you have build tools, or other development-only dependencies (e.g. Grunt), you might not want
to have them bundled with the application you deploy. If that's the case, you'll want to have it as a
development dependency, which is listed in the package. json UNder devbependencies. TO install a
package as a development-only dependency, use —-save-dev (Or -D).

npm install —--save-dev <name> // Install development dependencies which is not included in
production

or

npm install -D <name>

https://riptutorial.com/ 257

https://github.com/creationix/nvm

You will see that the package is then added to the devbependencies Of your package. json.

To install dependencies of a downloaded/cloned node.js project, you can simply use

npm install
or
npm i

npm will automatically read the dependencies from package. json and install them.

NPM Behind A Proxy Server

If your internet access is through a proxy server, you might need to modify npm install commands
that access remote repositories. npm uses a configuration file which can be updated via command
line:

npm config set

You can locate your proxy settings from your browser's settings panel. Once you have obtained
the proxy settings (server URL, port, username and password); you need to configure your npm
configurations as follows.

$ npm config set proxy http://<username>:<password>Q@<proxy-server—url>:<port>
$ npm config set https—-proxy http://<username>:<password>@<proxy-server-url>:<port>

username, password, port fields are optional. Once you have set these, your npm install, npm i -g
etc. would work properly.

Scopes and repositories

Set the repository for the scope "myscope"
npm config set @myscope:registry http://registry.corporation.com

Login at a repository and associate it with the scope "myscope"
npm adduser —--registry=http://registry.corporation.com ——-scope=@myscope

Install a package "mylib" from the scope "myscope"
npm install @myscope/mylib

If the name of your own package starts with emyscope and the scope "myscope” is associated with
a different repository, npm publish Will upload your package to that repository instead.

You can also persist these settings in a .npmrc file:

@myscope:registry=http://registry.corporation.com

//registry.corporation.com/:_authTOKen=xXxXxXXXXXX—XXXX-XXXKX-XXXKXXKXXXXKXXKXXX

This is useful when automating the build on a CI server f.e.

https://riptutorial.com/ 258

Uninstalling packages
To uninstall one or more locally installed packages, use:

npm uninstall <package name>

The uninstall command for npm has five aliases that can also be used:

npm remove <package name>
npm rm <package name>
npm r <package name>

npm unlink <package name>
npm un <package name>

If you would like to remove the package from the package. json file as part of the uninstallation, use
the --save flag (shorthand: -s):

npm uninstall --save <package name>
npm uninstall -S <package name>

For a development dependency, use the --save-dev flag (shorthand: -p):

npm uninstall --save-dev <package name>
npm uninstall -D <package name>

For an optional dependency, use the —-save-optional flag (shorthand: -o):

npm uninstall --save-optional <package name>
npm uninstall -0 <package name>

For packages that are installed globally use the -—g1ova1 flag (shorthand: -o):

npm uninstall -g <package name>

Basic semantic versioning

Before publishing a package you have to version it. npm supports semantic versioning, this means
there are patch, minor and major releases.

For example, if your package is at version 1.2.3 to change version you have to:

1. patch release: npm version patch =>1.2.4
2. minor release: npm version minor => 1.3.0
3. major release: npm version major => 2.0.0

You can also specify a version directly with:

npm version 3.1.4 => 3.1.4

https://riptutorial.com/ 259

http://semver.org/

When you set a package version using one of the npm commands above, npm will modify the
version field of the package.json file, commit it, and also create a new Git tag with the version
prefixed with a "v", as if you've issued the command:

git tag v3.1.4

Unlike other package managers like Bower, the npm registry doesn't rely on Git tags being created
for every version. But, if you like using tags, you should remember to push the newly created tag
after bumping the package version:

git push origin master (0 push the change to package.json)
git push origin v3.1.4 (to push the new tag)

Or you can do this in one swoop with:

git push origin master --tags

Setting up a package configuration

Node.js package configurations are contained in a file called package. json that you can find at the
root of each project. You can setup a brand new configuration file by calling:

npm init

That will try to read the current working directory for Git repository information (if it exists) and
environment variables to try and autocomplete some of the placeholder values for you. Otherwise,
it will provide an input dialog for the basic options.

If you'd like to create a package. json With default values use:

npm init --yes
or
npm init -y

If you're creating a package. json fOr a project that you are not going to be publishing as an npm
package (i.e. solely for the purpose of rounding up your dependencies), you can convey this intent
in YOUI package. json file:

1. Optionally set the private property to true to prevent accidental publishing.
2. Optionally set the 1icense property to "UNLICENSED" to deny others the right to use your
package.

To install a package and automatically save it to your package. json, US€:

npm install --save <package>

The package and associated metadata (such as the package version) will appear in your
dependencies. If you save if as a development dependency (using --save-dev), the package will
instead appear in your devbependencies.

https://riptutorial.com/ 260

With this bare-bones package. json, you will encounter warning messages when installing or
upgrading packages, telling you that you are missing a description and the repository field. While it
is safe to ignore these messages, you can get rid of them by opening the package.json in any text
editor and adding the following lines to the JSON object:

[...]

"description": "No description",
"repository": {
"private": true

by
[oool]

Publishing a package

First, make sure that you have configured your package (as said in Setting up a package
configuration). Then, you have to be logged in to npmjs.

If you already have a npm user
npm login

If you don't have a user
npm adduser

To check that your user is registered in the current client
npm config 1ls

After that, when your package is ready to be published use
npm publish

And you are done.

If you need to publish a new version, ensure that you update your package version, as stated in
Basic semantic versioning. Otherwise, npm Will not let you publish the package.

name: "package—name",
version: "1.0.4"

Running scripts
You may define scripts in your package. json, for example:

{

"name": "your-package",

https://riptutorial.com/ 261

http://www.riptutorial.com/node-js/example/2257/setting-up-a-package-configuration
http://www.riptutorial.com/node-js/example/2257/setting-up-a-package-configuration
http://www.riptutorial.com/node-js/example/2178/basic-semantic-versioning

"version": "1.0.0",
"description": "",
"main": "index.js",
"author": "",
"license": "ISC",
"dependencies": {},
"devDependencies": {},
"scripts": {

"echo": "echo hello!"

}

To run the echo SCript, run npm run echo from the command line. Arbitrary scripts, such as echo
above, have to be be run with npm run <script name>. NpmM also has a number of official scripts that
it runs at certain stages of the package's life (like preinsta11). See here for the entire overview of
how npm handles script fields.

npm scripts are used most often for things like starting a server, building the project, and running
tests. Here's a more realistic example:

"scripts": {
"test": "mocha tests",
"start": "pm2 start index.js"

In the scripts entries, command-line programs like mocha Will work when installed either globally or
locally. If the command-line entry does not exist in the system PATH, npm will also check your
locally installed packages.

If your scripts become very long, they can be split into parts, like this:

"scripts": {
"very-complex—command": "npm run chain-1 && npm run chain-2",
"chain-1": "webpack",
"chain-2": "node app.js"

Removing extraneous packages

To remove extraneous packages (packages that are installed but not in dependency list) run the
following command:

npm prune
To remove all dev packages add --production flag:
npm prune —-production

More on it

https://riptutorial.com/ 262

https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/cli/prune

Listing currently installed packages
To generate a list (tree view) of currently installed packages, use
npm list

Is, la and Il are aliases of list command. la and Il commands shows extended information like
description and repository.

Options
The response format can be changed by passing options.

npm list —--json

* json - Shows information in json format

* long - Shows extended information

» parseable - Shows parseable list instead of tree

» global - Shows globally installed packages

e depth - Maximum display depth of dependency tree
» dev/development - Shows devDependencies

» prod/production - Shows dependencies

If you want, you can also go to the package's home page.

npm home <package name>

Updating npm and packages
Since npm itself is a Node.js module, it can be updated using itself.

If OS is Windows must be running command prompt as Admin

npm install —-g npm@latest

If you want to check for updated versions you can do:

npm outdated

In order to update a specific package:

npm update <package name>

This will update the package to the latest version according to the restrictions in
package.json

In case you also want to lock the updated version in package.json:

https://riptutorial.com/ 263

npm update <package name> —--save

Locking modules to specific versions

By default, npm installs the latest available version of modules according to each dependencies'
semantic version. This can be problematic if a module author doesn't adhere to semver and
introduces breaking changes in a module update, for example.

To lock down each dependencies' version (and the versions of their dependencies, etc) to the
specific version installed locally in the node_modu1es folder, use

npm shrinkwrap

This will then create a npm-shrinkwrap. json alongside your package. json Which lists the specific
versions of dependancies.

Setting up for globally installed packages

You can use npn install -g to install a package "globally.” This is typically done to install an
executable that you can add to your path to run. For example:

npm install -g gulp-cli

If you update your path, you can call guip directly.

On many OSes, npm install -g Will attempt to write to a directory that your user may not be able to
write to such as /usr/bin. YOu should not use sudo npm install in this case since there is a
possible security risk of running arbitrary scripts with sudo and the root user may create directories
in your home that you cannot write to which makes future installations more difficult.

You can tell npm Where to install global modules to via your configuration file, ~/.npmrc. This is
called the prerix Which you can view with npm prefix.

prefix=~/.npm-global-modules

This will use the prefix whenever you run npm install -g. YOU Can alSo USE npm install —-prefix
~/.npm-global-modules 10 Set the prefix when you install. If the prefix is the same as your
configuration, you don't need to use .

In order to use the globally installed module, it needs to be on your path:

export PATH=$PATH:~/.npm-global-modules/bin

Now when you run npm install -g gulp-cli You Will be able to use guip.

Note: When you npm insta11 (Without -g) the prefix will be the directory with package. json Or the
current directory if none is found in the hierarchy. This also creates a directory node_modules/.bin

https://riptutorial.com/ 264

http://www.riptutorial.com/node-js/example/2178/basic-semantic-versioning

that has the executables. If you want to use an executable that is specific to a project, it's not
necessary tO US€ npm install —-g. YOU can use the one in node_modules/.bin.

Linking projects for faster debugging and development

Building project dependencies can sometimes be a tedious task. Instead of publishing a package
version to NPM and installing the dependency to test the changes, use npm 1ink. npm 1ink Creates
a symlink so the latest code can be tested in a local environment. This makes testing global tools
and project dependencies easier by allowing the latest code run before making a published
version.

Help text

NAME
npm-link - Symlink a package folder

SYNOPSIS
npm link (in package dir)

npm link [<@scope>/]<pkg>[@<version>]

alias: npm 1ln

Steps for linking project dependencies

When creating the dependency link, note that the package name is what is going to be referenced
in the parent project.

1. CD into a dependency directory (ex: cd ../my-dep)
2. npm link

3. CD into the project that is going to use the dependency
4. npm link my-dep OF if namespaced npm link @namespace/my-dep

Steps for linking a global tool

1. CD into the project directory (ex: cd eslint-watch)
2. npm link

3. Use the tool

4, esw —-—quiet

Problems that may arise

Linking projects can sometimes cause issues if the dependency or global tool is already installed.
npm uninstall (-g) <pkg> and then running npm 1ink NOrmally resolves any issues that may arise.

Read npm online: https://riptutorial.com/node-js/topic/482/npm

https://riptutorial.com/ 265

https://riptutorial.com/node-js/topic/482/npm

C_hapter 76: nvm - Node Version Manager

Remarks

The urls used in the above examples reference a specific version of Node Version Manager. It is
most likely that the latest version is different to what's being referenced. To install nvm using the

latest version, click here to access nvm on GitHub, which will provide you with latest urls.

Examples

Install NVM

You can use curl:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

Or you can use wget:

wget —gO- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

Check NVM version
To verify that nvm has been installed, do:

command —-v nvm

which should output 'nvm' if the installation was successful.

Installing an specific Node version
Listing available remote versions for installation

nvm ls-remote

Installing a remote version

nvm install <version>

For example

nvm install 0.10.13

Using an already installed node version

https://riptutorial.com/

266

https://github.com/creationix/nvm

To list available local versions of node through NVM:

nvm 1s

For example, if nvm 1s returns:

$ nvm 1ls
v4.3.0
v5.5.0

You can switch to vs.5.0 with:

nvm use v5.5.0
Install nvm on Mac OSX

INSTALLATION PROCESS

You can install Node Version Manager using git, curl or wget. You run these commands in
Terminal on Mac OSX.

curl example:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

wget example:

wget —qO- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

TEST THAT NVM WAS PROPERLY INSTALLED

To test that nvm was properly installed, close and re-open Terminal and enter nvn. If you get a
nvm: command not found message, your OS may not have the necessary .bash_profile file. In
Terminal, enter touch ~/.bash_profile and run the above install script again.

If you still get nvm: command not found, try the following:

* In Terminal, enter nano .bashrc. YOU should see an export script almost identical to the
following:

export NVM_DIR="/Users/johndoe/.nvm” [-s “$NVM_DIR/nvm.sh”] && .
“6NVM_DIR/nvm.sh”

» Copy the export script and remove it from .bashrc

» Save and Close the .bashrc file (CTRL+O — Enter — CTRL+X)

* Next, enter nano .bash_profile t0 open the Bash Profile

» Paste the export script you copied into the Bash Profile on a new line

https://riptutorial.com/ 267

» Save and Close the Bash Profile (CTRL+O — Enter — CTRL+X)
* Finally enter nano .pashrc to re-open the .bashrc file
» Paste the following line into the file:

source ~/.nvm/nvm.sh

» Save and Close (CTRL+O — Enter — CTRL+X)
* Restart Terminal and enter nvm to test if it's working

Setting alias for node version
If you want to set some alias name to installed node version, do:

nvm alias <name> <version>

Similary to unalias, do:

nvm unalias <name>

A proper usecase would be, if you want to set some other version than stable version as default
alias. derault aliased versions are loaded on console by default.

Like:
nvm alias default 5.0.1

Then every time console/terminal starts 5.0.1 would be present by default.

Note:

nvm alias # lists all aliases created on nvm

Run any arbitrary command in a subshell with the desired version of node
List all the node versions installed

nvm 1s
v4.5.0
v6.7.0

Run command using any node installed version

nvm run 4.5.0 —--version or nvm exec 4.5.0 node —--version
Running node v4.5.0 (npm v2.15.9)
v4.5.0

nvm run 6.7.0 —--version or nvm exec 6.7.0 node —--version
Running node v6.7.0 (npm v3.10.3)

https://riptutorial.com/ 268

v6.7.0

using alias

nvm run default --version or nvm exec default node —--version
Running node v6.7.0 (npm v3.10.3)
v6.7.0

To install node LTS version
nvm install --1ts
Version Switching
nvm use v4.5.0 or nvm use stable (alias)

Read nvm - Node Version Manager online: https://riptutorial.com/node-js/topic/2823/nvm---node-
version-manager

https://riptutorial.com/ 269

https://riptutorial.com/node-js/topic/2823/nvm---node-version-manager
https://riptutorial.com/node-js/topic/2823/nvm---node-version-manager

C_hapter /7. OAuth 2.0

Examples

OAuth 2 with Redis Implementation - grant_type: password

In this example | will be using oauth2 in rest api with redis database

Important: You will need to install redis database on your machine, Download it from
here for linux users and from here to install windows version, and we will be using redis
manager desktop app, install it from here.

Now we have to set our node.js server to use redis database.

» Creating Server file: app.js

var express = require ('express'),
bodyParser = require ('body-parser'),
oauthserver = require ('oauth2-server'); // Would be: 'oauth2-server'

var app = express();

app.use (bodyParser.urlencoded ({ extended: true }));

app.use (bodyParser. json()) ;

app.oauth = ocauthserver ({
model: require('./routes/Oauth2/model"'),
grants: ['password', 'refresh_token'],
debug: true

P

// Handle token grant requests
app.all ('/oauth/token', app.oauth.grant());

app.get ('/secret', app.oauth.authorise(), function (req, res) {
// Will require a valid access_token
res.send ('Secret area');

)i

app.get ('/public', function (req, res) {
// Does not require an access_token
res.send ('Public area');

P

// Error handling
app.use (app.oauth.errorHandler ());

app.listen(3000);

» Create Oauth2 model in routes/Oauth2/model.js

https://riptutorial.com/ 270

https://redis.io/download
https://github.com/ServiceStack/redis-windows
https://redisdesktop.com/download

var model = module.exports,

util = require('util'),
redis = require('redis');
var db = redis.createClient ();
var keys = {
token: 'tokens:%s',
client: 'clients:%s',
refreshToken: 'refresh_ tokens:%s',
grantTypes: 'clients:%s:grant_types',
user: 'users:%s'
}i
model.getAccessToken = function (bearerToken, callback) {

db.hgetall (util. format (keys.token, bearerToken), function (err, token) {
if (err) return callback (err);

if (!token) return callback();

callback (null, {
accessToken: token.accessToken,
clientId: token.clientId,
expires: token.expires ? new Date (token.expires) : null,
userId: token.userId

1)

1)
bi

model.getClient = function (clientId, clientSecret, callback) {
db.hgetall (util.format (keys.client, clientId), function (err, client) {
if (err) return callback (err);

if (!client || client.clientSecret !== clientSecret) return callback();

callback (null, {
clientId: client.clientId,
clientSecret: client.clientSecret
1)
1)
bi

model.getRefreshToken = function (bearerToken, callback) {
db.hgetall (util.format (keys.refreshToken, bearerToken), function (err, token) {
if (err) return callback (err);

if (!'token) return callback();

callback (null, {
refreshToken: token.accessToken,
clientId: token.clientId,
expires: token.expires ? new Date (token.expires) : null,
userId: token.userId

1)

1)
bi

model.grantTypeAllowed = function (clientId, grantType, callback) {
db.sismember (util.format (keys.grantTypes, clientId), grantType, callback);
bi

https://riptutorial.com/ 271

model.saveAccessToken = function (accessToken, clientId, expires, user, callback) {
db.hmset (util.format (keys.token, accessToken), {
accessToken: accessToken,
clientId: clientId,
expires: expires ? expires.toISOString() : null,
userId: user.id
}, callback);
bi

model.saveRefreshToken = function (refreshToken, clientId, expires, user, callback) {
db.hmset (util.format (keys.refreshToken, refreshToken), {
refreshToken: refreshToken,
clientId: clientId,
expires: expires ? expires.toISOString() : null,
userId: user.id
}, callback);
bi

model.getUser = function (username, password, callback) {
db.hgetall (util.format (keys.user, username), function (err, user) {
if (err) return callback (err);

if (!'user || password !== user.password) return callback();

callback (null, {
id: username
1)
1)
bi

You only need to install redis on your machine and run the following node file

#! /usr/bin/env node

var db = require('redis') .createClient ();
db.multi ()
.hmset ('users:username', {
id: 'username',
username: 'username',

password: 'password'
})
.hmset ('clients:client', {
clientId: 'client',
clientSecret: 'secret'
})//clientId + clientSecret to base 64 will generate Y2xpZW500nN1Y3JldA==
.sadd('clients:client:grant_types', [
'password’',
'refresh_token'
1)
.exec (function (errs) {
if (errs) {
console.error (errs[0] .message) ;
return process.exit (1);

console.log('Client and user added successfully');
process.exit ();

}) i

https://riptutorial.com/ 272

Note: This file will set credentials for your frontend to request token So your request from

Sample redis database after calling the above file:

9 Redis Desktop Manager v.(
“ . Ic__-lcaf local::db0: :users:username ¥
4 |5 db0 (3/3)
4 W clenis () HASH: |users:username
L4 clients:client
4 [client '[1} ['Cl'lu":l'- kE“_.l' value
4 clients:client:grant_types 1 i ——
am- userz;alri'usemam 2 username username
2 db1 (0) 3 password password
|5 db2 (0)
|5 db3 (0)
2 db4 (0)
) dbs (0)
(£ dbs (0)
(&) db7 (0)
2 db8 (0)
) dbo (0)
155 db1o (D) <
(&5 dbi11 (D)
:_El_| db12 I:U:Il KE"_H"
& db13 (D)
£ db14 (0)
(&5 dbis (0)
Value:
2017-03-28 18:16:02 : Connection: local > Response i
2017-03-28 18:16:02 : Connection: local > [runCommz
2017-03-28 18:16:02 : Connection: local > Response i
2017-03-28 18:16:02 : Connection: local > [runCommz
2017-03-28 18:16:02 : Connection: local > Response i

| & system log £3 |

7 ALE

| =import/Export ~|| o Connect to Redis Server

€ B a

Request will be as follows:

Sample Call to api

https://riptutorial.com/ 273

https://i.stack.imgur.com/8kn1X.png

Request

» http://localhost:3000/0auth/token

Socket
O Ger @ posT QO PuT (Q DELETE () PATC
History w
Raw headers Header
Saved v
authorization Basic Y2xpZW500nNIY:
Projects w
Content-Type application/x-www-forn
ADD HEADER
A\f
Raw payload
ENCODE PAYLOAD DECODE PAYLOAD
Form data for x-www-form-urlencoded parameters
username username
password password
grani_type password
o L 8 :
Header:
1. authorization: Basic followed by the password set when you first setup redis:
a. clientld + secretld to base64
2. Data form:
username: user that request token
password: user password
grant_type: depends on what options do you want, | choose passwod which
https://riptutorial.com/ 274

https://i.stack.imgur.com/D7TCi.png

takes only username and password to be created in redis, Data on redis will be
as below:

"access_token":"1d3fe602dal2a086ecb2b996fd7b7ae874120c4£f",

"token_type":"bearer", // Will be used to access api + access+token e.g. bearer
1d3fe602dal2a086ecb2b996£fd7b7ae874120c4f

"expires_in":3600,

"refresh_token":"b6ad56e5c9abab3c85d7e21b1514680bbf711450"

So We need to call our api and grab some secured data with our access token we have just
created, see below:

Request

» http://localhost:3000/secret

Socket
@ cGer Q posT QO Pur (DELETE () PATC
History v
Raw headers Header
Saved v
authorization Bearer 1d3fe602dal2al
Projects v
Content-Type application/x-www-forn
ADD HEADER

A

pliilel @ 1200 ms

Raw

0D B © ©

Secret area

S T 8

https://riptutorial.com/ 275

https://i.stack.imgur.com/5C93O.png

when token expires api will throw an error that the token expires and you cannot have access to
any of the api calls, see image below :

» http://localhost:3000/secret

= ARC

HTTP request @ cer Q postT QO pur Q DELETE () PATC
Socket Raw headers
History “

authorization Bearer 1d3fe602da2al
Saved e Content-Type application/x-www-forn
Projects W ADD HEADER

"b"v"'

4017 Unauthorized EEEINGE

Raw
1
"code™: 481
"error™: "invalid tcken"
"error_description™: "The access token providec

e L 8§ [

Lets see what to do if the token expires, Let me first explain it to you, if access token
expires a refresh_token exists in redis that reference the expired access_token So
what we need is to call oauth/token again with the refresh_token grant_type and set
the authorization to the Basic clientld:clientsecret (to base 64 !) and finally send the
refresh_token, this will generate a new access_token with a new expiry data.

The following picture shows how to get a new access token:

https://riptutorial.com/ 276

https://i.stack.imgur.com/ijnIf.png

Request

» http://localhost:3000/0auth/token

Socket
O cer @ posT Q Pur (Q DELETE () PATC
History W
Raw headers Header
Saved v
authorization Basic Y2xpZW500nNIY
Projects W
Content-Type application/x-www-forn
ADD HEADER
A\f
Raw payload
ENCODE PAYLOAD DECODE PAYLOAD
Form data for x-www-form-urlencoded parameters
refresh_token b6ad56e5c9abab3c85d7
grant_type refresh_token
ADD ANOTHER PARAMETER
a L8 2 :

Epe to Help!

Read OAuth 2.0 online: https://riptutorial.com/node-js/topic/9566/oauth-2-0

https://riptutorial.com/ 277

https://i.stack.imgur.com/mECkH.png
https://riptutorial.com/node-js/topic/9566/oauth-2-0

C_hapter /8. package.json

Remarks

You can create package. json With
npm init

which will ask you about basic facts about your projects, including license identifier.

Examples

Basic project definition

"name": "my-project",
"version": "0.0.1",
"description": "This is a project.",
"author": "Someone <someone(@example.com>",
"contributors": [{

"name": "Someone Else",

"email": "else@lexample.com"
11,

"keywords": ["improves", "searching"]

}

a required field for a package to install. Needs to be lowercase, single word
without spaces. (Dashes and underscores allowed)

name
version a required field for the package version using semantic versioning.
description a short description of the project

author specifies the author of the package

contributors an array of objects, one for each contributor

keywords an array of strings, this will help people finding your package

Dependencies

"dependencies": { "'module-name™: "0.1.0" }

» exact: o.1.0 will install that specific version of the module.
* newest minor version: ~o.1.0 will install the newest minor version, for example o.2.0, but

https://riptutorial.com/ 278

https://spdx.org/licenses/
https://docs.npmjs.com/getting-started/semantic-versioning

won't install a module with a higher major version e.g. 1.0.0
* newest patch: o.1.x or ~o0.1.0 will install the newest patch version available, for example
0.1.4, but won't install a module with higher major or minor version, e.g. 0.2.0 0r 1.0.0.
» wildcard: + will install the latest version of the module.
» git repository: the following will install a tarball from the master branch of a git repo. A #sha,
#tag OF #branch Can also be provided:
o GitHub: user/project OF user/project#v1.0.0
° Ur|:git://gitlab.com/user/project.git Ol git://gitlab.com/user/project.git#develop
local path: file:../lib/project

After adding them to your package.json, use the command npm install in your project directory in
terminal.

devDependencies
"devDependencies": {

}

For dependencies required only for development, like testing styling proxies ext. Those dev-
dependencies won't be installed when running "npm install" in production mode.

Scripts

You can define scripts that can be executed or are triggered before or after another script.

"scripts": {
"pretest": "scripts/pretest.js",
"test": "scripts/test.js",
"posttest": "scripts/posttest.js"
}

In this case, you can execute the script by running either of these commands:

npm run-script test
npm run test
npm test

v W 0

npm t

Pre-defined ScCripts

prepublish Run before the package is published.

https://riptutorial.com/ 279

publish, postpublish
preinstall

install, postinstall
preuninstall, uninstall
postuninstall
preversion, version
postversion

pretest, test, posttest
prestop, stop, poststop
prestart, start, poststart

prerestart, restart, postrestart

You can also define your own scripts the same way you do with the pre-defined scripts:

{

Run after the package is published.
Run before the package is installed.
Run after the package is installed.

Run before the package is uninstalled.
Run after the package is uninstalled.
Run before bump the package version.
Run after bump the package version.
Run by the npn test command

Run by the npn stop cOmmand

Run by the npm start command

Run by the npm restart cOmmand

"scripts": {
"preci": "scripts/preci.js",
"ci": "scripts/ci.js",
"postci": "scripts/postci.js"

}
}

In this case, you can execute the script by running either of these commands:

$ npm run-script ci
$ npm run ci

User-defined scripts also supports pre and post scripts, as shown in the example above.

Extended project definition

Some of the additional attributes are parsed by the npm website like repository, bugs OF homepage
and shown in the infobox for this packages

https://riptutorial.com/

280

"main": "server.js",

"repository" : {
"type": "git",
"url": "git+https://github.com/<accountname>/<repositoryname>.git"
by
"bugs": {
"url": "https://github.com/<accountname>/<repositoryname>/issues"
b
"homepage": "https://github.com/<accountname>/<repositoryname>freadme",
"files": [
"server.js", // source files

"README.md", // additional files
"l1ib" // folder with all included files

Entry script for this package. This script is returned when a user requires the
package.

main
repository Location and type of the public repository
bugs Bugtracker for this package (e.g. github)

homepage Homepage for this package or the general project

List of files and folders which should be downloaded when a user does a npm

install <packagename>

files

Exploring package.json

A package. json file, usually present in the project root, contains metadata about your app or
module as well as the list of dependencies to install from npm when running npm instail.

To initialize a package. json type npm init IN your command prompt.

To create a package. json With default values use:

npm init --yes
or
npm init -y

To install a package and save it t0 package. json USE:
npm install {package name} —--save

You can also use the shorthand notation:

npm i -S {package name}

https://riptutorial.com/ 281

NPM aliases -s t0 —-save and -p t0 --save-dev t0 Save in your production or development

dependencies respectively.

The package will appear in your dependencies; if you use --save-dev instead of —-save, the

package will appear in your devDependencies.

Important properties of package. json:

"name": "module-name",
"version": "10.3.1",
"description": "An example module to illustrate the usage of a package.json",
"author": "Your Name <your.name(@example.org>",
"contributors": [{
"name": "Foo Bar",
"email": "foo.bar@example.com"
11,
"bin": {

"module—-name":

}y

"./bin/module—-name"

"scripts": {
"test": "vows —--spec —-—-isolate",
"start": "node index.js",
"predeploy": "echo About to deploy",
"postdeploy": "echo Deployed",
"prepublish": "coffee --bare --compile —--output lib/foo src/foo/*
bo
"main": "lib/foo.js",
"repository": {
"type": "git",
"url": "https://github.com/username/repo"
bo
"bugs": {
"url": "https://github.com/username/issues"
bo
"keywords": [
"example"
1,
"dependencies": {
"express": "4.2.x"
bo
"devDependencies": {
"assume": "<1.0.0 || >=2.3.1 <2.4.5 || >=2.5.2 <3.0.0"
bo
"peerDependencies": {
"moment": ">2.0.0"
bo
"preferGlobal": true,
"private": true,
"publishConfig": {
"registry": "https://your-private-hosted-npm.registry.domain.com"
bo
"subdomain": "foobar",
"analyze": true,
"license": "MIT",
"files": [
"lib/foo.js"

.coffee"

https://riptutorial.com/

282

Information about some important properties:

name

The unique name of your package and should be down in lowercase. This property is required and
your package will not install without it.

1. The name must be less than or equal to 214 characters.
2. The name can't start with a dot or an underscore.
3. New packages must not have uppercase letters in the name.

version

The version of the package is specified by Semantic Versioning (semver). Which assumes that a
version number is written as MAJOR.MINOR.PATCH and you increment the:

1. MAJOR version when you make incompatible API changes
2. MINOR version when you add functionality in a backwards-compatible manner
3. PATCH version when you make backwards-compatible bug fixes

description

The description of the project. Try to keep it short and concise.

author

The author of this package.
bin

An object which is used to expose binary scripts from your package. The object assumes that the
key is the name of the binary script and the value a relative path to the script.

This property is used by packages that contain a CLI (command line interface).

script

A object which exposes additional npm commands. The object assumes that the key is the npm
command and the value is the script path. These scripts can get executed when you run npm run

{command name} OF npm run-script {command name}.

Packages that contain a command line interface and are installed locally can be called without a
relative path. So instead of calling . /node-modules/.bin/mocha you can directly call mocha.

main

The main entry point to your package. When calling require (' {module name} ') in node, this will be

https://riptutorial.com/ 283

http://semver.org/

actual file that is required.

It's highly advised that requiring the main file does not generate any side affects. For instance,
requiring the main file should not start up a HTTP server or connect to a database. Instead, you
should create something like exports.init = function () {...} iN your main script.

keywords

An array of keywords which describe your package. These will help people find your package.

devDependencies

These are the dependencies that are only intended for development and testing of your module.
The dependencies will be installed automatically unless the nobe_Exv=production €nvironment
variable has been set. If this is the case you can still these packages using npm install —-dev

peerDependencies

If you are using this module, then peerDependencies lists the modules you must install alongside
this one. For example, moment -t imezone Must be installed alongside moment because it is a plugin for
moment, even if it doesn't directly require ("moment™").

preferGlobal

A property that indicates that this page prefers to be installed globally using npm install -g
{module-name}. ThiS property is used by packages that contain a CLI (command line interface).

In all other situations you should NOT use this property.

publishConfig

The publishConfig is an object with configuration values that will be used for publishing modules.
The configuration values that are set override your default npm configuration.

The most common use of the pub1ishcontig IS to publish your package to a private npm registry so
you still have the benefits of npm but for private packages. This is done by simply setting URL of
your private npm as value for the registry key.

files

This is an array of all the files to include in the published package. Either a file path or folder path
can be used. All the contents of a folder path will be included. This reduces the total size of your

package by only including the correct files to be distributed. This field works in conjunction with a
.npmignore rules file.

Source

https://riptutorial.com/ 284

http://browsenpm.org/package.json

Read package.json online: https://riptutorial.com/node-js/topic/1515/package-json

https://riptutorial.com/ 285

https://riptutorial.com/node-js/topic/1515/package-json

C_hapter 79: Parsing command line

arguments

Examples

Passing action (verb) and values

const options = require ("commander") ;
options

.option("-v, —--verbose", "Be verbose");
options

.command ("convert")

.alias ("c")

.description ("Converts input file to output file")
.option("-i, --in-file <file_name>", "Input file")
.option("-o, —--out-file <file_name>", "Output file")
.action (doConvert) ;

options.parse (process.argv) ;
if (!options.args.length) options.help();
function doConvert (options) {

//do something with options.inFile and options.outFile
bi

Passing boolean switches

const options = require ("commander") ;
options
.option("-v, —--verbose")

.parse (process.argv) ;

if (options.verbose) {
console.log("Let's make some noise!");

Read Parsing command line arguments online: https://riptutorial.com/node-js/topic/6174/parsing-

command-line-arguments

https://riptutorial.com/

286

https://riptutorial.com/node-js/topic/6174/parsing-command-line-arguments
https://riptutorial.com/node-js/topic/6174/parsing-command-line-arguments

C_hapter 80: Passport integration

Remarks

Password must always be hashed. A simple way to secure passwords using NodeJS would be to

use bcrypt-nodejs module.

Examples

Getting started

Passport must be initialized using passport.initialize () Middleware. To use login sessions,

passport.session () middleware is required.

Note that passport.serialize () and passport.deserializeUser () methods must be defined.
Passport will serialize and deserialize user instances to and from the session

const express = require ('express');

const session = require ('express-session');
const passport = require ('passport');

const cookieParser = require('cookie-parser');

const app = express();

// Required to read cookies
app.use (cookieParser());

passport.serializeUser (function (user, next) {
// Serialize the user in the session
next (null, user);

)i

passport.deserializeUser (function (user, next)
// Use the previously serialized user
next (null, user);
}) i

// Configuring express—-session middleware
app.use (session ({

secret: 'The cake is a lie',

resave: true,

saveUninitialized: true
)i

// Initializing passport
app.use (passport.initialize());

app.use (passport.session());

// Starting express server on port 3000
app.listen(3000);

Local authentication

{

https://riptutorial.com/

287

The passport-local module is used to implement a local authentication.

This module lets you authenticate using a username and password in your Node.js
applications.

Registering the user :

const passport = require ('passport');
const LocalStrategy = require('passport-local').Strategy;

// A named strategy is used since two local strategy are used
// one for the registration and the other to sign-in
passport.use('localSignup', new LocalStrategy ({
// Overriding defaults expected parameters,
// which are 'username' and 'password'
usernameField: 'email',
passwordField: 'password',
passReqToCallback: true // allows us to pass back the entire request to the callback
by
function(req, email, password, next) {
// Check in database if user is already registered
findUserByEmail (email, function (user) {
// If email already exists, abort registration process and
// pass 'false' to the callback
if (user) return next (null, false);
// Else, we create the user

else {
// Password must be hashed !
let newUser = createUser (email, password);

newUser.save (function () {
// Pass the user to the callback

return next (null, newUser);

Logging in the user :

const passport = require ('passport');
const LocalStrategy = require ('passport-local').Strategy;

passport.use('localSignin', new LocalStrategy ({
usernameField : 'email',
passwordField : 'password',
bo
function(email, password, next) ({
// Find the user
findUserByEmail (email, function (user) {
// If user is not found, abort signing in process
// Custom messages can be provided in the verify callback
// to give the user more details concerning the failed authentication

if (!user)

return next (null, false, {message: 'This e-mail address is not associated with any

account.'});
// Else, we check if password is valid

else {

https://riptutorial.com/

288

// If password is not correct, abort signing in process
if (!isPasswordValid (password)) return next (null, false);
// Else, pass the user to callback

else return next (null, user);

Creating routes :

//
app.use (passport.initialize());
app.use (passport.session());

// Sign—-in route

// Passport strategies are middlewares

app.post ('/login', passport.authenticate('localSignin', {
successRedirect: '/me',
failureRedirect: '/login'

}) i

// Sign-up route

app.post ('/register', passport.authenticate('localSignup', {
successRedirect: '/',
failureRedirect: '/signup'

1)
// Call req.logout () to log out
app.get ('/logout', function(req, res) {

req.logout () ;
res.redirect ('/");

app.listen(3000);

Facebook authentication

The passport-facebook module is used to implement a Facebook authentication. In this

example, if the user does not exist on sign-in, he is created.

Implementing strategy :

const passport = require ('passport');
const FacebookStrategy = require ('passport-facebook') .Strategy;

// Strategy is named 'facebook' by default
passport.use ({
clientID: 'yourclientid',
clientSecret: 'yourclientsecret',
callbackURL: '/auth/facebook/callback'
br
// Facebook will send a token and user's profile
function (token, refreshToken, profile, next) ({
// Check in database if user is already registered
findUserByFacebookId (profile.id, function (user) {
// If user exists, returns his data to callback
if (user) return next (null, user);

https://riptutorial.com/

289

// Else, we create the user
else {
let newUser = createUserFromFacebook (profile, token);

newUser.save (function () {
// Pass the user to the callback
return next (null, newUser);

Creating routes :

//
app.use (passport.initialize());
app.use (passport.session());

// Authentication route

app.get ('/auth/facebook', passport.authenticate ('facebook', {
// Ask Facebook for more permissions
scope : 'email'

1))

// Called after Facebook has authenticated the user

app.get ('/auth/facebook/callback"',
passport.authenticate ('facebook', {

successRedirect : '"/me',
failureRedirect : '/'

/] ...
app.listen(3000);

Simple Username-Password Authentication

In your routes/index.js

Here user is the model for the userSchema

router.post ('/login', function(req, res, next) {
if (!'reqg.body.username || !reqg.body.password) {
return res.status (400) . json ({
message: 'Please fill out all fields'
P

passport.authenticate('local', function(err, user, info) {
if (err) {
console.log ("ERROR : " + err);
return next (err);

if (user) (

https://riptutorial.com/ 290

console.log("User Exists!")
//All the data of the user can be accessed by user.x

res.json ({"success" : true});
return;

} else {
res.json ({"success" : false});

console.log ("Error" + errorResponse());
return;

}

}) (req, res, next);
P

Google Passport authentication

We have simple module available in npm for goggle authetication name passport-google-
oauth20

Consider the following example In this example have created a folder namely config having the
passport.js and google.js file in the root directory. In your app.js include the following

var express = require ('express');

var session = require ('express-session');

var passport = require('./config/passport'); // path where the passport file placed
var app = express|();

passport (app) ;

/I other code to initailize the server , error handle

In the passport.js file in the config folder include the following code

var passport = require ('passport'),

google = require('./google'),

User = require('./../model/user'); // User is the mongoose model
module.exports = function (app) {

app.use (passport.initialize());

app.use (passport.session());

passport.serializeUser (function (user, done) {
done (null, user);

1)

passport.deserializeUser (function (user, done) {
done (null, user);

1)

google () ;

}i

In the google.js file in the same config folder include following

var passport = require('passport'),

GoogleStrategy = require ('passport—-google-oauth20') .Strategy,
User = require('./../model/user');

module.exports = function () {

passport.use (new GoogleStrategy ({
clientID: 'CLIENT ID',
clientSecret: 'CLIENT SECRET',

https://riptutorial.com/ 291

callbackURL:
b

function (accessT
User.findOne
if (err) {
retu

lelse {
if |

} el

Here in this example,
the field name google

"http://localhost:3000/auth/google/callback"

oken, refreshToken, profile, cb) {
({ googleId : profile.id }, function (err, user) {

rn cb(err, false, {message : err});

user != '' && user != null) {

return cb(null, user, {message : "User "});

se {

var username = profile.displayName.split (' ');
var userData = new User ({

name : profile.displayNamne,

username : username[0],
password : username[0],
facebookId : '',

googleId : profile.id,
)i
// send email to user just in case required to send the newly created
// credentails to user for future login without using google login
userData.save (function (err, newuser) {
if (err) {
return cb(null, false, {message : err + " !!! Please try again"});
lelse{
return cb(null, newuser);

if user is not in DB then creating a new user in DB for local reference using
Id in user model.

Read Passport integration online: https://riptutorial.com/node-js/topic/7666/passport-integration

https://riptutorial.com/

292

https://riptutorial.com/node-js/topic/7666/passport-integration

C_hapter 81: passport.|s

Introduction

Passport is a popular authorisation module for node. In simple words it handles all the
authorisation requests on your app by users. Passport supports over 300 strategies so that you
can easily integrate login with Facebook / Google or any other social network using it. The strategy
that we will discuss here is the Local where you authenticate an user using your own database of
registered users(using username and password).

Examples
Example of LocalStrategy in passport.js

var passport = require ('passport');
var LocalStrategy = require ('passport-local').Strategy;

passport.serializeUser (function (user, done) { //In serialize user you decide what to store in
the session. Here I'm storing the user id only.
done (null, user.id);

)i

passport.deserializeUser (function(id, done) { //Here you retrieve all the info of the user
from the session storage using the user id stored in the session earlier using serialize user.
db.findById(id, function(err, user) {
done (err, user);
})i
})i

passport.use (new LocalStrategy (function (username, password, done) {
db.findOne ({'username' :username}, function (err, student) {
if (err)return done (err, {message:message});//wrong roll number or password;
var pass_retrieved = student.pass_word;
bcrypt.compare (password, pass_retrieved, function(err3, correct) {
if (err3) {
message = [{"msg": "Incorrect Password!"}];
return done (null, false, {message:message}); // wrong password
}
if (correct) {
return done (null, student);

app.use (session({ secret: 'super secret' })); //to make passport remember the user on other
pages too. (Read about session store. I used express-sessions.)
app.use (passport.initialize());

app.use (passport.session());

app.post ('/',passport.authenticate('local', {successRedirect:'/users' failureRedirect: '/'}),
function (req, res, next) {

)i

https://riptutorial.com/ 293

Read passport.js online: https://riptutorial.com/node-js/topic/8812/passport-js

https://riptutorial.com/ 294

https://riptutorial.com/node-js/topic/8812/passport-js

C_hapter 82: Performance challenges

Examples

Processing long running queries with Node

Since Node is single-threaded, there is a need of workaround if it comes to a long-running
calculations.

Note: this is "ready to run" example. Just, don't forget to get jQuery and install the required
modules.

Main logic of this example:

1. Client sends request to the server.

2. Server starts the routine in separate node instance and sends immediate response back with
related task ID.

3. Client continiously sends checks to a server for status updates of the given task ID.

Project structure:

project

| package. json

| index.html

|

F—17s

| main. js

| Jjguery-1.12.0.min. js

|—S rv

| app.Jjs
F——— models

| task. Jjs
L— tasks

data-processor. js

app.js:
var express = require ('express');
var app = express|();
var http = require ('http') .Server (app) ;
var mongoose = require ('mongoose');
var bodyParser = require ('body-parser');

var childProcess= require('child_process');

var Task = require ('./models/task"');
app.use (bodyParser.urlencoded({ extended: true }));
app.use (bodyParser. json()) ;

app.use (express.static(__dirname + '/../'));

https://riptutorial.com/ 295

app.get ('/', function (request, response) {
response.render ('index.html"') ;
1)

//route for the request itself

app.post ('/long-running-request', function (request, response) {
//create new task item for status tracking
var t = new Task({ status: 'Starting ..."' });

t.save (function (err, task) {
//create new instance of node for running separate task in another thread
taskProcessor = childProcess.fork('./srv/tasks/data-processor.js');

//process the messages comming from the task processor
taskProcessor.on('message', function (msg) {

task.status = msg.status;

task.save();
}.bind(this));

//remove previously openned node instance when we finished
taskProcessor.on('close', function (msg) {

this.kill();
1)

//send some params to our separate task
var params = {

message: 'Hello from main thread'
bi

taskProcessor.send (params) ;
response.status (200) . json (task) ;
1)
1)

//route to check is the request is finished the calculations
app.post ('/is-ready', function (request, response) {
Task
.findById (request.body.id)
.exec (function (err, task) {
response.status (200) . json (task) ;
1)
1)

mongoose.connect ('mongodb://localhost/test"');
http.listen('1234"');

task.js:

var mongoose = require ('mongoose');
var taskSchema = mongoose.Schema ({
status: {
type: String
1)

mongoose.model ('Task', taskSchema);

module.exports = mongoose.model ('Task');

https://riptutorial.com/ 296

data-processor.js:

process.on ('message', function (msqg) {
init = function () {
processData (msg.message) ;
}.bind(this) () ;

function processData (message) {
//send status update to the main app
process.send({ status: 'We have started processing your data.' });

//long calculations
setTimeout (function () {
process.send({ status: 'Done!' });

//notify node, that we are done with this task
process.disconnect () ;

}, 5000);

1)
process.on ('uncaughtException', function (err) {
console.log ("Error happened: " + err.message + "\n" + err.stack + ".\n");

console.log("Gracefully finish the routine.");
)i

index.html:

<!DOCTYPE html>

<html>
<head>
<script src="./Jjs/jquery-1.12.0.min.js"></script>
<script src="./js/main.js"></script>
</head>
<body>
<p>Example of processing long-running node requests.</p>
<button id="go" type="button">Run</button>

<p>Log:</p>
<textarea id="log" rows="20" cols="50"></textarea>
</body>
</html>
main.js:

$ (document) .on ('ready', function () {

S('#go').on('click', function (e) {
//clear log
$("#log") .val('");

$.post ("/long-running-request", {some_params: 'params' })
.done (function (task) {

S("#log").val($("#log").val() + '\n' + task.status);

//function for tracking the status of the task

https://riptutorial.com/ 297

function updateStatus () {
$S.post ("/is-ready", {id: task._id })
.done (function (response) {
S("#log").val($("#log").val() + '\n' + response.status);

if (response.status != 'Done!') {
checkTaskTimeout = setTimeout (updateStatus, 500);

//start checking the task

var checkTaskTimeout = setTimeout (updateStatus, 100);
)i
P
P
package.json:
{
"name": "nodeProcessor",
"dependencies": {
"body-parser": "71.15.2",
"express": ""4.14.0",
"html": "0.0.10",
"mongoose": ""4.5.5"

Disclaimer: this example is intended to give you basic idea. To use it in production environment, it
needs improvements.

Read Performance challenges online: https://riptutorial.com/node-js/topic/6325/performance-
challenges

https://riptutorial.com/ 298

https://riptutorial.com/node-js/topic/6325/performance-challenges
https://riptutorial.com/node-js/topic/6325/performance-challenges

C_hapter 83: PostgreSQL integration

Examples

Connect To PostgreSQL
Using rostgresornpm module.
install dependency from npm

npm install pg —--save

Now you have to create a PostgreSQL connection, which you can later query.

Assume you Database Name = students, Host = localhost and DB_User= postgres

var pg = require ("pg")

var connectionString = "pg://postgres:postgres@localhost:5432/students";
var client = new pg.Client (connectionString);

client.connect () ;

Query with Connection Object
If you want to use connection object for query database you can use this sample code.

var queryString = "SELECT name, age FROM students " ;
var query = client.query (queryString);

query.on ("row", (row, result)=> {
result.addRow (row) ;

)i

query.on ("end", function (result) {
//LOGIC
}) i

Read PostgreSQL integration online: https://riptutorial.com/node-js/topic/7706/postgresql-
integration

https://riptutorial.com/

299

https://riptutorial.com/node-js/topic/7706/postgresql-integration
https://riptutorial.com/node-js/topic/7706/postgresql-integration

C_hapter 84: Project Structure

Introduction

The structure of nodejs project is influenced by the personal preferences, project's architecture
and module injection strategy being used.Also on event based arc' which uses dynamic module
instantiation mechanism. To have a MVC structure it is imperative to separate out the server side
and client side source code as the client side code will probably be minimized and sent to browser
and is public in its basic nature. And the server side or back-end will provide API to perform CRUD
operations

Remarks

The project above uses browserify and vue.js modules as application base view and minification
libs. So the project structure may changes minutely based on which mvc framework you use e.g.
The build directory in public will need to contain all the mvc code. You can have a task which does
this for you .

Examples

A simple nodejs application with MVC and API

» The first major distinction is between the dynamically generated directories which will be
used for hosting and source directories.

» The source directories will have a config file or folder depending on the amount of
configuration you may have . This includes the environment configuration and business logic
configuration which you may choose to put inside config directory.

|-— Config
|-— config.json
|-— appConfig
|-— pets.config
| -— payment.config

* Now the most vital directories where we distinguish between the server side/backend and
the frontend modules . The 2 directories server and webapp represent the backend and
frontend respectively which we can choose to put inside a source directory viz. src.

You can go with different names as per personal choice for server or webapp
depending on what makes sense for you. Make sure you dont want to make it too
long or to complex as it is in the end internal project structure.

* Inside the server directory you can have the controller ,the App.js/index.js which will be you
main nodejs file and start point .The server dir. can also have the dto dir which holds all the
data transfer objects which will be usd by API controllers.

https://riptutorial.com/ 300

| -— server
[== clt®
|-— pet.js
| -— payment.js
|-— controller
| -— PetsController.js
| -— PaymentController. js
|-— App.Js

» The webapp directory can be divided into two major parts public and mvc , this is again
influenced by what build strategy you want to use. We are using browserfiy the build the
MVC part of webapp and minimize the contents from mvc directory simply put.

|-- webapp |-- public |-- mvc

» Now the public directory can contain all the static resources,images,css(you can have saas
files as well) and most importantly the HTML files .

|-— public
|-— build // will contianed minified scripts (mvc)
|-— images
| -— mouse. jpg
|-— cat.jpg
|-— styles
|-— style.css
| -—— views
| -— petStore.html
| -— paymentGateway.html
| -— header.html
|-— footer.html
—— index.html

The mvc directory will contain the front-end logic including the models,the view controllers
and any other utils modules you may need as part of Ul. Also the index.js or shell.js
whichever may suite you is part of this directory as well.

| —— mvc
|-— controllers
| -—— Dashborad. js
|-— Help.js
|-— Login.js
|-— utils

|-— index.js

So in conclusion the entire project structure will look like below.And a simple build task like gulp
browserify will minify the mvc scripts and publish in public directory. We can then provide this
public directory as static resource via express.use(satic(‘public')) api.

| —— node_modules
|-— src

| -— server

|-— controller

|—-— App.Js // node app
| —— webapp

https://riptutorial.com/ 301

http://browserify.org/

|-— public
|-— styles
|-— images
|-— index.html

| -— controller
|-— shell.js // mvc shell
|-— config
| —— Readme.md
|-— .gitignore
| -— package. json

Read Project Structure online: https://riptutorial.com/node-js/topic/9935/project-structure

https://riptutorial.com/ 302

https://riptutorial.com/node-js/topic/9935/project-structure

C_hapter 85: Push notifications

Introduction

So if you wanna make web app notification | suggest you to use Push.js or SoneSignal framework
for Web/mobile app.

Push is the fastest way to get up and running with Javascript notifications. A fairly new addition to
the official specification, the Notification API allows modern browsers such as Chrome, Safari,
Firefox, and IE 9+ to push notifications to a user’s desktop.

You will have to use Socket.io and some backend framework, | will user Express for this example.

Parameters

Simple backe-end framework for Node.js application, very easy to use

node.js/express
) P and extremely powerful

Socket.IO enables real-time bidirectional event-based communication.
Socket.io It works on every platform, browser or device, focusing equally on
reliability and speed.

Push.js The world's most versatile desktop notifications framework
OneSignal Just another form off push notifications for Apple devices
. Firebase is Google's mobile platform that helps you quickly develop
Firebase . . .
high-quality apps and grow your business.
Examples

Web notification
First, you will need to install Push.js module.

$ npm install push.js —--save

Or import it to your front-end app through CDN

<script src="./push.min.js"></script> <!-- CDN link —-->

After you are done with that, you should be good to go. This is how it should look like if u wanna

https://riptutorial.com/ 303

https://pushjs.org/
https://cdnjs.com/libraries/push.js

make simple notification:

Push.create ('Hello World!")

| will assume that you know how to setup Socket.io with your app. Here is some code example of
my backend app with express:

var app = require ('express') ();
var server = require('http').Server (app);
var io = require('socket.io') (server);

server.listen (80);
app.get ('/', function (req, res) {
res.sendfile(__dirname + '/index.html');
)i
io.on('connection', function (socket) {
socket.emit ('pushNotification', { success: true, msg: 'hello' });
)i

After your server is all set up, you should be able to move on to front-end stuff. Now all we have to
do is import Socket.io CDN and add this code to my index.html file:

<script src="../socket.io.]js"></script> <!-- CDN link --—>
<script>
var socket = io.connect ('http://localhost');
socket.on ('pushNotification', function (data) {
console.log(data);
Push.create("Hello world!", {
body: data.msg, //this should print "hello"
icon: '/icon.png',
timeout: 4000,
onClick: function () {

window. focus () ;
this.close () ;

)i

1)
</script>

There you go, now you should be able to display your notification, this also works on any Android
device, and if u wanna use Firebase cloud messaging, you can use it with this module, Here is link
for that example written by Nick (creator of Push.js)

Apple

Keep in mind that this will not work on Apple devices (I didnt test them all), but if you want to make
push natifications check OneSignal plugin.

Read Push notifications online: https://riptutorial.com/node-js/topic/10892/push-natifications

https://riptutorial.com/ 304

https://socket.io/
https://cdnjs.com/libraries/socket.io
https://firebase.google.com/
https://github.com/Nickersoft/push-fcm-plugin
https://onesignal.com/
https://riptutorial.com/node-js/topic/10892/push-notifications

C_hapter 86:. Readline

Syntax

» const readline = require('readline’)
 readline.close()

 readline.pause()
 readline.prompt([preserveCursor])

» readline.question(query, callback)

* readline.resume()
 readline.setPrompt(prompt)

» readline.write(data[, key])
 readline.clearLine(stream, dir)

* readline.clearScreenDown(stream)
* readline.createlnterface(options)

» readline.cursorTo(stream, X, y)

» readline.emitKeypressEvents(stream[, interface])
 readline.moveCursor(stream, dx, dy)

Examples

Line-by-line file reading

const fs = require('fs');
const readline = require('readline');
const rl = readline.createInterface ({

input: fs.createReadStream('text.txt')
1)

// Each new line emits an event - every time the stream receives \r, \n, or \r\n
rl.on('line', (line) => {

console.log(line);
)i

rl.on('close', () => {
console.log('Done reading file');
)i

Prompting user input via CLI

const readline = require('readline');

const rl = readline.createlInterface ({
input: process.stdin,
output: process.stdout

}) i

rl.question ('What is your name?', (name) => {

https://riptutorial.com/ 305

console.log('Hello ${name}!");

rl.close();

}) i

Read Readline online: https://riptutorial.com/node-js/topic/1431/readline

https://riptutorial.com/ 306

https://riptutorial.com/node-js/topic/1431/readline

C_hapter 87. Remote Debugging in Node.JS

Examples

NodeJS run configuration

To set up Node remote debugging, simply run the node process with the --debug flag. You can add
a port on which the debugger should run using --debug=<port>.

When your node process starts up you should see the message

Debugger listening on port <port>

Which will tell you that everything is good to go.

Then you set up the remote debugging target in your specific IDE.
IntelliJ/Webstorm Configuration

1. Make sure that the NodeJS plugin is enabled
2. Select your run configurations (screen)

m Unit Tests

=~ Edit Configurations...

Unnamed

3. Select + > Node.js Remote Debug

https://riptutorial.com/ 307

http://i.stack.imgur.com/74hst.png

Once those are configured simply run the debug target as you normally would and it will stop on
your breakpoints.

Use the proxy for debugging via port on Linux
If you start your application on Linux, use the proxy for debugging via port, for example:

socat TCP-LISTEN:9958, fork TCP:127.0.0.1:5858 &

Use port 9958 for remote debugging then.

Read Remote Debugging in Node.JS online: https://riptutorial.com/node-js/topic/6335/remote-
debugging-in-node-js

https://riptutorial.com/ 308

http://i.stack.imgur.com/MVlrq.png
http://i.stack.imgur.com/x7Hbu.png
https://riptutorial.com/node-js/topic/6335/remote-debugging-in-node-js
https://riptutorial.com/node-js/topic/6335/remote-debugging-in-node-js

C_hapter 88: Require()

Introduction

This documentation focuses on explaining the uses and of the require () Statement that NodeJS
includes in their language.

Require is an import of certain files or packages used with NodeJS's modules. It is used to
improve code structure and uses. require () IS Used on files that are installed locally, with a direct
route from the file that is require'ing.

Syntax

* module.exports = {testFunction: testFunction};
» var test_file = require('./testFile.js"); //Let us have a file named testriile
* test file.testFunction(our_data); //Let testrile have function testrunction

Remarks

Using require () allows code to be structured in a way similar to Java's use of classes and public
methods. If a function is .export'ed, it can be require'ed in another file to be used. If a file is not
.export'ed, it cannot be used in another file.

Examples

Beginning require() use with a function and file

Require is a statement that Node interprets as, in some sense, a getter function. For example, say
you have a file named ana1ysis. s, and the inside of your file looks like this,

function analyzeWeather (weather_data) {
console.log('Weather information for ' + weather_data.time + ': '");
console.log('Rainfall: ' + weather_data.precip);
console.log('Temperature: ' + weather_data.temp);
//More weather_data analysis/printing...

}

This file contains only the method, analyzeweather (weather_data). If we want to use this function, it
must be either used inside of this file, or copied to the file it wants to be used by. However, Node
has included a very useful tool to help with code and file organization, which is modules.

In order to utilize our function, we must first export the function through a statement at the
beginning. Our new file looks like this,

module.exports = {

https://riptutorial.com/ 309

https://nodejs.org/en/
https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
https://nodejs.org/api/modules.html

analyzeWeather: analyzeWeather

}

function analyzeWeather (weather_data) {
console.log('Weather information for ' + weather_data.time + ': '");
console.log('Rainfall: ' + weather_data.precip);
console.log('Temperature: ' + weather_data.temp);
//More weather_data analysis/printing...

With this small module.exports Statement, our function is now ready for use outside of the file. All
that is left to do is to use require ().

When require'ing a function or file, the syntax is very similar. It is usually done at the beginning of
the file and set to var's or const's for use throughout the file. For example, we have another file (on
the same level as analyze.js hamed handleweather. js that looks like this,

const analysis = require('./analysis.js');

weather_data = {
time: '01/01/2001°',
precip: 0.75,
temp: 78,
//More weather data...
bi
analysis.analyzeWeather (weather_data);

In this file, we are using require () t0 grab our analysis. js file. When used, we just call the variable
or constant assigned to this require and use whatever function inside that is exported.

Beginning require() use with an NPM package

Node's require is also very helpful when used in tandem with an NPM package. Say, for example,
you would like to use the NPM package r-cu: < in a file named getweather. js. After NPM installing
your package through your command line (git install request), you are ready to use it. Your
getWeather. js file mlght like look thiS,

var https = require('request');

//Construct your url variable...
https.get (url, function (error, response, body) {
if (error) {
console.log(error) ;
} else {
console.log('Response => ' + response);
console.log('Body => ' + body);
}
})i

When this file is run, it first require's (imports) the package you just installed called request. Inside
of the request file, there are many functions you now have access to, one of which is called get. In
the next couple lines, the function is used in order to make an HTTP GET request.

Read Require() online: https://riptutorial.com/node-js/topic/10742/require--

https://riptutorial.com/ 310

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://docs.npmjs.com/how-npm-works/packages
https://www.npmjs.com/package/request
https://docs.npmjs.com/cli/install
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://riptutorial.com/node-js/topic/10742/require--

C_hapter 89: Restful API Design: Best

Practices

Examples

Error Handling: GET all resources

How do you handle errors, rather then log them to the console?

Bad way:

Router.route('/")
.get ((req, res) => {
Request.find ((err, r) => {
if (err) {
console.log(err)
} else {
res.json(r)
}
})
})
.post ((req, res) => {
const request = new Request ({
type: req.body.type,
info: reqg.body.info
1)
request.info.user = reqg.user._id;
console.log ("ABOUT TO SAVE REQUEST", request);
request.save ((err, r) => {
if (err) {

res.json({ message: 'there was an error saving your r' });

} else {
res.json(r);

Better way:

Router.route ('/")
.get ((reqg, res) => {
Request.find((err, r) => {
if (err) {
console.log(err)
} else {
return next (err)
}
})
})
.post ((req, res) => {
const request = new Request ({
type: reqg.body.type,
info: reqg.body.info

https://riptutorial.com/

311

1)
request.info.user = reqg.user._id;
console.log ("ABOUT TO SAVE REQUEST", request);
request.save ((err, r) => {
if (err) {
return next (err)
} else {
res.json(r);

Read Restful API Design: Best Practices online: https://riptutorial.com/node-js/topic/6490/restful-
api-design--best-practices

https://riptutorial.com/ 312

https://riptutorial.com/node-js/topic/6490/restful-api-design--best-practices
https://riptutorial.com/node-js/topic/6490/restful-api-design--best-practices

C_hapter 90: Route-Controller-Service
structure for ExpressJS

Examples
Model-Routes-Controllers-Services Directory Structure

F———models
| F—user.model. js
F—routes
| F—user.route.js

F—services

| —user.service. js
F———controllers
| —user.controller. js

For modular code structure the logic should be divided into these directories and files.
Models - The schema definition of the Model
Routes - The API routes maps to the Controllers

Controllers - The controllers handles all the logic behind validating request
parameters, query, Sending Responses with correct codes.

Services - The services contains the database queries and returning objects or
throwing errors

This coder will end up writing more codes. But at the end the codes will be much more
maintainable and seperated.

Model-Routes-Controllers-Services Code Structure

user.model.|s

var mongoose = require ('mongoose')

const UserSchema = new mongoose.Schema ({
name: String

})

const User = mongoose.model ('User', UserSchema)

module.exports = User;

https://riptutorial.com/

313

user.routes.js

var express = require ('express');
var router = express.Router();

var UserController = require('../controllers/user.controller"')
router.get ('/', UserController.getUsers)

module.exports = router;

user.controllers.js

var UserService = require('../services/user.service')

exports.getUsers = async function (req, res, next) ({
// Validate request parameters, queries using express—validator

var page = reg.params.page ? reg.params.page : 1;
var limit = reqg.params.limit ? req.params.limit : 10;
try {
var users = await UserService.getUsers({}, page, limit)
return res.status (200).Json({ status: 200, data: users, message: "Succesfully Users
Retrieved" });
} catch (e) {
return res.status (400).Json({ status: 400, message: e.message });

user.services.|s

var User = require('../models/user.model')
exports.getUsers = async function (query, page, limit) {
try {
var users = await User.find (query)

return users;
} catch (e) {
// Log Errors
throw Error ('Error while Paginating Users')

Read Route-Controller-Service structure for ExpressJS online: https://riptutorial.com/node-
js/topic/10785/route-controller-service-structure-for-expressjs

https://riptutorial.com/

314

https://riptutorial.com/node-js/topic/10785/route-controller-service-structure-for-expressjs
https://riptutorial.com/node-js/topic/10785/route-controller-service-structure-for-expressjs

C_hapter 91: Routing ajax requests with
Express.JS

Examples

A simple implementation of AJAX

You should have the basic express-generator template

In app.js, add(you can add it anywhere after var app = express.app()):

app.post (function (req, res, next) {
next ();

1)
Now in your index.js file (or its respective match), add:

router.get ('/ajax', function(reqg, res) {

res.render ('ajax', {title: 'An Ajax Example', quote: "AJAX is great!"});
1)
router.post ('/ajax', function(req, res) {

res.render ('ajax', {title: 'An Ajax Example', quote: reqg.body.quote});
1)

Create an ajax.jade / ajax.pug Of ajax.ejs file in /views directory, add:

For Jade/PugJsS:

extends layout

script (src="http://code. jquery.com/jquery-3.1.0.min. js")

script (src="/magic.js")

hl Quote: !{quote}

form (method="post" id="changeQuote")
input (type='text', placeholder='Set quote of the day', name='quote')
input (type="submit", wvalue="Save")

For EJS:

<script src="http://code.jquery.com/jquery-3.1.0.min.js"></script>
<script src="/magic.]js"></script>
<hl>Quote: <%=quote%> </hl>
<form method="post" id="changeQuote">
<input type="text" placeholder="Set quote of the day" name="quote"/>
<input type="submit" wvalue="Save">
</form>

Now, create a file in /pub1ic called magic. js

$ (document) .ready (function () {

https://riptutorial.com/

315

S ("form#changeQuote") .on ('submit', function (e) {
e.preventDefault () ;
var data = $('input [name=quote]') .val();
S.ajax ({
type: 'post',
url: '/ajax',
data: data,
dataType: 'text'
})
.done (function (data) {
$('hl').html (data.quote) ;

And there you have it! When you click Save the quote will change!

Read Routing ajax requests with Express.JS online: https://riptutorial.com/node-
js/topic/6738/routing-ajax-requests-with-express-js

https://riptutorial.com/ 316

https://riptutorial.com/node-js/topic/6738/routing-ajax-requests-with-express-js
https://riptutorial.com/node-js/topic/6738/routing-ajax-requests-with-express-js

C_hapter 92: Running node.js as a service

Introduction

Unlike many web servers, Node isn't installed as a service out of the box. But in production, it's
better to have it run as a deemon, managed by an init system.

Examples

Node.js as a systemd deemon

systemd is the de facto init system in most Linux distributions. After Node has been configured to
run with systemd, it's possible to use the service cOmmand to manage it.

First of all, it needs a config file, let's create it. For Debian based distros, it will be in

/etc/systemd/system/node.service

[Unit]
Description=My super nodejs app

[Service]
set the working directory to have consistent relative paths
WorkingDirectory=/var/www/app

start the server file (file is relative to WorkingDirectory here)
ExecStart=/usr/bin/node serverCluster. js

if process crashes, always try to restart
Restart=always

let 500ms between the crash and the restart
RestartSec=500ms

send log tot syslog here (it doesn't compete with other log config in the app itself)
StandardOutput=syslog
StandardError=syslog

nodejs process name in syslog
SyslogIdentifier=node]js

user and group starting the app
User=www—data
Group=www-data

set the environement (dev, prod..)

Environment=NODE_ENV=production

[Install]
start node at multi user system level (= sysVinit runlevel 3)
WantedBy=multi-user.target

It's now possible to respectively start, stop and restart the app with:

https://riptutorial.com/ 317

service node start
service node stop
service node restart

To tell systemd to automatically start node on boot, just type: systemctl enable node.
That's all, node now runs as a deemon.

Read Running node.js as a service online: https://riptutorial.com/node-js/topic/9258/running-node-
js-as-a-service

https://riptutorial.com/ 318

https://riptutorial.com/node-js/topic/9258/running-node-js-as-a-service
https://riptutorial.com/node-js/topic/9258/running-node-js-as-a-service

C_hapter 93: Securing Node.js applications

Examples

Preventing Cross Site Request Forgery (CSRF)

CSREF is an attack which forces end user to execute unwanted actions on a web application in
which he/she is currently authenticated.

It can happen because cookies are sent with every request to a website - even when those
requests come from a different site.

We can use csurt module for creating csrf token and validating it.

Example

var express = require ('express')

var cookieParser = require ('cookie-parser') //for cookie parsing
var csrf = require('csurf') //csrf module

var bodyParser = require ('body-parser') //for body parsing

// setup route middlewares
var csrfProtection = csrf ({ cookie: true })
var parseForm = bodyParser.urlencoded({ extended: false })

// create express app
var app = express()

// parse cookies
app.use (cookieParser ())

app.get ('/form', csrfProtection, function (req, res) {
// generate and pass the csrfToken to the view
res.render ('send', { csrfToken: reqg.csrfToken() })

b

app.post ('/process', parseForm, csrfProtection, function (req, res) {
res.send('data is being processed')

b

So, when we access cer /form, it Will pass the csrf token csretoken to the view.
Now, inside the view, set the csrfToken value as the value of a hidden input field named _csrt.

e.g. for nandievar templates

<form action="/process" method="POST">
<input type="hidden" name="_csrf" value="{{csrfToken}}">
Name: <input type="text" name="name">
<button type="submit">Submit</button>

</form>

https://riptutorial.com/ 319

e.g. for jaqae templates

form(action="/process" method="post")
input (type="hidden", name="_csrf", value=csrfToken)

span Name:
input (type="text", name="name", required=true)
br

input (type="submit")
e.g. for e53s templates

<form action="/process" method="POST">
<input type="hidden" name="_csrf" value="<%= csrfToken %>">
Name: <input type="text" name="name">
<button type="submit">Submit</button>

</form>

SSL/TLS in Node.js

If you choose to handle SSL/TLS in your Node.js application, consider that you are also
responsible for maintaining SSL/TLS attack prevention at this point. In many server-client
architectures, SSL/TLS terminates on a reverse proxy, both to reduce application complexity and
reduce the scope of security configuration.

If your Node.js application should handle SSL/TLS, it can be secured by loading the key and cert
files.

If your certificate provider requires a certificate authority (CA) chain, it can be added in the ca
option as an array. A chain with multiple entries in a single file must be split into multiple files and
entered in the same order into the array as Node.js does not currently support multiple ca entries
in one file. An example is provided in the code below for files 1_ca.crt and 2_ca.crt. If the ca array
is required and not set properly, client browsers may display messages that they could not verify
the authenticity of the certificate.

Example

const https = require('https');
const fs = require('fs');

const options = {

key: fs.readFileSync ('privatekey.pem'),

cert: fs.readFileSync('certificate.pem'),

ca: [fs.readFileSync('l_ca.crt'), fs.readFileSync('2_ca.crt')]
}i

https.createServer (options, (req, res) => {
res.writeHead (200) ;
res.end('hello world\n');

}).1listen (8000) ;

https://riptutorial.com/ 320

Using HTTPS
The minimal setup for an HTTPS server in Node.js would be something like this :

const https = require ('https');
const fs = require('fs');

const httpsOptions = {
key: fs.readFileSync ('path/to/server-key.pem'),
cert: fs.readFileSync ('path/to/server—-crt.pem')
bi

const app = function (req, res) {

res.writeHead (200) ;
res.end ("hello world\n");

https.createServer (httpsOptions, app).listen(4433);

If you also want to support http requests, you need to make just this small modification:

const http = require('http');
const https = require('https');
const fs = require('fs');

const httpsOptions = {
key: fs.readFileSync ('path/to/server-key.pem'),
cert: fs.readFileSync ('path/to/server-crt.pem')
}i
const app = function (req, res) {

res.writeHead (200) ;
res.end ("hello world\n");

http.createServer (app) .listen (8888);
https.createServer (httpsOptions, app).listen(4433);

Setting up an HTTPS server

Once you have node.js installed on your system, just follow the procedure below to get a basic
web server running with support for both HTTP and HTTPS!

Step 1: Build a Certificate Authority

1. create the folder where you want to store your key & certificate :

mkdir conf

2. go to that directory :

cd conf

https://riptutorial.com/ 321

3. grab this ca.cnr file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https—authorized-clients/master/keys/ca.cnf

4. create a new certificate authority using this configuration :

openssl req —-new -x509 -days 9999 -config ca.cnf -keyout ca-key.pem -out ca-cert.pem

5. now that we have our certificate authority in ca-kxey.pem and ca-cert.pem, let's generate a
private key for the server :

openssl genrsa —-out key.pem 4096

6. grab this server.cnt file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https—-authorized-
clients/master/keys/server.cnf

7. generate the certificate signing request using this configuration :

openssl req -new -config server.cnf -key key.pem -out csr.pem

8. sign the request :

openssl x509 -req -extfile server.cnf -days 999 -passin "pass:password" —-in csr.pem —-CA ca-
cert.pem —-CAkey ca-key.pem -CAcreateserial -out cert.pem

Step 2 : Install your certificate as a root certificate

1. copy your certificate to your root certificates' folder :

sudo cp ca-crt.pem /usr/local/share/ca-certificates/ca-crt.pem

2. update CA store :

sudo update-ca-certificates

Secure express.js 3 Application
The configuration to make a secure connection using express.js (Since version 3):

var fs = require('fs');

var http = require('http');

var https = require('https');

var privateKey = fs.readFileSync('sslcert/server.key', 'utf8');
var certificate = fs.readFileSync('sslcert/server.crt', 'utf8');

// Define your key and cert

https://riptutorial.com/ 322

var credentials = {key: privateKey, cert: certificate};
var express = require ('express');
var app = express();

// your express configuration here

var httpServer = http.createServer (app);
var httpsServer = https.createServer (credentials, app);

// Using port 8080 for http and 8443 for https

httpServer.listen(8080);
httpsServer.listen (8443);

In that way you provide express middleware to the native http/https server

If you want your app running on ports below 1024, you will need to use sudo command (not
recommended) or use a reverse proxy (e.g. nginx, haproxy).

Read Securing Node.js applications online: https://riptutorial.com/node-js/topic/3473/securing-

node-js-applications

https://riptutorial.com/

323

https://riptutorial.com/node-js/topic/3473/securing-node-js-applications
https://riptutorial.com/node-js/topic/3473/securing-node-js-applications

C_hapter 94:. Send Web Notification

Examples

Send Web notification using GCM (Google Cloud Messaging System)

Such Example is knowing wide spreading among PWAs (Progressive Web Applications) and in
this example we're going to send a simple Backend like notification using NodeJS and ES6

1. Install Node-GCM Module : npm install node-gem

2. Install Socket.io : npm install socket.io

3. Create a GCM Enabled application using Google Console.
4. Grabe your GCM Application Id (we will need it later on)
5. Grabe your GCM Application Secret code.

6. Open Your favorite code editor and add the following code :

'use strict';

const express = require('express');
const app = express();

const gcm = require ('node-gcm');
app.io = require('socket.io') ();

// [*] Configuring our GCM Channel.
const sender = new gcm.Sender ('Project Secret');
const regTokens = [];
let message = new gcm.Message ({
data: {
keyl: 'msgl'

})i

// [*] Configuring our static files.
app.use (express.static('public/"));

// [*] Configuring Routes.
app.get ('/', (req, res) => {

res.sendFile(_ _dirname + '/public/index.html');
)i

// [*] Configuring our Socket Connection.
app.io.on('connection', socket => {
console.log('we have a new connection ...');
socket.on('new_user', (reg_id) => {
// [*] Adding our user notification registration token to our list typically
hided in a secret place.
if (regTokens.indexOf (reg_id) === -1) {
regTokens.push (reg_id) ;

https://riptutorial.com/

324

https://console.cloud.google.com/

// [*] Sending our push messages

sender.send (message, {
registrationTokens: regTokens

}, (err, response) => {
if (err) console.error('err', err);
else console.log(response);

})i

})
})i

module.exports = app

PS : I'm using here a special hack in order to make Socket.io works with Express
because simply it doesn't work outside of the box.

Now Create a .json file and name it : Manifest.json, open it and past the following :

"name": "Application Name",
"gcm_sender_id": "GCM Project ID"

Close it and save in your application ROOT directory.
PS : the Manifest.json file needs to be in root directory or it won't work.

In the code above I'm doing the following :

1. I seted up and sent a normal index.html page that will use socket.io also.

2. I'm listening on a connection event fired from the front-end aka my index.html page (it will
be fired once a new client successfully connected to our pre-defined link)

3. I'm sending a special token know's as the registration token from my index.html via
socket.io new_user event, such token will be our user unique passcode and each code is
generated usually from a supporting browser for the Web notification API (read more here.

4. I'm simply using the node-gcm module to send my notification which will be handled and
shown later on using Service Workers".

This is from NodeJS point of view. in other examples | will show how we can send custom data,
icons ..etc in our push message.

PS : you can find the full working demo over here.

Read Send Web Notification online: https://riptutorial.com/node-js/topic/6333/send-web-notification

https://riptutorial.com/ 325

https://developer.mozilla.org/en/docs/Web/API/notification
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://github.com/houssem-yahiaoui/webpush-notification
https://riptutorial.com/node-js/topic/6333/send-web-notification

C_hapter 95: Sending a file stream to client

Examples

Using fs And pipe To Stream Static Files From The Server

A good VOD (Video On Demand) service should start with the basics. Lets say you have a
directory on your server that is not publicly accessible, yet through some sort of portal or paywall
you want to allow users to access your media.

var movie = path.resolve('./public/' + reqg.params.filename);
fs.stat (movie, function (err, stats) {
var range = req.headers.range;
if (!range) {

return res.sendStatus (416);

//Chunk logic here

var positions = range.replace (/bytes=/, "").split("-");

var start = parselnt (positions[0], 10);

var total = stats.size;

var end = positions[l] ? parselnt (positions[1l], 10) : total - 1;
var chunksize = (end - start) + 1;

res.writeHead (206, {

'Transfer-Encoding': 'chunked',
"Content—-Range": "bytes " + start + "-" + end + "/" + total,
"Accept-Ranges": "bytes",

"Content-Length": chunksize,

"Content-Type": mime.lookup (reqg.params.filename)

var stream = fs.createReadStream(movie, { start: start, end: end, autoClose: true

.on('end', function () {

console.log('Stream Done');

1)

.on("error", function (err) {

res.end(err);

https://riptutorial.com/ 326

3]
.pipe(res, { end: true });
1)
The above snippet is a basic outline for how you would like to stream your video to a client. The

chunk logic depends on a variety of factors, including network traffic and latency. It is important to
balance chuck size vs. quantity.

Finally, the .pipe call lets node.js know to keep a connection open with the server and to send
additional chunks as needed.

Streaming Using fluent-ffmpeg

You can also use flent-ffmpeg to convert .mp4 files to .flv files, or other types:

res.contentType(flv');

var pathToMovie = './public/' + req.params.filename;
var proc = ffmpeg(pathToMovie)
.preset ('flashvideo')
.on('end', function () {
console.log('Stream Done');
})
.on('error', function (err) {
console.log('an error happened: ' + err.message);
res.send (err.message) ;
})
.pipe(res, { end: true });

Read Sending a file stream to client online: https://riptutorial.com/node-js/topic/6994/sending-a-
file-stream-to-client

https://riptutorial.com/ 327

https://riptutorial.com/node-js/topic/6994/sending-a-file-stream-to-client
https://riptutorial.com/node-js/topic/6994/sending-a-file-stream-to-client

C_hapter 96. Sequelize.|s

Examples

Installation
Make sure that you first have Node.js and npm installed. Then install sequelize.js with npm

npm install --save sequelize

You will also need to install supported database Node.js modules. You only need to install the one
you are using

For mysor and Mariadb
npm install --save mysqgl
FOFPostgreSQL

npm install --save pg pg-hstore

For sorite
npm install --save sglite
For mssor
npm install --save tedious

Once you have you set up installed you can include and create a new Sequalize instance like so.

ESS5 syntax

var Sequelize = require('sequelize');
var sequelize = new Sequelize('database', 'username', 'password');

ES6 stage-0 Babel syntax

import Sequelize from 'sequelize';
const sequelize = new Sequelize ('database', 'username', 'password');

You now have an instance of sequelize available. You could if you so feel inclined call it a different
name such as

var db = new Sequelize ('database', 'username', 'password');

https://riptutorial.com/ 328

or

var database = new Sequelize ('database', 'username',K 'password');

that part is your prerogative. Once you have this installed you can use it inside of your application
as per the APl documentation hitp://docs.sequelizejs.com/en/v3/api/sequelize/

Your next step after install would be to set up your own model

Defining Models

There are two ways to define models in sequelize; with sequelize.define(...), Of
sequelize.import (...). Both functions return a sequelize model object.

1. sequelize.define(modelName, attributes,
[options])

This is the way to go if you'd like to define all your models in one file, or if you want to have extra
control of your model definition.

/* Initialize Sequelize */
const config = {

username: "database username",

password: "database password",

database: "database name",

host: "database's host URL",

dialect: "mysqgl" // Other options are postgres, sqlite, mariadb and mssqgl.
}

var Sequelize = require ("sequelize");

var sequelize = new Sequelize (config);

/* Define Models */
sequelize.define ("MyModel", {
name: Sequelize.STRING,
comment: Sequelize.TEXT,
date: {
type: Sequelize.DATE,
allowNull: false

)i

For the documentation and more examples, check out the doclets documentation, or
sequelize.com's documentation.

Tsequelize.import(path)

If your model definitions are broken into a file for each, then import is your friend. In the file where

https://riptutorial.com/ 329

http://docs.sequelizejs.com/en/v3/api/sequelize/
http://docs.sequelizejs.com/en/v3/docs/getting-started/#your-first-model
https://doclets.io/sequelize/sequelize/master#dl-Sequelize-define
http://docs.sequelizejs.com/en/v3/docs/models-definition/

you initialize Sequelize, you need to call import like so:

/* Initialize Sequelize */
// Check previous code snippet for initialization

/* Define Models */
sequelize.import ("./models/my_model.js"); // The path could be relative or absolute

Then in your model definition files, your code will look something like this:

module.exports = function (sequelize, DataTypes) {
return sequelize.define ("MyModel", ({
name: DataTypes.STRING,
comment: DataTypes.TEXT,
date: {
type: DataTypes.DATE,
allowNull: false

For more information on how to use import, check out sequelize's express example on GitHub.

Read Sequelize.js online: https://riptutorial.com/node-js/topic/7705/sequelize-js

https://riptutorial.com/ 330

https://github.com/sequelize/express-example/tree/master/models
https://riptutorial.com/node-js/topic/7705/sequelize-js

C_hapter 97: Simple REST based CRUD API

Examples

REST API for CRUD in Express 3+

var express = require ("express"),
bodyParser = require ("body-parser"),
server = express|();

//body parser for parsing request body
server.use (bodyParser. json ()) ;

server.use (bodyParser.urlencoded ({ extended: true }));

//temperary store for ‘item’ in memory
var itemStore = [];

//GET all items

server.get ('/item', function (req, res) {
res.json (itemStore);

)i

//GET the item with specified id
server.get ('/item/:id', function (req, res)
res.json (itemStore[reqg.params.id]) ;

}) i

//POST new item

server.post ('/item', function (req, res) {
itemStore.push (reqg.body) ;
res.json(req.body) ;

1)

//PUT edited item in-place of item with specified id

server.put ('/item/:id', function (req, res)
itemStore[reqg.params.id] = reqg.body
res.json(req.body) ;

1)

//DELETE item with specified id

server.delete('/item/:id', function (req, res)

itemStore.splice(reqg.params.id, 1)
res.json(req.body) ;
1)

//START SERVER
server.listen (3000, function () {
console.log("Server running");

})

Read Simple REST based CRUD API online: https://riptutorial.com/node-js/topic/5850/simple-rest-

based-crud-api

https://riptutorial.com/

331

https://riptutorial.com/node-js/topic/5850/simple-rest-based-crud-api
https://riptutorial.com/node-js/topic/5850/simple-rest-based-crud-api

C_hapter 98: Socket.io communication

Examples

"Hello world!" with socket messages.
Install node modules

npm install express
npm install socket.io

Node.js server

const express = require ('express');
const app = express();
const server = app.listen(3000,console.log("Socket.io Hello World server started!"));

const io = require('socket.io') (server);
io.on('connection', (socket) => {
//console.log ("Client connected!");

socket.on ('message-from-client-to-server', (msg) => {
console.log(msqg) ;
})
socket.emit ('message-from-server-to-client', 'Hello World!');
1)

Browser client

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Hello World with Socket.io</title>
</head>
<body>
<script src="https://cdn.socket.io/socket.io-1.4.5.3s"></script>
<script>
var socket = io("http://localhost:3000");
socket.on ("message-from-server-to-client", function (msg) {

document .getElementById('message') .innerHTML = msg;
1)
socket.emit ('message-from-client-to-server', 'Hello World!');
</script>

<p>Socket.io Hello World client started!</p>
<p id="message"></p>
</body>
</html>

Read Socket.io communication online: https://riptutorial.com/node-js/topic/4261/socket-io-
communication

https://riptutorial.com/ 332

https://riptutorial.com/node-js/topic/4261/socket-io-communication
https://riptutorial.com/node-js/topic/4261/socket-io-communication

C_hapter 99: Synchronous vs Asynchronous
programming in nodejs

Examples

Using async
The async package provides functions for asynchronous code.

Using the auto function you can define asynchronous relations between two or more functions:

var async = require('async');

async.auto ({
get_data: function (callback) {
console.log('in get_data');
// async code to get some data
callback (null, 'data', 'converted to array');
bo
make_folder: function(callback) {
console.log('in make_folder');
// async code to create a directory to store a file in
// this is run at the same time as getting the data
callback (null, 'folder');
bo
write_file: ['get_data', 'make_folder', function(results, callback) {
console.log('in write_file', JSON.stringify (results));
// once there is some data and the directory exists,
// write the data to a file in the directory
callback (null, 'filename');
1,
email_link: ['write_file', function(results, callback) {
console.log('in email_link', JSON.stringify (results));
// once the file is written let's email a link to it...
// results.write_file contains the filename returned by write_file.
callback (null, {'file':results.write_file, 'email':'user@example.com'});
}1
}, function(err, results) {
console.log('err = ', err);
console.log('results = ', results);

)i

This code could have been made synchronously, by just calling the get_data, make_folder,
write_file and email_1ink in the correct order. Async keeps track of the results for you, and if an
error occurred (first parameter of caiiback unequal to nu11) it stops the execution of the other
functions.

Read Synchronous vs Asynchronous programming in nodejs online: https://riptutorial.com/node-
Jjs/topic/8287/synchronous-vs-asynchronous-programming-in-nodejs

https://riptutorial.com/ 333

https://www.npmjs.com/package/async
http://caolan.github.io/async/docs.html#auto
https://riptutorial.com/node-js/topic/8287/synchronous-vs-asynchronous-programming-in-nodejs
https://riptutorial.com/node-js/topic/8287/synchronous-vs-asynchronous-programming-in-nodejs

C_hapter 100: TCP Sockets

Examples
A simple TCP server

// Include Nodejs' net module.

const Net = require('net');

// The port on which the server is listening.
const port = 8080;

// Use net.createServer () in your code. This is just for illustration purpose.
// Create a new TCP server.

const server = new Net.Server();

// The server listens to a socket for a client to make a connection request.
// Think of a socket as an end point.

server.listen (port, function() {

console.log(Server listening for connection requests on socket localhost:${port} .);

)i

// When a client requests a connection with the server, the server creates a new
// socket dedicated to that client.
server.on ('connection', function (socket) {

console.log('A new connection has been established.');

// Now that a TCP connection has been established, the server can send data to
// the client by writing to its socket.
socket.write('Hello, client.');

// The server can also receive data from the client by reading from its socket.
socket.on('data', function (chunk) {

console.log(Data received from client: ${chunk.toString() .});
}) i

// When the client requests to end the TCP connection with the server, the server
// ends the connection.
socket.on('end', function() {
console.log('Closing connection with the client');
1)

// Don't forget to catch error, for your own sake.
socket.on('error', function(err) {
console.log(Error: ${err}’);
1)
1)

A simple TCP client

// Include Nodejs' net module.

const Net = require('net');

// The port number and hostname of the server.
const port = 8080;

const host = 'localhost';

// Create a new TCP client.

https://riptutorial.com/

334

const client = new Net.Socket ();

// Send a connection request to the server.

client.connect ({ port: port, host: host }), function() {
// If there is no error, the server has accepted the request and created a new
// socket dedicated to us.
console.log ('TCP connection established with the server.');

// The client can now send data to the server by writing to its socket.
client.write('Hello, server.');

}) i

// The client can also receive data from the server by reading from its socket.
client.on('data', function (chunk) {
console.log(Data received from the server: ${chunk.toString()}.);

// Request an end to the connection after the data has been received.
client.end();

1)
client.on('end', function() {

console.log('Requested an end to the TCP connection');

}) i

Read TCP Sockets online: https://riptutorial.com/node-js/topic/6545/tcp-sockets

https://riptutorial.com/ 335

https://riptutorial.com/node-js/topic/6545/tcp-sockets

C_hapter 101: Template frameworks

Examples

Nunjucks

Server-side engine with block inheritance, autoescaping, macros, asynchronous control, and

more. Heavily inspired by jinja2, very similar to Twig (php).

Docs - http://mozilla.github.io/nunjucks/

Install - npm i nunjucks

Basic usage with Express below.

app.Js
var express = require ('express');
var nunjucks = require ('nunjucks');
var app = express|();

app

// RApply nunjucks and add custom filter and function

var

)i

env.

)i

env.

.use (express.static('/public'));

autoescape: true,
express: app

addFilter ('myFilter', function(obj, argl, arg2) {
console.log('myFilter', obj, argl, arg2);

// Do smth with obj

return obj;

addGlobal ('myFunc', function (obj, argl) {
console.log('myFunc', obj, argl);

// Do smth with obj

return obj;

.get ('/', function(req, res) {

res.render ('index.html', {title: 'Main page'});

.get ('/foo', function(req, res) {

res.locals.smthVar = 'This is Sparta!';
res.render ('foo.html', {title: 'Foo page'});

.listen (3000, function() {

console.log('Example app listening on port 3000...');

Iviews/index.html

(for example) .
env = nunjucks.configure(['views/'], { // set folders with templates

https://riptutorial.com/

336

http://mozilla.github.io/nunjucks/
http://expressjs.com/

<html>
<head>
<title>Nunjucks example</title>
</head>
<body>
{% block content %}
{{title}}
% endblock %}
</body>
</html>

/views/foo.html

{% extends "index.html" %}

{# This is comment #}

{% block content %}
<hl>{{title}}</h1>
{# apply custom function and next build-in and custom filters #}
{{ myFunc (smthVar) | lower | myFilter (5, 'abc') }}

{% endblock %}

Read Template frameworks online: https://riptutorial.com/node-js/topic/5885/template-frameworks

https://riptutorial.com/ 337

https://riptutorial.com/node-js/topic/5885/template-frameworks

C_hapter 102: Uninstalling Node.js

Examples

Completely uninstall Node.js on Mac OSX
In Terminal on your Mac operating system, enter the following 2 commands:

lsbom —-f -1 -s —-pf /var/db/receipts/org.nodejs.pkg.bom | while read f; do sudo rm
/usr/local/${f}; done

sudo rm -rf /usr/local/lib/node /usr/local/lib/node_modules /var/db/receipts/org.nodejs.*

Uninstall Node.js on Windows

To uninstall Node.js on Windows, use Add or Remove Programs like this:

1. Open add or rRemove Programs from the start menu.
2. Search for node. js.

Windows 10:

3. Click Node.js.
4. Click Uninstall.
5. Click the new Uninstall button.

Windows 7-8.1:
3. Click the Uninstall button under Node.js.

Read Uninstalling Node.js online: https://riptutorial.com/node-js/topic/2821/uninstalling-node-js

https://riptutorial.com/

338

https://riptutorial.com/node-js/topic/2821/uninstalling-node-js

C_hapter 103: Unit testing frameworks

Examples

Mocha synchronous

describe ('Suite Name', function() {
describe ('#method () ', function() {
it ('should run without an error', function() {

expect ([1, 2, 3].length).to.be.equal (3)

Mocha asynchronous (callback)

var expect = require("chai") .expect;
describe ('Suite Name', function() {
describe ('#method () ', function() {

it ('should run without an error', function (done) {
testSomething (err => {
expect (err) .to.not.be.equal (null)
done ()

Mocha asynchronous (Promise)

describe ('Suite Name', function() {
describe ('#method () ', function() {
it ('should run without an error', function() {

return doSomething () .then (result => {
expect (result) .to.be.equal ('hello world"')

Mocha Asynchronous (async/await)

const { expect } = require('chai')

describe ('Suite Name', function() {
describe ('#method () ', function() {
it ('should run without an error', async function() {
const result = await answerToTheUltimateQuestion ()
expect (result) .to.be.equal (42)
})
})

https://riptutorial.com/ 339

H)

Read Unit testing frameworks online: https://riptutorial.com/node-js/topic/6731/unit-testing-
frameworks

https://riptutorial.com/ 340

https://riptutorial.com/node-js/topic/6731/unit-testing-frameworks
https://riptutorial.com/node-js/topic/6731/unit-testing-frameworks

C_hapter 104: Use Cases of Node.|s

Examples
HTTP server

const http = require('http');

console.log('Starting server...');
var config = {
port: 80,
contentType: 'application/json; charset=utf-8'

bi
// JSON-API server on port 80

var server = http.createServer();

server.listen (config.port);

server.on('error', (err) => {
if (err.code == 'EADDRINUSE') console.error ('Port '+ config.port +' is already in use');
else console.error (err.message);

1)

server.on('request', (request, res) => {

var remoteAddress = request.headers|['x-forwarded-for'] ||

request.connection.remoteAddress; // Client address
console.log(remoteAddress +' '+ request.method +' '+ request.url);
var out = {};

// Here you can change output according to "request.url®

out.test = request.url;

res.writeHead (200, {

'Content-Type': config.contentType

1)

res.end (JSON.stringify (out));
1)
server.on('listening', () => {

c.info('Server is available: http://localhost:'+ config.port);
1)

Console with command prompt

const process = require('process');
const rl = require('readline') .createlInterface (process.stdin, process.stdout);

rl.pause();

console.log('Something long is happening here...');
var cliConfig = ({
promptPrefix: ' > '
}
/*
Commands recognition
BEGIN
*/
var commands = {

https://riptutorial.com/ 341

eval: function(arg) { // Try typing in console: eval 2 * 10 ~ 3 + 2 ~ 4
arg = arg.join(' ");
try { console.log(eval (arg)); }
catch (e) { console.log(e); }
by
exit: function(arg) {
process.exit ();

bi
rl.on('line', (str) => {

rl.pause();
var arg = str.trim().match(/ ([*"]1+) | (" (?2:[*"\\]1I\\.)+")/qg); // Applying regular expression

for removing all spaces except for what between double quotes:
http://stackoverflow.com/a/14540319/2396907

if (arg) {
for (let n in arg) {
arg[n] = arg[n].replace (/"\"[\"S$S/g, '');
}
var commandName = arg[0];

var command = commands [commandName] ;
if (command) {

arg.shift ();

command (arqg) ;
}

else console.log('Command "'+ commandName +'" doesn\'t exist');

}

rl.prompt () ;
P
/*

END OF

Commands recognition
*/

rl.setPrompt (cliConfig.promptPrefix) ;
rl.prompt () ;

Read Use Cases of Node.|s online: https://riptutorial.com/node-js/topic/7703/use-cases-of-node-js

https://riptutorial.com/ 342

https://riptutorial.com/node-js/topic/7703/use-cases-of-node-js

C_hapter 105: Using Browserfiy to resolve
‘required’ error with browsers

Examples

Example - file.js
In this example we have a file called file.js.

Let's assume that you have to parse an URL using JavaScript and NodeJS querystring module.

To accomplish this all you have to do is to insert the following statement in your file:

const querystring = require ('querystring');
var ref = querystring.parse ("foo=bar&abc=xyz&abc=123");

What is this snippet doing?

Well, first, we create a querystring module which provides utilities for parsing and formatting URL
guery strings. It can be accessed using:

const querystring = require ('querystring');

Then, we parse a URL using the .parse() method. It parses a URL query string (str) into a
collection of key and value pairs.

For example, the query string ' foo=barsabc=xyzsabc=123" IS parsed into:
{ foo: 'bar', abc: ['xyz', '123'] }

Unfortunately, Browsers don't have the require method defined, but Node.js does.

Install Browserfy

With Browserify you can write code that uses require in the same way that you would use it in
Node. So, how do you solve this? It's simple.

1. First install node, which ships with npm. Then do:
npm install -g browserify

2. Change into the directory in which your file.js is and Install our querystring module with npm:

https://riptutorial.com/ 343

npm install querystring

Note: If you don't change in the specific directory the command will fail because it can't find the file
which contains the module.

3. Now recursively bundle up all the required modules starting at file.js into a single file called
bundle.js (or whatever you like to name it) with the browserify command:

browserify file.js -o bundle.js

Browserify parses the Abstract Syntax Tree for require() calls to traverse the entire dependency
graph of your

4. FinallyDrop a single tag into your html and you're done!
<script src="bundle.js"></script>

What happens is that you get a combination of your old .js file (file.js that is) and your newly
created bundle.js file. Those two files are merged into one single file.

Important

Please keep in mind that if you want to make any changes to your file.js and will not
affect the behaviour of your program. Your changes will only take effect if you edit
the newly created bundle.js

What does that mean?

This means that if you want to edit file.js for any reasons, the changes will not have any effects.
You really have to edit bundle.js since it is a merge of bundle.js and file.js.

Read Using Browserfiy to resolve 'required' error with browsers online: https://riptutorial.com/node-
Jjsltopic/7123/using-browserfiy-to-resolve--required--error-with-browsers

https://riptutorial.com/ 344

https://riptutorial.com/node-js/topic/7123/using-browserfiy-to-resolve--required--error-with-browsers
https://riptutorial.com/node-js/topic/7123/using-browserfiy-to-resolve--required--error-with-browsers

C_hapter 106: Using IISNode to host Node.|s
Web Apps in lIS

Remarks

Virtual Directory / Nested Application with
Views Pitfall

If you're going to be using Express to render views using a View Engine, you'll need to pass the
virtualDirPath Value in to your views

‘res.render ('index', { virtualDirPath: virtualDirPath });°

The reason for doing this is to make your hyperlinks to other views host by your app and static
resource paths to know where the site is being hosted without needing to modify all views after
deployment. This is one of the more annoying and tedious pitfalls of using Virtual Directories with
IISNode.

Versions

All of the examples above work with

* Express v4.Xx
e IS 7.x/8.x
» Socket.io v1.3.x or greater

Examples

Getting Started

lISNode allows Node.js Web Apps to be hosted on IIS 7/8 just like a .NET application would. Of
course, you can self host your node.exe process on Windows but why do that when you can just
run your app in lIS.

IISNode will handle scaling over multiple cores, process manageement of node.exe, and auto-
recycle your IIS Application whenever your app is updated, just to name a few of its benefits.

Requirements

IISNode does have a few requirements before you can host your Node.js app in 1IS.

https://riptutorial.com/ 345

https://github.com/tjanczuk/iisnode
https://tomasz.janczuk.org/2011/08/hosting-nodejs-applications-in-iis-on.html

1. Node.js must be installed on the 1IS host, 32-bit or 64-bit, either are supported.
2. lISNode installed x86 or x64, this should match the bitness of your IIS Host.
3. The Microsoft URL-Rewrite Module for IS installed on your 1S host.
» This is key, otherwise requests to your Node.js app won't function as expected.
4. A web.config in the root folder of your Node.js app.
5. lISNode configuration via an iisnode.ymi file or an <iisnode> element within your web. config.

Basic Hello World Example using Express

To get this example working, you'll need to create an IIS 7/8 app on your IIS host and add the
directory containing the Node.js Web App as the Physical Directory. Ensure that your
Application/Application Pool Identity can access the Node.js install. This example uses the Node.js
64-bit installation.

Project Strucure

This is the basic project structure of a ISNode/Node.js Web app. It looks almost identical to any
non-lIISNode Web App except for the addition of the web.config.

- /app_root
- package. json
- server.js
- Web.config

server.js - Express Application

const express = require ('express');
const server = express|();

// We need to get the port that IISNode passes into us
// using the PORT environment variable, if it isn't set use a default value

const port = process.env.PORT || 3000;

// Setup a route at the index of our app
server.get ('/', (req, res) => {

return res.status(200) .send('Hello World');
1)

server.listen (port, () => {
console.log(Listening on ${port}’);

}) i

gnfiguration & Web.config

The web.config IS just like any other IS web.config except the following two things must be present,
URL <rewrite><rules> and an [ISNode <nhandier>. Both of these elements are children of the
<system.webServer> element.

https://riptutorial.com/ 346

https://github.com/azure/iisnode/releases/download/v0.2.21/iisnode-full-v0.2.21-x86.msi
https://github.com/azure/iisnode/releases/download/v0.2.21/iisnode-full-v0.2.21-x64.msi
http://www.iis.net/downloads/microsoft/url-rewrite

Configuration

You can configure lISNode by using a : i snode. v file or by adding the <:isn00> element as a
child of <system.webserver> iN yOUr web.config. Both of these configuration can be used in
conjunction with one another however, in this case, web.config Will need to specify the iisnode.ym1
file AND any configuration conflicts will be take from the i isnode.ymi file instead. This configuration
overriding cannot happen the other way around.

[ISNode Handler

In order for IIS to know that server. js contains our Node.js Web App we need to explicitly tell it
that. We can do this by adding the [ISNode <handier> to the <handiers> element.

<handlers>
<add name="iisnode" path="server.js" verb="*" modules="iisnode"/>
</handlers>

URL-Rewrite Rules

The final part of the configuration is ensuring that traffic intended for our Node.js app coming into
our IS instance is being directed to ISNode. Without URL rewrite rules, we would need to visit our
app by going to nttp://<host>/server. s and even worse, when trying to request a resource
supplied by server. s you'll get a 404. This is why URL rewriting is necessary for ISNode web

apps.

<rewrite>
<rules>
<!-— First we consider whether the incoming URL matches a physical file in the /public
folder ——>
<rule name="StaticContent" patternSyntax="Wildcard">
<action type="Rewrite" url="public/{R:0}" logRewrittenUrl="true"/>

<conditions>
<add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true"/>
</conditions>
<match url="*_*"/>
</rule>
<!—— All other URLs are mapped to the Node.]js application entry point —-->
<rule name="DynamicContent">
<conditions>
<add input="{REQUEST_FILENAME}" matchType="IsFile" negate="True"/>
</conditions>
<action type="Rewrite" url="server.js"/>
</rule>
</rules>
</rewrite>

This Is a working wen. contig file for this example, setup for a 64-bit Node.js install.

That's it, now visit your IIS Site and see your Node.js application working.

https://riptutorial.com/ 347

https://raw.githubusercontent.com/tjanczuk/iisnode/master/src/samples/configuration/iisnode.yml
https://github.com/tjanczuk/iisnode/blob/master/src/samples/configuration/web.config#L11
https://github.com/tjanczuk/iisnode/blob/master/src/samples/configuration/web.config#L105-L111
https://github.com/tjanczuk/iisnode/blob/master/src/samples/configuration/web.config#L105-L111
https://github.com/tjanczuk/iisnode/blob/master/src/samples/configuration/web.config#L105-L111
https://gist.github.com/pbaio/f63918181d8d7f8ee1d2
https://gist.github.com/pbaio/f63918181d8d7f8ee1d2
https://gist.github.com/pbaio/f63918181d8d7f8ee1d2

Using an IIS Virtual Directory or Nested Application via

Using a Virtual Directory or Nested Application in IIS is a common scenario and most likely one
that you'll want to take advantage of when using lISNode.

IISNode doesn't provide direct support for Virtual Directories or Nested Applications via
configuration so to achieve this we'll need to take advantage of a feature of ISNode that isn't part
of the configuration and is much lesser known. All children of the <appsettings> element with the
web.config are added to the process.env Object as properties using the appSetting key.

Lets create a Virtual Directory in our <appsettings>

<appSettings>
<add key="virtualDirPath" value="/foo" />

</appSettings>
Within our Node.js App we can access the virtualpirpath Setting

console.log(process.env.virtualDirPath); // prints /foo

Now that we can use the <appsettings> element for configuration, lets take advantage of that and
use it in our server code.

// Access the virtualDirPath appSettings and give it a default value of '/'
// in the event that it doesn't exist or isn't set
var virtualDirPath = process.env.virtualDirPath || '/';

// We also want to make sure that our virtualDirPath

// always starts with a forward slash

if (!virtualDirPath.startswWith('/', 0))
virtualDirPath = '/' 4+ virtualDirPath;

// Setup a route at the index of our app
server.get (virtualDirPath, (req, res) => {

return res.status (200) .send('Hello World');
}) i

We can use the virtualDirPath with our static resources as well

// Public Directory

server.use (express.static (path.join (virtualDirPath, 'public')));

// Bower

server.use (' /bower_components', express.static(path.join(virtualDirPath,
'bower_components')));

Lets put all of that together

const express = require ('express');
const server = express|();
const port = process.env.PORT || 3000;

https://riptutorial.com/ 348

// Access the