
Node.js

#node.js

Table of Contents

About 1

Chapter 1: Getting started with Node.js 2

Remarks 2

Versions 2

Examples 6

Hello World HTTP server 6

Hello World command line 7

Installing and Running Node.js 8

Running a Node Program 8

Deploying your application online 8

Debugging Your NodeJS Application 9

Debugging natively 9

Hello World with Express 10

Hello World basic routing 10

TLS Socket: server and client 12

How to Create a Key and Certificate 12

Important! 12

TLS Socket Server 12

TLS Socket Client 13

Hello World in the REPL 14

Core modules 15

All core modules at-a-glance 15

How to get a basic HTTPS web server up and running! 19

Step 1 : Build a Certificate Authority 19

Step 2 : Install your certificate as a root certificate 20

Step 3 : Starting your node server 20

Chapter 2: Arduino communication with nodeJs 22

Introduction 22

Examples 22

Node Js communication with Arduino via serialport 22

Node js code 22

Arduino code 23

Starting Up 23

Chapter 3: async.js 25

Syntax 25

Examples 25

Parallel : multi-tasking 25

Call async.parallel() with an object 26

Resolving multiple values 26

Series : independent mono-tasking 27

Call async.series() with an object 28

Waterfall : dependent mono-tasking 28

async.times(To handle for loop in better way) 29

async.each(To handle array of data efficiently) 29

async.series(To handle events one by one) 30

Chapter 4: Async/Await 31

Introduction 31

Examples 31

Async Functions with Try-Catch Error Handling 31

Comparison between Promises and Async/Await 32

Progression from Callbacks 32

Stops execution at await 33

Chapter 5: Asynchronous programming 34

Introduction 34

Syntax 34

Examples 34

Callback functions 34

Callback functions in JavaScript 34

Synchronous callbacks. 34

Asynchronous callbacks. 35

Callback functions in Node.js 36

Code example 37

Async error handling 38

Try catch 38

Working possibilities 38

Event handlers 38

Domains 38

Callback hell 39

Native Promises 40

Chapter 6: Autoreload on changes 42

Examples 42

Autoreload on source code changes using nodemon 42

Installing nodemon globally 42

Installing nodemon locally 42

Using nodemon 42

Browsersync 42

Overview 42

Installation 42

Windows Users 43

Basic Usage 43

Advanced Usage 43

Grunt.js 43

Gulp.js 44

API 44

Chapter 7: Avoid callback hell 45

Examples 45

Async module 45

Async Module 45

Chapter 8: Bluebird Promises 47

Examples 47

Converting nodeback library to Promises 47

Functional Promises 47

Coroutines (Generators) 47

Automatic Resource Disposal (Promise.using) 48

Executing in series 48

Chapter 9: Callback to Promise 49

Examples 49

Promisifying a callback 49

Manually promisifying a callback 50

setTimeout promisified 50

Chapter 10: Cassandra Integration 51

Examples 51

Hello world 51

Chapter 11: CLI 52

Syntax 52

Examples 52

Command Line Options 52

Chapter 12: Client-server communication 56

Examples 56

/w Express, jQuery and Jade 56

Chapter 13: Cluster Module 58

Syntax 58

Remarks 58

Examples 58

Hello World 58

Cluster Example 59

Chapter 14: Connect to Mongodb 61

Introduction 61

Syntax 61

Examples 61

Simple example to Connect mongoDB from Node.JS 61

Simple way to Connect mongoDB with core Node.JS 61

Chapter 15: Creating a Node.js Library that Supports Both Promises and Error-First Callbac 62

Introduction 62

Examples 62

Example Module and Corresponding Program using Bluebird 62

Chapter 16: Creating API's with Node.js 65

Examples 65

GET api using Express 65

POST api using Express 65

Chapter 17: csv parser in node js 67

Introduction 67

Examples 67

Using FS to read in a CSV 67

Chapter 18: Database (MongoDB with Mongoose) 68

Examples 68

Mongoose connection 68

Model 68

Insert data 69

Read data 69

Chapter 19: Debugging Node.js application 71

Examples 71

Core node.js debugger and node inspector 71

Using core debugger 71

Command reference 71

Using Built-in Node inspector 72

Using Node inspector 72

Chapter 20: Deliver HTML or any other sort of file 75

Syntax 75

Examples 75

Deliver HTML at specified path 75

Folder structure 75

server.js 75

Chapter 21: Dependency Injection 77

Examples 77

Why Use Dependency Injection 77

Chapter 22: Deploying Node.js application without downtime. 78

Examples 78

Deployment using PM2 without downtime. 78

Chapter 23: Deploying Node.js applications in production 80

Examples 80

Setting NODE_ENV="production" 80

Runtime flags 80

Dependencies 80

Manage app with process manager 81

PM2 process manager 81

Deployment using PM2 82

Deployment using process manager 83

Forvever 83

Using different Properties/Configuration for different environments like dev, qa, staging 83

Taking advantage of clusters 84

Chapter 24: ECMAScript 2015 (ES6) with Node.js 86

Examples 86

const/let declarations 86

Arrow functions 86

Arrow Function Example 86

destructuring 87

flow 87

ES6 Class 88

Chapter 25: Environment 89

Examples 89

Accessing environment variables 89

process.argv command line arguments 89

Using different Properties/Configuration for different environments like dev, qa, staging 90

Loading environment properties from a "property file" 91

Chapter 26: Event Emitters 93

Remarks 93

Examples 93

HTTP Analytics through an Event Emitter 93

Basics 94

Get the names of the events that are subscribed to 95

Get the number of listeners registered to listen for a specific event 95

Chapter 27: Eventloop 97

Introduction 97

Examples 97

How the concept of event loop evolved. 97

Eventloop in pseudo code 97

Example of a single-threaded HTTP server with no event loop 97

Example of a multi-threaded HTTP server with no event loop 97

Example of a HTTP server with event loop 98

Chapter 28: Exception handling 100

Examples 100

Handling Exception In Node.Js 100

Unhanded Exception Management 101

Silently Handling Exceptions 102

Returning to Initial state 102

Errors and Promises 103

Chapter 29: Executing files or commands with Child Processes 104

Syntax 104

Remarks 104

Examples 104

Spawning a new process to execute a command 104

Spawning a shell to execute a command 105

Spawning a process to run an executable 106

Chapter 30: Exporting and Consuming Modules 107

Remarks 107

Examples 107

Loading and using a module 107

Creating a hello-world.js module 108

Invalidating the module cache 109

Building your own modules 110

Every module injected only once 111

Module loading from node_modules 111

Folder as a module 112

Chapter 31: Exporting and Importing Module in node.js 113

Examples 113

Using a simple module in node.js 113

Using Imports In ES6 113

Exporting with ES6 syntax 115

Chapter 32: File upload 116

Examples 116

Single File Upload using multer 116

Note: 117

How to filter upload by extension: 117

Using formidable module 117

Chapter 33: Filesystem I/O 119

Remarks 119

Examples 119

Writing to a file using writeFile or writeFileSync 119

Asynchronously Read from Files 120

With Encoding 120

Without Encoding 120

Relative paths 120

Listing Directory Contents with readdir or readdirSync 121

Using a generator 121

Reading from a file synchronously 122

Reading a String 122

Deleting a file using unlink or unlinkSync 122

Reading a file into a Buffer using streams 123

Check Permissions of a File or Directory 123

Asynchronously 123

Synchronously 124

Avoiding race conditions when creating or using an existing directory 124

Checking if a file or a directory exists 125

Asynchronously 125

Synchronously 125

Cloning a file using streams 126

Copying files by piping streams 126

Changing contents of a text file 126

Determining the line count of a text file 127

app.js 127

Reading a file line by line 127

app.js 127

Chapter 34: Getting started with Nodes profiling 129

Introduction 129

Remarks 129

Examples 129

Profiling a simple node application 129

Chapter 35: Good coding style 132

Remarks 132

Examples 132

Basic program for signup 132

Chapter 36: Graceful Shutdown 136

Examples 136

Graceful Shutdown - SIGTERM 136

Chapter 37: grunt 137

Remarks 137

Examples 137

Introduction To GruntJs 137

Installing gruntplugins 138

Chapter 38: Hack 140

Examples 140

Add new extensions to require() 140

Chapter 39: Handling POST request in Node.js 141

Remarks 141

Examples 141

Sample node.js server that just handles POST requests 141

Chapter 40: How modules are loaded 143

Examples 143

Global Mode 143

Loading modules 143

Loading a Folder Module 143

Chapter 41: http 145

Examples 145

http server 145

http client 146

Chapter 42: Installing Node.js 148

Examples 148

Install Node.js on Ubuntu 148

Using the apt package manager 148

Using the latest of specific version (e.g. LTS 6.x) directly from nodesource 148

Installing Node.js on Windows 148

Using Node Version Manager (nvm) 149

Install Node.js From Source with APT package manager 150

Installing Node.js on Mac using package manager 150

Homebrew 150

Macports 151

Installing using MacOS X Installer 151

Check if Node is installed 151

Installing Node.js on Raspberry PI 152

Installing with Node Version Manager under Fish Shell with Oh My Fish! 152

Install Node.js from source on Centos, RHEL and Fedora 153

Installing Node.js with n 153

Chapter 43: Interacting with Console 155

Syntax 155

Examples 155

Logging 155

Console Module 155

console.log 155

console.error 155

console.time, console.timeEnd 155

Process Module 156

Formatting 156

General 156

Font Colors 156

Background Colors 157

Chapter 44: Keep a node application constantly running 158

Examples 158

Use PM2 as a process manager 158

Useful commands for monitoring the process 158

Running and stopping a Forever daemon 159

Continuous running with nohup 160

Process Mangement with Forever 160

Chapter 45: Koa Framework v2 161

Examples 161

Hello World example 161

Handling errors using middleware 161

Chapter 46: Lodash 162

Introduction 162

Examples 162

Filter a collection 162

Chapter 47: Loopback - REST Based connector 163

Introduction 163

Examples 163

Adding a web based connector 163

Chapter 48: metalsmith 165

Examples 165

Build a simple blog 165

Chapter 49: Mongodb integration 166

Syntax 166

Parameters 166

Examples 167

Connect to MongoDB 167

MongoClient method Connect() 167

Insert a document 167

Collection method insertOne() 168

Read a collection 168

Collection method find() 168

Update a document 169

Collection method updateOne() 169

Delete a document 169

Collection method deleteOne() 170

Delete multiple documents 170

Collection method deleteMany() 170

Simple connect 171

Simple connect, using promises 171

Chapter 50: MongoDB Integration for Node.js/Express.js 172

Introduction 172

Remarks 172

Examples 172

Installing MongoDB 172

Creating a Mongoose Model 172

Querying your Mongo Database 173

Chapter 51: Mongoose Library 175

Examples 175

Connect to MongoDB Using Mongoose 175

Save Data to MongoDB using Mongoose and Express.js Routes 175

Setup 175

Code 176

Usage 177

Find Data in MongoDB Using Mongoose and Express.js Routes 177

Setup 177

Code 177

Usage 179

Find Data in MongoDB Using Mongoose, Express.js Routes and $text Operator 179

Setup 179

Code 180

Usage 181

Indexes in models. 182

Useful Mongoose functions 184

find data in mongodb using promises 184

Setup 184

Code 184

Usage 185

Chapter 52: MSSQL Intergration 187

Introduction 187

Remarks 187

Examples 187

Connecting with SQL via. mssql npm module 187

Chapter 53: Multithreading 189

Introduction 189

Remarks 189

Examples 189

Cluster 189

Child Process 190

Chapter 54: Mysql Connection Pool 191

Examples 191

Using a connection pool without database 191

Chapter 55: MySQL integration 193

Introduction 193

Examples 193

Query a connection object with parameters 193

Using a connection pool 193

a. Running multiple queries at same time 193

b. Achieving multi-tenancy on database server with different databases hosted on it. 194

Connect to MySQL 195

Query a connection object without parameters 195

Run a number of queries with a single connection from a pool 195

Return the query when an error occurs 196

Export Connection Pool 196

Chapter 56: N-API 198

Introduction 198

Examples 198

Hello to N-API 198

Chapter 57: Node JS Localization 200

Introduction 200

Examples 200

using i18n module to maintains localization in node js app 200

Chapter 58: Node server without framework 202

Remarks 202

Examples 202

Framework-less node server 202

Overcoming CORS Issues 203

Chapter 59: Node.js (express.js) with angular.js Sample code 204

Introduction 204

Examples 204

Creating our project. 204

Ok, but how we create the express skeleton project? 204

How express works, briefly? 205

Installing Pug and updating Express template engine. 205

How AngularJS fits in all of this? 206

Chapter 60: Node.JS and MongoDB. 208

Remarks 208

Examples 208

Connecting To a Database 208

Creating New Collection 209

Inserting Documents 209

Reading 210

Updating 210

Methods 211

Update() 211

UpdateOne 211

UpdateMany 211

ReplaceOne 212

Deleting 212

Chapter 61: Node.js Architecture & Inner Workings 214

Examples 214

Node.js - under the hood 214

Node.js - in motion 214

Chapter 62: Node.js code for STDIN and STDOUT without using any library 216

Introduction 216

Examples 216

Program 216

Chapter 63: Node.js Design Fundamental 217

Examples 217

The Node.js philosophy 217

Chapter 64: Node.js Error Management 218

Introduction 218

Examples 218

Creating Error object 218

Throwing Error 218

try...catch block 219

Chapter 65: Node.js Performance 221

Examples 221

Event Loop 221

Blocking Operation Example 221

Non-Blocking IO Operation Example 221

Performance Considerations 222

Increase maxSockets 222

Basics 222

Setting your own agent 222

Turning off Socket Pooling entirely 223

Pitfalls 223

Enable gzip 223

Chapter 66: Node.js v6 New Features and Improvement 225

Introduction 225

Examples 225

Default Function Parameters 225

Rest Parameters 225

Spread Operator 225

Arrow Functions 226

"this" in Arrow Function 226

Chapter 67: Node.js with CORS 228

Examples 228

Enable CORS in express.js 228

Chapter 68: Node.JS with ES6 229

Introduction 229

Examples 229

Node ES6 Support and creating a project with Babel 229

Use JS es6 on your NodeJS app 230

Prerequisites: 230

Chapter 69: Node.js with Oracle 233

Examples 233

Connect to Oracle DB 233

Query a connection object without parameters 233

Using a local module for easier querying 234

Chapter 70: NodeJS Beginner Guide 236

Examples 236

Hello World ! 236

Chapter 71: NodeJS Frameworks 237

Examples 237

Web Server Frameworks 237

Express 237

Koa 237

Command Line Interface Frameworks 237

Commander.js 237

Vorpal.js 238

Chapter 72: Nodejs History 239

Introduction 239

Examples 239

Key events in each year 239

2009 239

2010 239

2011 239

2012 239

2013 240

2014 240

2015 240

Q1 240

Q2 240

Q3 241

Q4 241

2016 241

Q1 241

Q2 241

Q3 241

Q4 241

Chapter 73: NodeJs Routing 242

Introduction 242

Remarks 242

Examples 242

Express Web Server Routing 242

Chapter 74: NodeJS with Redis 247

Remarks 247

Examples 247

Getting Started 247

Storing Key-Value Pairs 248

Some more important operations supported by node_redis. 250

Chapter 75: npm 252

Introduction 252

Syntax 252

Parameters 253

Examples 254

Installing packages 254

Introduction 254

Installing NPM 254

How to install packages 255

Installing dependencies 257

NPM Behind A Proxy Server 258

Scopes and repositories 258

Uninstalling packages 259

Basic semantic versioning 259

Setting up a package configuration 260

Publishing a package 261

Running scripts 261

Removing extraneous packages 262

Listing currently installed packages 263

Updating npm and packages 263

Locking modules to specific versions 264

Setting up for globally installed packages 264

Linking projects for faster debugging and development 265

Help text 265

Steps for linking project dependencies 265

Steps for linking a global tool 265

Problems that may arise 265

Chapter 76: nvm - Node Version Manager 266

Remarks 266

Examples 266

Install NVM 266

Check NVM version 266

Installing an specific Node version 266

Using an already installed node version 266

Install nvm on Mac OSX 267

INSTALLATION PROCESS 267

TEST THAT NVM WAS PROPERLY INSTALLED 267

Setting alias for node version 268

Run any arbitrary command in a subshell with the desired version of node 268

Chapter 77: OAuth 2.0 270

Examples 270

OAuth 2 with Redis Implementation - grant_type: password 270

Hope to Help! 277

Chapter 78: package.json 278

Remarks 278

Examples 278

Basic project definition 278

Dependencies 278

devDependencies 279

Scripts 279

Pre-defined scripts 279

User-defined scripts 280

Extended project definition 280

Exploring package.json 281

Chapter 79: Parsing command line arguments 286

Examples 286

Passing action (verb) and values 286

Passing boolean switches 286

Chapter 80: Passport integration 287

Remarks 287

Examples 287

Getting started 287

Local authentication 287

Facebook authentication 289

Simple Username-Password Authentication 290

Google Passport authentication 291

Chapter 81: passport.js 293

Introduction 293

Examples 293

Example of LocalStrategy in passport.js 293

Chapter 82: Performance challenges 295

Examples 295

Processing long running queries with Node 295

Chapter 83: PostgreSQL integration 299

Examples 299

Connect To PostgreSQL 299

Query with Connection Object 299

Chapter 84: Project Structure 300

Introduction 300

Remarks 300

Examples 300

A simple nodejs application with MVC and API 300

Chapter 85: Push notifications 303

Introduction 303

Parameters 303

Examples 303

Web notification 303

Apple 304

Chapter 86: Readline 305

Syntax 305

Examples 305

Line-by-line file reading 305

Prompting user input via CLI 305

Chapter 87: Remote Debugging in Node.JS 307

Examples 307

NodeJS run configuration 307

IntelliJ/Webstorm Configuration 307

Use the proxy for debugging via port on Linux 308

Chapter 88: Require() 309

Introduction 309

Syntax 309

Remarks 309

Examples 309

Beginning require() use with a function and file 309

Beginning require() use with an NPM package 310

Chapter 89: Restful API Design: Best Practices 311

Examples 311

Error Handling: GET all resources 311

Chapter 90: Route-Controller-Service structure for ExpressJS 313

Examples 313

Model-Routes-Controllers-Services Directory Structure 313

Model-Routes-Controllers-Services Code Structure 313

user.model.js 313

user.routes.js 313

user.controllers.js 314

user.services.js 314

Chapter 91: Routing ajax requests with Express.JS 315

Examples 315

A simple implementation of AJAX 315

Chapter 92: Running node.js as a service 317

Introduction 317

Examples 317

Node.js as a systemd dæmon 317

Chapter 93: Securing Node.js applications 319

Examples 319

Preventing Cross Site Request Forgery (CSRF) 319

SSL/TLS in Node.js 320

Using HTTPS 321

Setting up an HTTPS server 321

Step 1 : Build a Certificate Authority 321

Step 2 : Install your certificate as a root certificate 322

Secure express.js 3 Application 322

Chapter 94: Send Web Notification 324

Examples 324

Send Web notification using GCM (Google Cloud Messaging System) 324

Chapter 95: Sending a file stream to client 326

Examples 326

Using fs And pipe To Stream Static Files From The Server 326

Streaming Using fluent-ffmpeg 327

Chapter 96: Sequelize.js 328

Examples 328

Installation 328

Defining Models 329

1. sequelize.define(modelName, attributes, [options]) 329

2. sequelize.import(path) 329

Chapter 97: Simple REST based CRUD API 331

Examples 331

REST API for CRUD in Express 3+ 331

Chapter 98: Socket.io communication 332

Examples 332

"Hello world!" with socket messages. 332

Chapter 99: Synchronous vs Asynchronous programming in nodejs 333

Examples 333

Using async 333

Chapter 100: TCP Sockets 334

Examples 334

A simple TCP server 334

A simple TCP client 334

Chapter 101: Template frameworks 336

Examples 336

Nunjucks 336

Chapter 102: Uninstalling Node.js 338

Examples 338

Completely uninstall Node.js on Mac OSX 338

Uninstall Node.js on Windows 338

Chapter 103: Unit testing frameworks 339

Examples 339

Mocha synchronous 339

Mocha asynchronous (callback) 339

Mocha asynchronous (Promise) 339

Mocha Asynchronous (async/await) 339

Chapter 104: Use Cases of Node.js 341

Examples 341

HTTP server 341

Console with command prompt 341

Chapter 105: Using Browserfiy to resolve 'required' error with browsers 343

Examples 343

Example - file.js 343

What is this snippet doing? 343

Install Browserfy 343

Important 344

What does that mean? 344

Chapter 106: Using IISNode to host Node.js Web Apps in IIS 345

Remarks 345

Virtual Directory / Nested Application with Views Pitfall 345

Versions 345

Examples 345

Getting Started 345

Requirements 345

Basic Hello World Example using Express 346

Project Strucure 346

server.js - Express Application 346

Configuration & Web.config 346

Configuration 347

IISNode Handler 347

URL-Rewrite Rules 347

Using an IIS Virtual Directory or Nested Application via 348

Using Socket.io with IISNode 349

Chapter 107: Using Streams 350

Parameters 350

Examples 350

Read Data from TextFile with Streams 350

Piping streams 351

Creating your own readable/writable stream 351

Why Streams? 352

Chapter 108: Using WebSocket's with Node.JS 355

Examples 355

Installing WebSocket's 355

Adding WebSocket's to your file's 355

Using WebSocket's and WebSocket Server's 355

A Simple WebSocket Server Example 355

Chapter 109: Web Apps With Express 357

Introduction 357

Syntax 357

Parameters 357

Examples 357

Getting Started 357

Basic routing 358

Getting info from the request 359

Modular express application 360

More complicated example 361

Using a Template Engine 362

Using a Template Engine 362

EJS Template Example 363

JSON API with ExpressJS 363

Serving static files 364

Multiple folders 365

Named routes in Django-style 365

Error Handling 366

Using middleware and the next callback 366

Error handling 368

Hook: How to execute code before any req and after any res 370

Handling POST Requests 370

Setting cookies with cookie-parser 371

Custom middleware in Express 371

Error handling in Express 372

Adding Middleware 372

Hello World 372

Chapter 110: Windows authentication under node.js 374

Remarks 374

Examples 374

Using activedirectory 374

Installation 374

Usage 374

Chapter 111: Yarn Package Manager 375

Introduction 375

Examples 375

Yarn Installation 375

macOS 375

Homebrew 375

MacPorts 375

Adding Yarn to your PATH 375

Windows 375

Installer 375

Chocolatey 375

Linux 376

Debian / Ubuntu 376

CentOS / Fedora / RHEL 376

Arch 376

Solus 376

All Distributions 377

Alternative Method of Installation 377

Shell script 377

Tarball 377

Npm 377

Post Install 377

Creating a basic package 377

Install package with Yarn 378

Credits 379

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: node-js

It is an unofficial and free Node.js ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Node.js.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/node-js
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Node.js

Remarks

Node.js is an event-based, non-blocking, asynchronous I/O framework that uses Google's V8
JavaScript engine. It is used for developing applications that make heavy use of the ability to run
JavaScript both on the client, as well as on server side and therefore benefit from the re-usability
of code and the lack of context switching. It is open-source and cross-platform. Node.js
applications are written in pure JavaScript and can be run within Node.js environment on
Windows, Linux etc…

Versions

Version Release Date

v8.2.1 2017-07-20

v8.2.0 2017-07-19

v8.1.4 2017-07-11

v8.1.3 2017-06-29

v8.1.2 2017-06-15

v8.1.1 2017-06-13

v8.1.0 2017-06-08

v8.0.0 2017-05-30

v7.10.0 2017-05-02

v7.9.0 2017-04-11

v7.8.0 2017-03-29

v7.7.4 2017-03-21

v7.7.3 2017-03-14

v7.7.2 2017-03-08

v7.7.1 2017-03-02

v7.7.0 2017-02-28

https://riptutorial.com/ 2

https://nodejs.org/en/blog/release/v8.2.1/
https://nodejs.org/en/blog/release/v8.2.0/
https://nodejs.org/en/blog/release/v8.1.4/
https://nodejs.org/en/blog/release/v8.1.3/

Version Release Date

v7.6.0 2017-02-21

v7.5.0 2017-01-31

v7.4.0 2017-01-04

v7.3.0 2016-12-20

v7.2.1 2016-12-06

v7.2.0 2016-11-22

v7.1.0 2016-11-08

v7.0.0 2016-10-25

v6.11.0 2017-06-06

v6.10.3 2017-05-02

v6.10.2 2017-04-04

v6.10.1 2017-03-21

v6.10.0 2017-02-21

v6.9.5 2017-01-31

v6.9.4 2017-01-05

v6.9.3 2017-01-05

v6.9.2 2016-12-06

v6.9.1 2016-10-19

v6.9.0 2016-10-18

v6.8.1 2016-10-14

v6.8.0 2016-10-12

v6.7.0 2016-09-27

v6.6.0 2016-09-14

v6.5.0 2016-08-26

v6.4.0 2016-08-12

https://riptutorial.com/ 3

Version Release Date

v6.3.1 2016-07-21

v6.3.0 2016-07-06

v6.2.2 2016-06-16

v6.2.1 2016-06-02

v6.2.0 2016-05-17

v6.1.0 2016-05-05

v6.0.0 2016-04-26

v5.12.0 2016-06-23

v5.11.1 2016-05-05

v5.11.0 2016-04-21

v5.10.1 2016-04-05

v5.10 2016-04-01

v5.9 2016-03-16

v5.8 2016-03-09

v5.7 2016-02-23

v5.6 2016-02-09

v5.5 2016-01-21

v5.4 2016-01-06

v5.3 2015-12-15

v5.2 2015-12-09

v5.1 2015-11-17

v5.0 2015-10-29

v4.4 2016-03-08

v4.3 2016-02-09

v4.2 2015-10-12

https://riptutorial.com/ 4

Version Release Date

v4.1 2015-09-17

v4.0 2015-09-08

io.js v3.3 2015-09-02

io.js v3.2 2015-08-25

io.js v3.1 2015-08-19

io.js v3.0 2015-08-04

io.js v2.5 2015-07-28

io.js v2.4 2015-07-17

io.js v2.3 2015-06-13

io.js v2.2 2015-06-01

io.js v2.1 2015-05-24

io.js v2.0 2015-05-04

io.js v1.8 2015-04-21

io.js v1.7 2015-04-17

io.js v1.6 2015-03-20

io.js v1.5 2015-03-06

io.js v1.4 2015-02-27

io.js v1.3 2015-02-20

io.js v1.2 2015-02-11

io.js v1.1 2015-02-03

io.js v1.0 2015-01-14

v0.12 2016-02-09

v0.11 2013-03-28

v0.10 2013-03-11

v0.9 2012-07-20

https://riptutorial.com/ 5

Version Release Date

v0.8 2012-06-22

v0.7 2012-01-17

v0.6 2011-11-04

v0.5 2011-08-26

v0.4 2011-08-26

v0.3 2011-08-26

v0.2 2011-08-26

v0.1 2011-08-26

Examples

Hello World HTTP server

First, install Node.js for your platform.

In this example we'll create an HTTP server listening on port 1337, which sends Hello, World! to
the browser. Note that, instead of using port 1337, you can use any port number of your choice
which is currently not in use by any other service.

The http module is a Node.js core module (a module included in Node.js's source, that does not
require installing additional resources). The http module provides the functionality to create an
HTTP server using the http.createServer() method. To create the application, create a file
containing the following JavaScript code.

const http = require('http'); // Loads the http module

http.createServer((request, response) => {

 // 1. Tell the browser everything is OK (Status code 200), and the data is in plain text
 response.writeHead(200, {
 'Content-Type': 'text/plain'
 });

 // 2. Write the announced text to the body of the page
 response.write('Hello, World!\n');

 // 3. Tell the server that all of the response headers and body have been sent
 response.end();

}).listen(1337); // 4. Tells the server what port to be on

Save the file with any file name. In this case, if we name it hello.js we can run the application by
going to the directory the file is in and using the following command:

https://riptutorial.com/ 6

http://www.riptutorial.com/node-js/topic/1294/installing-node-js
http://www.riptutorial.com/node-js/example/30139/core-modules
https://nodejs.org/api/http.html#http_http_createserver_requestlistener

node hello.js

The created server can then be accessed with the URL http://localhost:1337 or
http://127.0.0.1:1337 in the browser.

A simple web page will appear with a “Hello, World!” text at the top, as shown in the screenshot
below.

Editable online example.

Hello World command line

Node.js can also be used to create command line utilities. The example below reads the first
argument from the command line and prints a Hello message.

To run this code on an Unix System:

Create a new file and paste the code below. The filename is irrelevant.1.
Make this file executable with chmod 700 FILE_NAME2.
Run the app with ./APP_NAME David3.

On Windows you do step 1 and run it with node APP_NAME David

#!/usr/bin/env node

'use strict';

/*
 The command line arguments are stored in the `process.argv` array,
 which has the following structure:
 [0] The path of the executable that started the Node.js process
 [1] The path to this application
 [2-n] the command line arguments

https://riptutorial.com/ 7

http://localhost:1337
http://127.0.0.1:1337
https://i.stack.imgur.com/Oq3Y4.png
https://glitch.com/edit/#!/node-hello-world

 Example: ['/bin/node', '/path/to/yourscript', 'arg1', 'arg2', ...]
 src: https://nodejs.org/api/process.html#process_process_argv
 */

// Store the first argument as username.
var username = process.argv[2];

// Check if the username hasn't been provided.
if (!username) {

 // Extract the filename
 var appName = process.argv[1].split(require('path').sep).pop();

 // Give the user an example on how to use the app.
 console.error('Missing argument! Example: %s YOUR_NAME', appName);

 // Exit the app (success: 0, error: 1).
 // An error will stop the execution chain. For example:
 // ./app.js && ls -> won't execute ls
 // ./app.js David && ls -> will execute ls
 process.exit(1);
}

// Print the message to the console.
console.log('Hello %s!', username);

Installing and Running Node.js

To begin, install Node.js on your development computer.

Windows: Navigate to the download page and download/run the installer.

Mac: Navigate to the download page and download/run the installer. Alternatively, you can install
Node via Homebrew using brew install node. Homebrew is a command-line package mananger
for Macintosh, and more information about it can be found on the Homebrew website.

Linux: Follow the instructions for your distro on the command line installation page.

Running a Node Program

To run a Node.js program, simply run node app.js or nodejs app.js, where app.js is the filename of
your node app source code. You do not need to include the .js suffix for Node to find the script
you'd like to run.

Alternatively under UNIX-based operating systems, a Node program may be executed as a
terminal script. To do so, it needs to begin with a shebang pointing to the Node interpreter, such
as #!/usr/bin/env node. The file also has to be set as executable, which can be done using chmod.
Now the script can be directly run from the command line.

Deploying your application online

https://riptutorial.com/ 8

https://nodejs.org/en/download/
https://nodejs.org/en/download/
http://brew.sh/
https://nodejs.org/en/download/package-manager/

When you deploy your app to a (Node.js-specific) hosted environment, this environment usually
offers a PORT-environment variable that you can use to run your server on. Changing the port
number to process.env.PORT allows you to access the application.

For example,

http.createServer(function(request, response) {
 // your server code
}).listen(process.env.PORT);

Also, if you would like to access this offline while debugging, you can use this:

http.createServer(function(request, response) {
 // your server code
}).listen(process.env.PORT || 3000);

where 3000 is the offline port number.

Debugging Your NodeJS Application

You can use the node-inspector. Run this command to install it via npm:

npm install -g node-inspector

Then you can debug your application using

node-debug app.js

The Github repository can be found here: https://github.com/node-inspector/node-inspector

Debugging natively

You can also debug node.js natively by starting it like this:

node debug your-script.js

To breakpoint your debugger exactly in a code line you want, use this:

debugger;

For more information see here.

In node.js 8 use the following command:

node --inspect-brk your-script.js

https://riptutorial.com/ 9

https://github.com/node-inspector/node-inspector
https://nodejs.org/api/debugger.html

Then open about://inspect in a recent version of Google Chrome and select your Node script to
get the debugging experience of Chrome's DevTools.

Hello World with Express

The following example uses Express to create an HTTP server listening on port 3000, which
responds with "Hello, World!". Express is a commonly-used web framework that is useful for
creating HTTP APIs.

First, create a new folder, e.g. myApp. Go into myApp and make a new JavaScript file containing the
following code (let's name it hello.js for example). Then install the express module using npm
install --save express from the command line. Refer to this documentation for more information
on how to install packages.

// Import the top-level function of express
const express = require('express');

// Creates an Express application using the top-level function
const app = express();

// Define port number as 3000
const port = 3000;

// Routes HTTP GET requests to the specified path "/" with the specified callback function
app.get('/', function(request, response) {
 response.send('Hello, World!');
});

// Make the app listen on port 3000
app.listen(port, function() {
 console.log('Server listening on http://localhost:' + port);
});

From the command line, run the following command:

node hello.js

Open your browser and navigate to http://localhost:3000 or http://127.0.0.1:3000 to see the
response.

For more information about the Express framework, you can check the Web Apps With Express
section

Hello World basic routing

Once you understand how to create an HTTP Server with node, it's important to understand how
to make it "do" things based on the path that a user has navigated to. This phenomenon is called,
"routing".

The most basic example of this would be to check if (request.url === 'some/path/here'), and then
call a function that responds with a new file.

https://riptutorial.com/ 10

http://www.riptutorial.com/node-js/example/1588/installing-packages
http://www.riptutorial.com/node-js/topic/483/web-apps-with-express
http://www.riptutorial.com/node-js/example/1169/hello-world-http-server

An example of this can be seen here:

const http = require('http');

function index (request, response) {
 response.writeHead(200);
 response.end('Hello, World!');
}

http.createServer(function (request, response) {

 if (request.url === '/') {
 return index(request, response);
 }

 response.writeHead(404);
 response.end(http.STATUS_CODES[404]);

}).listen(1337);

If you continue to define your "routes" like this, though, you'll end up with one massive callback
function, and we don't want a giant mess like that, so let's see if we can clean this up.

First, let's store all of our routes in an object:

var routes = {
 '/': function index (request, response) {
 response.writeHead(200);
 response.end('Hello, World!');
 },
 '/foo': function foo (request, response) {
 response.writeHead(200);
 response.end('You are now viewing "foo"');
 }
}

Now that we've stored 2 routes in an object, we can now check for them in our main callback:

http.createServer(function (request, response) {

 if (request.url in routes) {
 return routes[request.url](request, response);
 }

 response.writeHead(404);
 response.end(http.STATUS_CODES[404]);

}).listen(1337);

Now every time you try to navigate your website, it will check for the existence of that path in your
routes, and it will call the respective function. If no route is found, the server will respond with a
404 (Not Found).

And there you have it--routing with the HTTP Server API is very simple.

https://riptutorial.com/ 11

TLS Socket: server and client

The only major differences between this and a regular TCP connection are the private Key and the
public certificate that you’ll have to set into an option object.

How to Create a Key and Certificate

The first step in this security process is the creation of a private Key. And what is this private key?
Basically, it's a set of random noise that's used to encrypt information. In theory, you could create
one key, and use it to encrypt whatever you want. But it is best practice to have different keys for
specific things. Because if someone steals your private key, it's similar to having someone steal
your house keys. Imagine if you used the same key to lock your car, garage, office, etc.

openssl genrsa -out private-key.pem 1024

Once we have our private key, we can create a CSR (certificate signing request), which is our
request to have the private key signed by a fancy authority. That is why you have to input
information related to your company. This information will be seen by the signing authority, and
used to verify you. In our case, it doesn’t matter what you type, since in the next step we're going
to sign our certificate ourselves.

openssl req -new -key private-key.pem -out csr.pem

Now that we have our paper work filled out, it's time to pretend that we're a cool signing authority.

openssl x509 -req -in csr.pem -signkey private-key.pem -out public-cert.pem

Now that you have the private key and the public cert, you can establish a secure connection
between two NodeJS apps. And, as you can see in the example code, it is a very simple process.

Important!

Since we created the public cert ourselves, in all honesty, our certificate is worthless, because we
are nobodies. The NodeJS server won't trust such a certificate by default, and that is why we need
to tell it to actually trust our cert with the following option rejectUnauthorized: false. Very
important: never set this variable to true in a production environment.

TLS Socket Server

'use strict';

var tls = require('tls');
var fs = require('fs');

const PORT = 1337;
const HOST = '127.0.0.1'

https://riptutorial.com/ 12

var options = {
 key: fs.readFileSync('private-key.pem'),
 cert: fs.readFileSync('public-cert.pem')
};

var server = tls.createServer(options, function(socket) {

 // Send a friendly message
 socket.write("I am the server sending you a message.");

 // Print the data that we received
 socket.on('data', function(data) {

 console.log('Received: %s [it is %d bytes long]',
 data.toString().replace(/(\n)/gm,""),
 data.length);

 });

 // Let us know when the transmission is over
 socket.on('end', function() {

 console.log('EOT (End Of Transmission)');

 });

});

// Start listening on a specific port and address
server.listen(PORT, HOST, function() {

 console.log("I'm listening at %s, on port %s", HOST, PORT);

});

// When an error occurs, show it.
server.on('error', function(error) {

 console.error(error);

 // Close the connection after the error occurred.
 server.destroy();

});

TLS Socket Client

'use strict';

var tls = require('tls');
var fs = require('fs');

const PORT = 1337;
const HOST = '127.0.0.1'

// Pass the certs to the server and let it know to process even unauthorized certs.
var options = {
 key: fs.readFileSync('private-key.pem'),

https://riptutorial.com/ 13

 cert: fs.readFileSync('public-cert.pem'),
 rejectUnauthorized: false
};

var client = tls.connect(PORT, HOST, options, function() {

 // Check if the authorization worked
 if (client.authorized) {
 console.log("Connection authorized by a Certificate Authority.");
 } else {
 console.log("Connection not authorized: " + client.authorizationError)
 }

 // Send a friendly message
 client.write("I am the client sending you a message.");

});

client.on("data", function(data) {

 console.log('Received: %s [it is %d bytes long]',
 data.toString().replace(/(\n)/gm,""),
 data.length);

 // Close the connection after receiving the message
 client.end();

});

client.on('close', function() {

 console.log("Connection closed");

});

// When an error ocoures, show it.
client.on('error', function(error) {

 console.error(error);

 // Close the connection after the error occurred.
 client.destroy();

});

Hello World in the REPL

When called without arguments, Node.js starts a REPL (Read-Eval-Print-Loop) also known as the
“Node shell”.

At a command prompt type node.

$ node
>

At the Node shell prompt > type "Hello World!"

https://riptutorial.com/ 14

$ node
> "Hello World!"
'Hello World!'

Core modules

Node.js is a Javascript engine (Google's V8 engine for Chrome, written in C++) that allows to run
Javascript outside the browser. While numerous libraries are available for extending Node's
functionalities, the engine comes with a set of core modules implementing basic functionalities.

There's currently 34 core modules included in Node:

['assert',
 'buffer',
 'c/c++_addons',
 'child_process',
 'cluster',
 'console',
 'crypto',
 'deprecated_apis',
 'dns',
 'domain',
 'Events',
 'fs',
 'http',
 'https',
 'module',
 'net',
 'os',
 'path',
 'punycode',
 'querystring',
 'readline',
 'repl',
 'stream',
 'string_decoder',
 'timers',
 'tls_(ssl)',
 'tracing',
 'tty',
 'dgram',
 'url',
 'util',
 'v8',
 'vm',
 'zlib']

This list was obtained from the Node documentation API https://nodejs.org/api/all.html (JSON file:
https://nodejs.org/api/all.json).

All core modules at-a-glance

assert

https://riptutorial.com/ 15

https://nodejs.org/api/all.html
https://nodejs.org/api/all.json

The assert module provides a simple set of assertion tests that can be used to test invariants.

buffer

Prior to the introduction of TypedArray in ECMAScript 2015 (ES6), the JavaScript language had no
mechanism for reading or manipulating streams of binary data. The Buffer class was introduced
as part of the Node.js API to make it possible to interact with octet streams in the context of things
like TCP streams and file system operations.

Now that TypedArray has been added in ES6, the Buffer class implements the Uin t8Array API in a
manner that is more optimized and suitable for Node.js' use cases.

c/c++_addons

Node.js Addons are dynamically-linked shared objects, written in C or C++, that can be loaded into
Node.js using the require() function , and used just as if they were an ordinary Node.js module.
They are used primarily to provide an interface between JavaScript running in Node.js and C/C++
libraries.

child_process

The child_process module provides the ability to spawn child processes in a manner that is similar,
but not identical, to popen(3).

cluster

A single instance of Node.js runs in a single thread. To take advantage of multi-core systems the
user will sometimes want to launch a cluster of Node.js processes to handle the load. The cluster
module allows you to easily create child processes that all share server ports.

console

The console module provides a simple debugging console that is similar to the JavaScript console
mechanism provided by web browsers.

crypto

The crypto module provides cryptographic functionality that includes a set of wrappers for
OpenSSL's hash, HMAC, cipher, decipher, sign and verify functions.

deprecated_apis

Node.js may deprecate APIs when either: (a) use of the API is considered to be unsafe, (b) an
improved alternative API has been made available, or (c) breaking changes to the API are
expected in a future major release.

dns

The dns module contains functions belonging to two different categories:

Functions that use the underlying operating system facilities to perform name resolution, and 1.

https://riptutorial.com/ 16

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Refer%0D%0Aence/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArra%0D%0Ay
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
http://www.riptutorial.com/node-js/topic/2817/cluster-module

that do not necessarily perform any network communication. This category contains only one
function: dns.lookup().
Functions that connect to an actual DNS server to perform name resolution, and that always
use the network to perform DNS queries. This category contains all functions in the dns
module except dns.lookup().

2.

domain

This module is pending deprecation. Once a replacement API has been finalized, this module
will be fully deprecated. Most end users should not have cause to use this module. Users who
absolutely must have the functionality that domains provide may rely on it for the time being but
should expect to have to migrate to a different solution in the future.

Events

Much of the Node.js core API is built around an idiomatic asynchronous event-driven architecture
in which certain kinds of objects (called "emitters") periodically emit named events that cause
Function objects ("listeners") to be called.

fs

File I/O is provided by simple wrappers around standard POSIX functions. To use this module do
require('fs'). All the methods have asynchronous and synchronous forms.

http

The HTTP interfaces in Node.js are designed to support many features of the protocol which have
been traditionally difficult to use. In particular, large, possibly chunk-encoded, messages. The
interface is careful to never buffer entire requests or responses--the user is able to stream data.

https

HTTPS is the HTTP protocol over TLS/SSL. In Node.js this is implemented as a separate module.

module

Node.js has a simple module loading system. In Node.js, files and modules are in one-to-one
correspondence (each file is treated as a separate module).

net

The net module provides you with an asynchronous network wrapper. It contains functions for
creating both servers and clients (called streams). You can include this module with
require('net');.

os

The os module provides a number of operating system-related utility methods.

path

https://riptutorial.com/ 17

http://www.riptutorial.com/node-js/topic/1623/event-emitters
http://www.riptutorial.com/node-js/topic/2973/http

The path module provides utilities for working with file and directory paths.

punycode

The version of the punycode module bundled in Node.js is being deprecated.

querystring

The querystring module provides utilities for parsing and formatting URL query strings.

readline

The readline module provides an interface for reading data from a Readable stream (such as
process.stdin) one line at a time.

repl

The repl module provides a Read-Eval-Print-Loop (REPL) implementation that is available both as
a standalone program or includible in other applications.

stream

A stream is an abstract interface for working with streaming data in Node.js. The stream module
provides a base API that makes it easy to build objects that implement the stream interface.

There are many stream objects provided by Node.js. For instance, a request to an HTTP server
and process.stdout are both stream instances.

string_decoder

The string_decoder module provides an API for decoding Buffer objects into strings in a manner
that preserves encoded multi-byte UTF-8 and UTF-16 characters.

timers

The timer module exposes a global API for scheduling functions to be called at some future period
of time. Because the timer functions are globals, there is no need to call require('timers') to use
the API.

The timer functions within Node.js implement a similar API as the timers API provided by Web
Browsers but use a different internal implementation that is built around the Node.js Event Loop.

tls_(ssl)

The tls module provides an implementation of the Transport Layer Security (TLS) and Secure
Socket Layer (SSL) protocols that is built on top of OpenSSL.

tracing

Trace Event provides a mechanism to centralize tracing information generated by V8, Node core,
and userspace code.

https://riptutorial.com/ 18

http://www.riptutorial.com/node-js/topic/1431/readline
http://www.riptutorial.com/node-js/topic/2974/using-streams
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick

Tracing can be enabled by passing the --trace-events-enabled flag when starting a Node.js
application.

tty

The tty module provides the tty.ReadStream and tty.WriteStream classes. In most cases, it will not
be necessary or possible to use this module directly.

dgram

The dgram module provides an implementation of UDP Datagram sockets.

url

The url module provides utilities for URL resolution and parsing.

util

The util module is primarily designed to support the needs of Node.js' own internal APIs.
However, many of the utilities are useful for application and module developers as well.

v8

The v8 module exposes APIs that are specific to the version of V8 built into the Node.js binary.

Note: The APIs and implementation are subject to change at any time.

vm

The vm module provides APIs for compiling and running code within V8 Virtual Machine contexts.
JavaScript code can be compiled and run immediately or compiled, saved, and run later.

Note: The vm module is not a security mechanism. Do not use it to run untrusted code.

zlib

The zlib module provides compression functionality implemented using Gzip and Deflate/Inflate.

How to get a basic HTTPS web server up and running!

Once you have node.js installed on your system, you can just follow the procedure below to get a
basic web server running with support for both HTTP and HTTPS!

Step 1 : Build a Certificate Authority

create the folder where you want to store your key & certificate :

mkdir conf

1.

https://riptutorial.com/ 19

https://developers.google.com/v8/

go to that directory :

cd conf

2.

grab this ca.cnf file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https-authorized-clients/master/keys/ca.cnf

3.

create a new certificate authority using this configuration :

openssl req -new -x509 -days 9999 -config ca.cnf -keyout ca-key.pem -out ca-cert.pem

4.

now that we have our certificate authority in ca-key.pem and ca-cert.pem, let's generate a
private key for the server :

openssl genrsa -out key.pem 4096

5.

grab this server.cnf file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https-authorized-
clients/master/keys/server.cnf

6.

generate the certificate signing request using this configuration :

openssl req -new -config server.cnf -key key.pem -out csr.pem

7.

sign the request :

openssl x509 -req -extfile server.cnf -days 999 -passin "pass:password" -in csr.pem -CA ca-
cert.pem -CAkey ca-key.pem -CAcreateserial -out cert.pem

8.

Step 2 : Install your certificate as a root certificate

copy your certificate to your root certificates' folder :

sudo cp ca-crt.pem /usr/local/share/ca-certificates/ca-crt.pem

1.

update CA store :

sudo update-ca-certificates

2.

Step 3 : Starting your node server

First, you want to create a server.js file that contains your actual server code.

https://riptutorial.com/ 20

The minimal setup for an HTTPS server in Node.js would be something like this :

var https = require('https');
var fs = require('fs');

var httpsOptions = {
 key: fs.readFileSync('path/to/server-key.pem'),
 cert: fs.readFileSync('path/to/server-crt.pem')
};

var app = function (req, res) {
 res.writeHead(200);
 res.end("hello world\n");
}

https.createServer(httpsOptions, app).listen(4433);

If you also want to support http requests, you need to make just this small modification :

var http = require('http');
var https = require('https');
var fs = require('fs');

var httpsOptions = {
 key: fs.readFileSync('path/to/server-key.pem'),
 cert: fs.readFileSync('path/to/server-crt.pem')
};

var app = function (req, res) {
 res.writeHead(200);
 res.end("hello world\n");
}

http.createServer(app).listen(8888);
https.createServer(httpsOptions, app).listen(4433);

go to the directory where your server.js is located :

cd /path/to

1.

run server.js :

node server.js

2.

Read Getting started with Node.js online: https://riptutorial.com/node-js/topic/340/getting-started-
with-node-js

https://riptutorial.com/ 21

https://riptutorial.com/node-js/topic/340/getting-started-with-node-js
https://riptutorial.com/node-js/topic/340/getting-started-with-node-js

Chapter 2: Arduino communication with
nodeJs

Introduction

Way to show how Node.Js can communicate with Arduino Uno.

Examples

Node Js communication with Arduino via serialport

Node js code

Sample to start this topic is Node.js server communicating with Arduino via serialport.

npm install express --save
npm install serialport --save

Sample app.js:

const express = require('express');
const app = express();
var SerialPort = require("serialport");

var port = 3000;

var arduinoCOMPort = "COM3";

var arduinoSerialPort = new SerialPort(arduinoCOMPort, {
 baudrate: 9600
});

arduinoSerialPort.on('open',function() {
 console.log('Serial Port ' + arduinoCOMPort + ' is opened.');
});

app.get('/', function (req, res) {

 return res.send('Working');

})

app.get('/:action', function (req, res) {

 var action = req.params.action || req.param('action');

 if(action == 'led'){
 arduinoSerialPort.write("w");
 return res.send('Led light is on!');
 }

https://riptutorial.com/ 22

 if(action == 'off') {
 arduinoSerialPort.write("t");
 return res.send("Led light is off!");
 }

 return res.send('Action: ' + action);

});

app.listen(port, function () {
 console.log('Example app listening on port http://0.0.0.0:' + port + '!');
});

Starting sample express server:

node app.js

Arduino code

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an output.

 Serial.begin(9600); // Begen listening on port 9600 for serial

 pinMode(LED_BUILTIN, OUTPUT);

 digitalWrite(LED_BUILTIN, LOW);
}

// the loop function runs over and over again forever
void loop() {

 if(Serial.available() > 0) // Read from serial port
 {
 char ReaderFromNode; // Store current character
 ReaderFromNode = (char) Serial.read();
 convertToState(ReaderFromNode); // Convert character to state
 }
 delay(1000);
}

void convertToState(char chr) {
 if(chr=='o'){
 digitalWrite(LED_BUILTIN, HIGH);
 delay(100);
 }
 if(chr=='f'){
 digitalWrite(LED_BUILTIN, LOW);
 delay(100);
 }
}

Starting Up

https://riptutorial.com/ 23

Connect the arduino to your machine.1.
Start the server2.

Control the build in led via node js express server.

To turn on the led:

http://0.0.0.0:3000/led

To turn off the led:

http://0.0.0.0:3000/off

Read Arduino communication with nodeJs online: https://riptutorial.com/node-
js/topic/10509/arduino-communication-with-nodejs

https://riptutorial.com/ 24

https://riptutorial.com/node-js/topic/10509/arduino-communication-with-nodejs
https://riptutorial.com/node-js/topic/10509/arduino-communication-with-nodejs

Chapter 3: async.js

Syntax

Each callback must be written with this syntax:•

function callback(err, result [, arg1[, ...]])•

This way, you are forced to return the error first, and can't ignore handling them later
on. null is the convention in absence of errors

•

callback(null, myResult);•

Your callbacks can contain more arguments than err and result, but it's useful only for
a specific set of functions (waterfall, seq, ...)

•

callback(null, myResult, myCustomArgument);•

And, of course, send errors. You must do it, and handle errors (or at least log them).•

callback(err);•

Examples

Parallel : multi-tasking

async.parallel(tasks, afterTasksCallback) will execute a set of tasks in parallel and wait the end of
all tasks (reported by the call of callback function).

When tasks are finished, async call the main callback with all errors and all results of tasks.

function shortTimeFunction(callback) {
 setTimeout(function() {
 callback(null, 'resultOfShortTime');
 }, 200);
}

function mediumTimeFunction(callback) {
 setTimeout(function() {
 callback(null, 'resultOfMediumTime');
 }, 500);
}

function longTimeFunction(callback) {
 setTimeout(function() {
 callback(null, 'resultOfLongTime');
 }, 1000);
}

async.parallel([
 shortTimeFunction,

https://riptutorial.com/ 25

http://caolan.github.io/async/docs.html#.parallel

 mediumTimeFunction,
 longTimeFunction
],
 function(err, results) {
 if (err) {
 return console.error(err);
 }

 console.log(results);
 });

Result : ["resultOfShortTime", "resultOfMediumTime", "resultOfLongTime"].

Call async.parallel() with an object

You can replace the tasks array parameter by an object. In this case, results will be also an object
with the same keys than tasks.

It's very useful to compute some tasks and find easily each result.

async.parallel({
 short: shortTimeFunction,
 medium: mediumTimeFunction,
 long: longTimeFunction
 },
 function(err, results) {
 if (err) {
 return console.error(err);
 }

 console.log(results);
 });

Result : {short: "resultOfShortTime", medium: "resultOfMediumTime", long: "resultOfLongTime"}.

Resolving multiple values

Each parallel function is passed a callback. This callback can either return an error as the first
argument or success values after that. If a callback is passed several success values, these
results are returned as an array.

async.parallel({
 short: function shortTimeFunction(callback) {
 setTimeout(function() {
 callback(null, 'resultOfShortTime1', 'resultOfShortTime2');
 }, 200);
 },
 medium: function mediumTimeFunction(callback) {
 setTimeout(function() {
 callback(null, 'resultOfMediumTime1', 'resultOfMeiumTime2');
 }, 500);
 }

https://riptutorial.com/ 26

 },
 function(err, results) {
 if (err) {
 return console.error(err);
 }

 console.log(results);
 });

Result :

{
 short: ["resultOfShortTime1", "resultOfShortTime2"],
 medium: ["resultOfMediumTime1", "resultOfMediumTime2"]
}

.

Series : independent mono-tasking

async.series(tasks, afterTasksCallback) will execute a set of tasks. Each task are executed after
another. If a task fails, async stops immediately the execution and jump into the main
callback.

When tasks are finished successfully, async call the "master" callback with all errors and all results
of tasks.

function shortTimeFunction(callback) {
 setTimeout(function() {
 callback(null, 'resultOfShortTime');
 }, 200);
}

function mediumTimeFunction(callback) {
 setTimeout(function() {
 callback(null, 'resultOfMediumTime');
 }, 500);
}

function longTimeFunction(callback) {
 setTimeout(function() {
 callback(null, 'resultOfLongTime');
 }, 1000);
}

async.series([
 mediumTimeFunction,
 shortTimeFunction,
 longTimeFunction
],
 function(err, results) {
 if (err) {
 return console.error(err);
 }

 console.log(results);

https://riptutorial.com/ 27

http://caolan.github.io/async/docs.html#.series

 });

Result : ["resultOfMediumTime", "resultOfShortTime", "resultOfLongTime"].

Call async.series() with an object

You can replace the tasks array parameter by an object. In this case, results will be also an object
with the same keys than tasks.

It's very useful to compute some tasks and find easily each result.

async.series({
 short: shortTimeFunction,
 medium: mediumTimeFunction,
 long: longTimeFunction
 },
 function(err, results) {
 if (err) {
 return console.error(err);
 }

 console.log(results);
 });

Result : {short: "resultOfShortTime", medium: "resultOfMediumTime", long: "resultOfLongTime"}.

Waterfall : dependent mono-tasking

async.waterfall(tasks, afterTasksCallback) will execute a set of tasks. Each task are executed
after another, and the result of a task is passed to the next task. As async.series(), if a task
fails, async stop the execution and call immediately the main callback.

When tasks are finished successfully, async call the "master" callback with all errors and all results
of tasks.

function getUserRequest(callback) {
 // We simulate the request with a timeout
 setTimeout(function() {
 var userResult = {
 name : 'Aamu'
 };

 callback(null, userResult);
 }, 500);
}

function getUserFriendsRequest(user, callback) {
 // Another request simulate with a timeout
 setTimeout(function() {
 var friendsResult = [];

 if (user.name === "Aamu"){
 friendsResult = [{

https://riptutorial.com/ 28

http://caolan.github.io/async/docs.html#.waterfall

 name : 'Alice'
 }, {
 name: 'Bob'
 }];
 }

 callback(null, friendsResult);
 }, 500);
}

async.waterfall([
 getUserRequest,
 getUserFriendsRequest
],
 function(err, results) {
 if (err) {
 return console.error(err);
 }

 console.log(JSON.stringify(results));
 });

Result: results contains the second callback parameter of the last function of the waterfall, which
is friendsResult in that case.

async.times(To handle for loop in better way)

To execute a function within a loop in node.js, it's fine to use a for loop for short loops. But the
loop is long, using for loop will increase the time of processing which might cause the node
process to hang. In such scenarios, you can use: asycn.times

function recursiveAction(n, callback)
{
 //do whatever want to do repeatedly
 callback(err, result);
}
async.times(5, function(n, next) {
 recursiveAction(n, function(err, result) {
 next(err, result);
 });
}, function(err, results) {
 // we should now have 5 result
});

This is called in parallel. When we want to call it one at a time, use: async.timesSeries

async.each(To handle array of data efficiently)

When we want to handle array of data, its better to use async.each. When we want to perform
something with all data & want to get the final callback once everything is done, then this method
will be useful. This is handled in parallel way.

function createUser(userName, callback)
{

https://riptutorial.com/ 29

 //create user in db
 callback(null)//or error based on creation
}

var arrayOfData = ['Ritu', 'Sid', 'Tom'];
async.each(arrayOfData, function(eachUserName, callback) {

 // Perform operation on each user.
 console.log('Creating user '+eachUserName);
 //Returning callback is must. Else it wont get the final callback, even if we miss to
return one callback
 createUser(eachUserName, callback);

}, function(err) {
 //If any of the user creation failed may throw error.
 if(err) {
 // One of the iterations produced an error.
 // All processing will now stop.
 console.log('unable to create user');
 } else {
 console.log('All user created successfully');
 }
});

To do one at a time can use async.eachSeries

async.series(To handle events one by one)

/In async.series,all the functions are executed in series and the consolidated outputs of each
function is passed to the final callback. e.g/

var async = require('async'); async.series([function (callback) { console.log('First Execute..');
callback(null, 'userPersonalData'); }, function (callback) { console.log('Second Execute.. ');
callback(null, 'userDependentData'); }], function (err, result) { console.log(result); });

//Output:

First Execute.. Second Execute.. ['userPersonalData','userDependentData'] //result

Read async.js online: https://riptutorial.com/node-js/topic/3972/async-js

https://riptutorial.com/ 30

https://riptutorial.com/node-js/topic/3972/async-js

Chapter 4: Async/Await

Introduction

Async/await is a set of keywords that allows writing of asynchronous code in a procedural manner
without having to rely on callbacks (callback hell) or promise-chaining (.then().then().then()).

This works by using the await keyword to suspend the state of an async function, until the
resolution of a promise, and using the async keyword to declare such async functions, which return
a promise.

Async/await is available from node.js 8 by default or 7 using the flag --harmony-async-await.

Examples

Async Functions with Try-Catch Error Handling

One of the best features of async/await syntax is that standard try-catch coding style is possible,
just like you were writing synchronous code.

const myFunc = async (req, res) => {
 try {
 const result = await somePromise();
 } catch (err) {
 // handle errors here
 }
});

Here's an example with Express and promise-mysql:

router.get('/flags/:id', async (req, res) => {

 try {

 const connection = await pool.createConnection();

 try {
 const sql = `SELECT f.id, f.width, f.height, f.code, f.filename
 FROM flags f
 WHERE f.id = ?
 LIMIT 1`;
 const flags = await connection.query(sql, req.params.id);
 if (flags.length === 0)
 return res.status(404).send({ message: 'flag not found' });

 return res.send({ flags[0] });

 } finally {
 pool.releaseConnection(connection);
 }

https://riptutorial.com/ 31

 } catch (err) {
 // handle errors here
 }
});

Comparison between Promises and Async/Await

Function using promises:

function myAsyncFunction() {
 return aFunctionThatReturnsAPromise()
 // doSomething is a sync function
 .then(result => doSomething(result))
 .catch(handleError);
}

So here is when Async/Await enter in action in order to get cleaner our function:

async function myAsyncFunction() {
 let result;

 try {
 result = await aFunctionThatReturnsAPromise();
 } catch (error) {
 handleError(error);
 }

 // doSomething is a sync function
 return doSomething(result);
}

So the keyword async would be similar to write return new Promise((resolve, reject) => {...}.

And await similar to get your result in then callback.

Here I leave a pretty brief gif that will not left any doubt in mind after seeing it:

GIF

Progression from Callbacks

In the beginning there were callbacks, and callbacks were ok:

const getTemperature = (callback) => {
 http.get('www.temperature.com/current', (res) => {
 callback(res.data.temperature)
 })
}

const getAirPollution = (callback) => {
 http.get('www.pollution.com/current', (res) => {
 callback(res.data.pollution)
 });
}

https://riptutorial.com/ 32

https://twitter.com/manekinekko/status/855824609299636230

getTemperature(function(temp) {
 getAirPollution(function(pollution) {
 console.log(`the temp is ${temp} and the pollution is ${pollution}.`)
 // The temp is 27 and the pollution is 0.5.
 })
})

But there were a few really frustrating issues with callbacks so we all started using promises.

const getTemperature = () => {
 return new Promise((resolve, reject) => {
 http.get('www.temperature.com/current', (res) => {
 resolve(res.data.temperature)
 })
 })
}

const getAirPollution = () => {
 return new Promise((resolve, reject) => {
 http.get('www.pollution.com/current', (res) => {
 resolve(res.data.pollution)
 })
 })
}

getTemperature()
.then(temp => console.log(`the temp is ${temp}`))
.then(() => getAirPollution())
.then(pollution => console.log(`and the pollution is ${pollution}`))
// the temp is 32
// and the pollution is 0.5

This was a bit better. Finally, we found async/await. Which still uses promises under the hood.

const temp = await getTemperature()
const pollution = await getAirPollution()

Stops execution at await

If the promise doesn't return anything, the async task can be completed using await.

try{
 await User.findByIdAndUpdate(user._id, {
 $push: {
 tokens: token
 }
 }).exec()
}catch(e){
 handleError(e)
}

Read Async/Await online: https://riptutorial.com/node-js/topic/6729/async-await

https://riptutorial.com/ 33

http://callbackhell.com
https://riptutorial.com/node-js/topic/6729/async-await

Chapter 5: Asynchronous programming

Introduction

Node is a programming language where everything could run on an asynchronous way. Below you
could find some examples and the typical things of asynchronous working.

Syntax

doSomething([args], function([argsCB]) { /* do something when done */});•
doSomething([args], ([argsCB]) => { /* do something when done */ });•

Examples

Callback functions

Callback functions in JavaScript

Callback functions are common in JavaScript. Callback functions are possible in JavaScript
because functions are first-class citizens.

Synchronous callbacks.

Callback functions can be synchronous or asynchronous. Since Asynchronous callback functions
may be more complex here is a simple example of a synchronous callback function.

// a function that uses a callback named `cb` as a parameter
function getSyncMessage(cb) {
 cb("Hello World!");
}

console.log("Before getSyncMessage call");
// calling a function and sending in a callback function as an argument.
getSyncMessage(function(message) {
 console.log(message);
});
console.log("After getSyncMessage call");

The output for the above code is:

> Before getSyncMessage call
> Hello World!
> After getSyncMessage call

First we will step through how the above code is executed. This is more for those who do not

https://riptutorial.com/ 34

https://en.wikipedia.org/wiki/First-class_function

already understand the concept of callbacks if you do already understand it feel free to skip this
paragraph. First the code is parsed and then the first interesting thing to happen is line 6 is
executed which outputs Before getSyncMessage call to the console. Then line 8 is executed which
calls the function getSyncMessage sending in an anonymous function as an argument for the
parameter named cb in the getSyncMessage function. Execution is now done inside the
getSyncMessage function on line 3 which executes the function cb which was just passed in, this call
sends an argument string "Hello World" for the param named message in the passed in anonymous
function. Execution then goes to line 9 which logs Hello World! to the console. Then the execution
goes through the process of exiting the callstack (see also) hitting line 10 then line 4 then finally
back to line 11.

Some information to know about callbacks in general:

The function you send in to a function as a callback may be called zero times, once, or
multiple times. It all depends on implementation.

•

The callback function may be called synchronously or asynchronously and possibly both
synchronously and asynchronously.

•

Just like normal functions the names you give parameters to your function are not important
but the order is. So for example on line 8 the parameter message could have been named
statement, msg, or if you're being nonsensical something like jellybean. So you should know
what parameters are sent into your callback so you can get them in the right order with
proper names.

•

Asynchronous callbacks.

One thing to note about JavaScript is it is synchronous by default, but there are APIs given in the
environment (browser, Node.js, etc.) that could make it asynchronous (there's more about that
here).

Some common things that are asynchronous in JavaScript environments that accept callbacks:

Events•
setTimeout•
setInterval•
the fetch API•
Promises•

Also any function that uses one of the above functions may be wrapped with a function that takes
a callback and the callback would then be an asynchronous callback (although wrapping a
promises with a function that takes a callback would likely be considered an anti-pattern as there
are more preferred ways to handle promises).

So given that information we can construct an asynchronous function similar to the above
synchronous one.

// a function that uses a callback named `cb` as a parameter
function getAsyncMessage(cb) {
 setTimeout(function () { cb("Hello World!") }, 1000);

https://riptutorial.com/ 35

https://developer.mozilla.org/en-US/docs/Glossary/Call_Stack
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://stackoverflow.com/a/13806828/2066736

}

console.log("Before getSyncMessage call");
// calling a function and sending in a callback function as an argument.
getAsyncMessage(function(message) {
 console.log(message);
});
console.log("After getSyncMessage call");

Which prints the following to the console:

> Before getSyncMessage call
> After getSyncMessage call
// pauses for 1000 ms with no output
> Hello World!

Line execution goes to line 6 logs "Before getSyncMessage call". Then execution goes to line 8
calling getAsyncMessage with a callback for the param cb. Line 3 is then executed which calls
setTimeout with a callback as the first argument and the number 300 as the second argument.
setTimeout does whatever it does and holds on to that callback so that it can call it later in 1000
milliseconds, but following setting up the timeout and before it pauses the 1000 milliseconds it
hands execution back to where it left off so it goes to line 4, then line 11, and then pauses for 1
second and setTimeout then calls its callback function which takes execution back to line 3 where
getAsyncMessages callback is called with value "Hello World" for its parameter message which is then
logged to the console on line 9.

Callback functions in Node.js

NodeJS has asynchronous callbacks and commonly supplies two parameters to your functions
sometimes conventionally called err and data. An example with reading a file text.

const fs = require("fs");

fs.readFile("./test.txt", "utf8", function(err, data) {
 if(err) {
 // handle the error
 } else {
 // process the file text given with data
 }
});

This is an example of a callback that is called a single time.

It's good practice to handle the error somehow even if your just logging it or throwing it. The else is
not necessary if you throw or return and can be removed to decrease indentation so long as you
stop execution of the current function in the if by doing something like throwing or returning.

Though it may be common to see err, data it may not always be the case that your callbacks will
use that pattern it's best to look at documentation.

https://riptutorial.com/ 36

Another example callback comes from the express library (express 4.x):

// this code snippet was on http://expressjs.com/en/4x/api.html
const express = require('express');
const app = express();

// this app.get method takes a url route to watch for and a callback
// to call whenever that route is requested by a user.
app.get('/', function(req, res){
 res.send('hello world');
});

app.listen(3000);

This example shows a callback that is called multiple times. The callback is provided with two
objects as params named here as req and res these names correspond to request and response
respectively, and they provide ways to view the request coming in and set up the response that
will be sent to the user.

As you can see there are various ways a callback can be used to execute sync and async code in
JavaScript and callbacks are very ubiquitous throughout JavaScript.

Code example

Question: What is the output of code below and why?

setTimeout(function() {
 console.log("A");
}, 1000);

setTimeout(function() {
 console.log("B");
}, 0);

getDataFromDatabase(function(err, data) {
 console.log("C");
 setTimeout(function() {
 console.log("D");
 }, 1000);
});

console.log("E");

Output: This is known for sure: EBAD. C is unknown when it will be logged.

Explanation: The compiler will not stop on the setTimeout and the getDataFromDatabase methodes.
So the first line he will log is E. The callback functions (first argument of setTimeout) will run after
the set timeout on a asynchronous way!

More details:

E has no setTimeout1.
B has a set timeout of 0 milliseconds2.
A has a set timeout of 1000 milliseconds3.

https://riptutorial.com/ 37

D must request a database, after it must D wait 1000 milliseconds so it comes after A.4.
C is unknown because it is unknown when the data of the database is requested. It could be
before or after A.

5.

Async error handling

Try catch

Errors must always be handled. If you are using synchronous programming you could use a try
catch. But this does not work if you work asynchronous! Example:

try {
 setTimeout(function() {
 throw new Error("I'm an uncaught error and will stop the server!");
 }, 100);
}
catch (ex) {
 console.error("This error will not be work in an asynchronous situation: " + ex);
}

Async errors will only be handled inside the callback function!

Working possibilities

v0.8

Event handlers

The first versions of Node.JS got an event handler.

process.on("UncaughtException", function(err, data) {
 if (err) {
 // error handling
 }
});

v0.8

Domains

Inside a domain, the errors are release via the event emitters. By using this are all errors, timers,
callback methodes implicitly only registrated inside the domain. By an error, be an error event
send and didn't crash the application.

var domain = require("domain");
var d1 = domain.create();
var d2 = domain.create();

https://riptutorial.com/ 38

d1.run(function() {
 d2.add(setTimeout(function() {
 throw new Error("error on the timer of domain 2");
 }, 0));
});

d1.on("error", function(err) {
 console.log("error at domain 1: " + err);
});

d2.on("error", function(err) {
 console.log("error at domain 2: " + err);
});

Callback hell

Callback hell (also a pyramid of doom or boomerang effect) arises when you nest too many
callback functions inside a callback function. Here is an example to read a file (in ES6).

const fs = require('fs');
let filename = `${__dirname}/myfile.txt`;

fs.exists(filename, exists => {
 if (exists) {
 fs.stat(filename, (err, stats) => {
 if (err) {
 throw err;
 }
 if (stats.isFile()) {
 fs.readFile(filename, null, (err, data) => {
 if (err) {
 throw err;
 }
 console.log(data);
 });
 }
 else {
 throw new Error("This location contains not a file");
 }
 });
 }
 else {
 throw new Error("404: file not found");
 }
});

How to avoid "Callback Hell"

It is recommended to nest no more than 2 callback functions. This will help you maintain code
readability and will me much easier to maintain in the future. If you have a need to nest more than
2 callbacks, try to make use of distributed events instead.

There also exists a library called async that helps manage callbacks and their execution available
on npm. It increases the readability of callback code and gives you more control over your callback
code flow, including allowing you to run them in parallel or in series.

https://riptutorial.com/ 39

https://nodejs.org/api/events.html
https://caolan.github.io/async/

Native Promises

v6.0.0

Promises are a tool for async programming. In JavaScript promises are known for their then
methods. Promises have two main states 'pending' and 'settled'. Once a promise is 'settled' it
cannot go back to 'pending'. This means that promises are mostly good for events that only occur
once. The 'settled' state has two states as well 'resolved' and 'rejected'. You can create a new
promise using the new keyword and passing a function into the constructor new Promise(function
(resolve, reject) {}).

The function passed into the Promise constructor always receives a first and second parameter
usually named resolve and reject respectively. The naming of these two parameters is
convention, but they will put the promise into either the 'resolved' state or the 'rejected' state.
When either one of these is called the promise goes from being 'pending' to 'settled'. resolve is
called when the desired action, which is often asynchronous, has been performed and reject is
used if the action has errored.

In the below timeout is a function that returns a Promise.

function timeout (ms) {
 return new Promise(function (resolve, reject) {
 setTimeout(function () {
 resolve("It was resolved!");
 }, ms)
 });
}

timeout(1000).then(function (dataFromPromise) {
 // logs "It was resolved!"
 console.log(dataFromPromise);
})

console.log("waiting...");

console output

waiting...
// << pauses for one second>>
It was resolved!

When timeout is called the function passed to the Promise constructor is executed without delay.
Then the setTimeout method is executed and its callback is set to fire in the next ms milliseconds,
in this case ms=1000. Since the callback to the setTimeout isn't fired yet the timeout function returns
control to the calling scope. The chain of then methods are then stored to be called later when/if
the Promise has resolved. If there were catch methods here they would be stored as well, but
would be fired when/if the promise 'rejects'.

The script then prints 'waiting...'. One second later the setTimeout calls its callback which calls the
resolve function with the string "It was resolved!". That string is then passed into the then method's
callback and is then logged to the user.

https://riptutorial.com/ 40

In the same sense you can wrap the asynchronous setTimeout function which requires a callback
you can wrap any singular asynchronous action with a promise.

Read more about promises in the JavaScript documentation Promises.

Read Asynchronous programming online: https://riptutorial.com/node-js/topic/8813/asynchronous-
programming

https://riptutorial.com/ 41

http://www.riptutorial.com/javascript/topic/231/promises
https://riptutorial.com/node-js/topic/8813/asynchronous-programming
https://riptutorial.com/node-js/topic/8813/asynchronous-programming

Chapter 6: Autoreload on changes

Examples

Autoreload on source code changes using nodemon

The nodemon package makes it possible to automatically reload your program when you modify
any file in the source code.

Installing nodemon globally

npm install -g nodemon (or npm i -g nodemon)

Installing nodemon locally

In case you don't want to install it globally

npm install --save-dev nodemon (or npm i -D nodemon)

Using nodemon

Run your program with nodemon entry.js (or nodemon entry)

This replaces the usual use of node entry.js (or node entry).

You can also add your nodemon startup as an npm script, which might be useful if you want to
supply parameters and not type them out every time.

Add package.json:

 "scripts": {
 "start": "nodemon entry.js -devmode -something 1"
 }

This way you can just use npm start from your console.

Browsersync

Overview

Browsersync is a tool that allows for live file watching and browser reloading. It's available as a
NPM package.

https://riptutorial.com/ 42

https://browsersync.io
https://www.npmjs.com/package/browser-sync

Installation

To install Browsersync you'll first need to have Node.js and NPM installed. For more information
see the SO documentation on Installing and Running Node.js.

Once your project is set up you can install Browsersync with the following command:

$ npm install browser-sync -D

This will install Browsersync in the local node_modules directory and save it to your developer
dependencies.

If you'd rather install it globally use the -g flag in place of the -D flag.

Windows Users

If you're having trouble installing Browsersync on Windows you may need to install Visual Studio
so you can access the build tools to install Browsersync. You'll then need to specify the version of
Visual Studio you're using like so:

$ npm install browser-sync --msvs_version=2013 -D

This command specifies the 2013 version of Visual Studio.

Basic Usage

To automatically reload your site whenever you change a JavaScript file in your project use the
following command:

$ browser-sync start --proxy "myproject.dev" --files "**/*.js"

Replace myproject.dev with the web address that you are using to access your project.
Browsersync will output an alternate address that can be used to access your site through the
proxy.

Advanced Usage

Besides the command line interface that was described above Browsersync can also be used with
Grunt.js and Gulp.js.

Grunt.js

Usage with Grunt.js requires a plugin that can be installed like so:

https://riptutorial.com/ 43

https://nodejs.org/en/
http://www.riptutorial.com/node-js/topic/340/getting-started-with-node-js
http://stackoverflow.com/tags/gruntjs/info
http://stackoverflow.com/tags/gulp/info

$ npm install grunt-browser-sync -D

Then you'll add this line to your gruntfile.js:

grunt.loadNpmTasks('grunt-browser-sync');

Gulp.js

Browsersync works as a CommonJS module, so there's no need for a Gulp.js plugin. Simply
require the module like so:

var browserSync = require('browser-sync').create();

You can now use the Browsersync API to configure it to your needs.

API

The Browsersync API can be found here: https://browsersync.io/docs/api

Read Autoreload on changes online: https://riptutorial.com/node-js/topic/1743/autoreload-on-
changes

https://riptutorial.com/ 44

http://stackoverflow.com/tags/commonjs/info
https://browsersync.io/docs/api
https://browsersync.io/docs/api
https://riptutorial.com/node-js/topic/1743/autoreload-on-changes
https://riptutorial.com/node-js/topic/1743/autoreload-on-changes

Chapter 7: Avoid callback hell

Examples

Async module

The source is available for download from GitHub. Alternatively, you can install using npm:

$ npm install --save async

As well as using Bower:

$ bower install async

Example:

var async = require("async");
async.parallel([
 function(callback) { ... },
 function(callback) { ... }
], function(err, results) {
 // optional callback
});

Async Module

Thankfully, libraries like Async.js exist to try and curb the problem. Async adds a thin layer of
functions on top of your code, but can greatly reduce the complexity by avoiding callback nesting.

Many helper methods exist in Async that can be used in different situations, like series, parallel,
waterfall, etc. Each function has a specific use-case, so take some time to learn which one will
help in which situations.

As good as Async is, like anything, its not perfect. Its very easy to get carried away by combining
series, parallel, forever, etc, at which point you're right back to where you started with messy code.
Be careful not to prematurely optimize. Just because a few async tasks can be run in parallel
doesn't always mean they should. In reality, since Node is only single-threaded, running tasks in
parallel on using Async has little to no performance gain.

The source is available for download from https://github.com/caolan/async . Alternatively, you can
install using npm:

$ npm install --save async

As well as using Bower:

$ bower install async

https://riptutorial.com/ 45

https://github.com/caolan/async

Async's waterfall Example:

var fs = require('fs');
var async = require('async');

var myFile = '/tmp/test';

async.waterfall([
 function(callback) {
 fs.readFile(myFile, 'utf8', callback);
 },
 function(txt, callback) {
 txt = txt + '\nAppended something!';
 fs.writeFile(myFile, txt, callback);
 }
], function (err, result) {
 if(err) return console.log(err);
 console.log('Appended text!');
});

Read Avoid callback hell online: https://riptutorial.com/node-js/topic/10045/avoid-callback-hell

https://riptutorial.com/ 46

https://riptutorial.com/node-js/topic/10045/avoid-callback-hell

Chapter 8: Bluebird Promises

Examples

Converting nodeback library to Promises

const Promise = require('bluebird'),
 fs = require('fs')

Promise.promisifyAll(fs)

// now you can use promise based methods on 'fs' with the Async suffix
fs.readFileAsync('file.txt').then(contents => {
 console.log(contents)
}).catch(err => {
 console.error('error reading', err)
})

Functional Promises

Example of map:

Promise.resolve([1, 2, 3]).map(el => {
 return Promise.resolve(el * el) // return some async operation in real world
})

Example of filter:

Promise.resolve([1, 2, 3]).filter(el => {
 return Promise.resolve(el % 2 === 0) // return some async operation in real world
}).then(console.log)

Example of reduce:

Promise.resolve([1, 2, 3]).reduce((prev, curr) => {
 return Promise.resolve(prev + curr) // return some async operation in real world
}).then(console.log)

Coroutines (Generators)

const promiseReturningFunction = Promise.coroutine(function* (file) {
 const data = yield fs.readFileAsync(file) // this returns a Promise and resolves to the file
contents

 return data.toString().toUpperCase()
})

promiseReturningFunction('file.txt').then(console.log)

https://riptutorial.com/ 47

Automatic Resource Disposal (Promise.using)

function somethingThatReturnsADisposableResource() {
 return getSomeResourceAsync(...).disposer(resource => {
 resource.dispose()
 })
}

Promise.using(somethingThatReturnsADisposableResource(), resource => {
 // use the resource here, the disposer will automatically close it when Promise.using exits
})

Executing in series

Promise.resolve([1, 2, 3])
 .mapSeries(el => Promise.resolve(el * el)) // in real world, use Promise returning async
function
 .then(console.log)

Read Bluebird Promises online: https://riptutorial.com/node-js/topic/6728/bluebird-promises

https://riptutorial.com/ 48

https://riptutorial.com/node-js/topic/6728/bluebird-promises

Chapter 9: Callback to Promise

Examples

Promisifying a callback

Callback-based:

db.notification.email.find({subject: 'promisify callback'}, (error, result) => {
 if (error) {
 console.log(error);
 }

 // normal code here
});

This uses bluebird's promisifyAll method to promisify what is conventionally callback-based code
like above. bluebird will make a promise version of all the methods in the object, those promise-
based methods names has Async appended to them:

let email = bluebird.promisifyAll(db.notification.email);

email.findAsync({subject: 'promisify callback'}).then(result => {

 // normal code here
})
.catch(console.error);

If only specific methods need to be promisified, just use its promisify:

let find = bluebird.promisify(db.notification.email.find);

find({locationId: 168}).then(result => {

 // normal code here
});
.catch(console.error);

There are some libraries (e.g., MassiveJS) that can't be promisified if the immediate object of the
method is not passed on second parameter. In that case, just pass the immediate object of the
method that need to be promisified on second parameter and enclosed it in context property.

let find = bluebird.promisify(db.notification.email.find, { context: db.notification.email });

find({locationId: 168}).then(result => {

 // normal code here
});
.catch(console.error);

https://riptutorial.com/ 49

Manually promisifying a callback

Sometimes it might be necessary to manually promisify a callback function. This could be for a
case where the callback does not follow the standard error-first format or if additional logic is
needed to promisify:

Example with fs.exists(path, callback):

var fs = require('fs');

var existsAsync = function(path) {
 return new Promise(function(resolve, reject) {
 fs.exists(path, function(exists) {
 // exists is a boolean
 if (exists) {
 // Resolve successfully
 resolve();
 } else {
 // Reject with error
 reject(new Error('path does not exist'));
 }
 });
});

// Use as a promise now
existsAsync('/path/to/some/file').then(function() {
 console.log('file exists!');
}).catch(function(err) {
 // file does not exist
 console.error(err);
});

setTimeout promisified

function wait(ms) {
 return new Promise(function (resolve, reject) {
 setTimeout(resolve, ms)
 })
}

Read Callback to Promise online: https://riptutorial.com/node-js/topic/2346/callback-to-promise

https://riptutorial.com/ 50

http://fredkschott.com/post/2014/03/understanding-error-first-callbacks-in-node-js/
https://nodejs.org/api/fs.html#fs_fs_exists_path_callback
https://riptutorial.com/node-js/topic/2346/callback-to-promise

Chapter 10: Cassandra Integration

Examples

Hello world

For accessing Cassandra cassandra-driver module from DataStax can be used. It supports all the
features and can be easily configured.

const cassandra = require("cassandra-driver");
const clientOptions = {
 contactPoints: ["host1", "host2"],
 keyspace: "test"
};

const client = new cassandra.Client(clientOptions);

const query = "SELECT hello FROM world WHERE name = ?";
client.execute(query, ["John"], (err, results) => {
 if (err) {
 return console.error(err);
 }

 console.log(results.rows);
});

Read Cassandra Integration online: https://riptutorial.com/node-js/topic/5949/cassandra-
integration

https://riptutorial.com/ 51

https://github.com/datastax/nodejs-driver
https://riptutorial.com/node-js/topic/5949/cassandra-integration
https://riptutorial.com/node-js/topic/5949/cassandra-integration

Chapter 11: CLI

Syntax

node [options] [v8 options] [script.js | -e "script"] [arguments]•

Examples

Command Line Options

-v, --version

Added in: v0.1.3 Print node's version.

-h, --help

Added in: v0.1.3 Print node command line options. The output of this option is less detailed than
this document.

-e, --eval "script"

Added in: v0.5.2 Evaluate the following argument as JavaScript. The modules which are
predefined in the REPL can also be used in script.

-p, --print "script"

Added in: v0.6.4 Identical to -e but prints the result.

-c, --check

Added in: v5.0.0 Syntax check the script without executing.

-i, --interactive

Added in: v0.7.7 Opens the REPL even if stdin does not appear to be a terminal.

-r, --require module

Added in: v1.6.0 Preload the specified module at startup.

Follows require()'s module resolution rules. module may be either a path to a file, or a node
module name.

--no-deprecation

https://riptutorial.com/ 52

Added in: v0.8.0 Silence deprecation warnings.

--trace-deprecation

Added in: v0.8.0 Print stack traces for deprecations.

--throw-deprecation

Added in: v0.11.14 Throw errors for deprecations.

--no-warnings

Added in: v6.0.0 Silence all process warnings (including deprecations).

--trace-warnings

Added in: v6.0.0 Print stack traces for process warnings (including deprecations).

--trace-sync-io

Added in: v2.1.0 Prints a stack trace whenever synchronous I/O is detected after the first turn of
the event loop.

--zero-fill-buffers

Added in: v6.0.0 Automatically zero-fills all newly allocated Buffer and SlowBuffer instances.

--preserve-symlinks

Added in: v6.3.0 Instructs the module loader to preserve symbolic links when resolving and
caching modules.

By default, when Node.js loads a module from a path that is symbolically linked to a different on-
disk location, Node.js will dereference the link and use the actual on-disk "real path" of the module
as both an identifier and as a root path to locate other dependency modules. In most cases, this
default behavior is acceptable. However, when using symbolically linked peer dependencies, as
illustrated in the example below, the default behavior causes an exception to be thrown if moduleA
attempts to require moduleB as a peer dependency:

{appDir}
 ├── app
 │ ├── index.js
 │ └── node_modules
 │ ├── moduleA -> {appDir}/moduleA
 │ └── moduleB
 │ ├── index.js
 │ └── package.json
 └── moduleA
 ├── index.js

https://riptutorial.com/ 53

 └── package.json

The --preserve-symlinks command line flag instructs Node.js to use the symlink path for modules
as opposed to the real path, allowing symbolically linked peer dependencies to be found.

Note, however, that using --preserve-symlinks can have other side effects. Specifically,
symbolically linked native modules can fail to load if those are linked from more than one location
in the dependency tree (Node.js would see those as two separate modules and would attempt to
load the module multiple times, causing an exception to be thrown).

--track-heap-objects

Added in: v2.4.0 Track heap object allocations for heap snapshots.

--prof-process

Added in: v6.0.0 Process v8 profiler output generated using the v8 option --prof.

--v8-options

Added in: v0.1.3 Print v8 command line options.

Note: v8 options allow words to be separated by both dashes (-) or underscores (_).

For example, --stack-trace-limit is equivalent to --stack_trace_limit.

--tls-cipher-list=list

Added in: v4.0.0 Specify an alternative default TLS cipher list. (Requires Node.js to be built with
crypto support. (Default))

--enable-fips

Added in: v6.0.0 Enable FIPS-compliant crypto at startup. (Requires Node.js to be built with
./configure --openssl-fips)

--force-fips

Added in: v6.0.0 Force FIPS-compliant crypto on startup. (Cannot be disabled from script code.)
(Same requirements as --enable-fips)

--icu-data-dir=file

Added in: v0.11.15 Specify ICU data load path. (overrides NODE_ICU_DATA)

Environment Variables

https://riptutorial.com/ 54

NODE_DEBUG=module[,…]

Added in: v0.1.32 ','-separated list of core modules that should print debug information.

NODE_PATH=path[:…]

Added in: v0.1.32 ':'-separated list of directories prefixed to the module search path.

Note: on Windows, this is a ';'-separated list instead.

NODE_DISABLE_COLORS=1

Added in: v0.3.0 When set to 1 colors will not be used in the REPL.

NODE_ICU_DATA=file

Added in: v0.11.15 Data path for ICU (Intl object) data. Will extend linked-in data when compiled
with small-icu support.

NODE_REPL_HISTORY=file

Added in: v5.0.0 Path to the file used to store the persistent REPL history. The default path is
~/.node_repl_history, which is overridden by this variable. Setting the value to an empty string (""
or " ") disables persistent REPL history.

Read CLI online: https://riptutorial.com/node-js/topic/6013/cli

https://riptutorial.com/ 55

https://riptutorial.com/node-js/topic/6013/cli

Chapter 12: Client-server communication

Examples

/w Express, jQuery and Jade

//'client.jade'

//a button is placed down; similar in HTML
button(type='button', id='send_by_button') Modify data

 #modify Lorem ipsum Sender

 //loading jQuery; it can be done from an online source as well
 script(src='./js/jquery-2.2.0.min.js')

 //AJAX request using jQuery
 script
 $(function () {
 $('#send_by_button').click(function (e) {
 e.preventDefault();

 //test: the text within brackets should appear when clicking on said button
 //window.alert('You clicked on me. - jQuery');

 //a variable and a JSON initialized in the code
 var predeclared = "Katamori";
 var data = {
 Title: "Name_SenderTest",
 Nick: predeclared,
 FirstName: "Zoltan",
 Surname: "Schmidt"
 };

 //an AJAX request with given parameters
 $.ajax({
 type: 'POST',
 data: JSON.stringify(data),
 contentType: 'application/json',
 url: 'http://localhost:7776/domaintest',

 //on success, received data is used as 'data' function input
 success: function (data) {
 window.alert('Request sent; data received.');

 var jsonstr = JSON.stringify(data);
 var jsonobj = JSON.parse(jsonstr);

 //if the 'nick' member of the JSON does not equal to the predeclared
string (as it was initialized), then the backend script was executed, meaning that
communication has been established
 if(data.Nick != predeclared){
 document.getElementById("modify").innerHTML = "JSON changed!\n" +
jsonstr;
 };

 }

https://riptutorial.com/ 56

 });
 });
 });

//'domaintest_route.js'

var express = require('express');
var router = express.Router();

//an Express router listening to GET requests - in this case, it's empty, meaning that nothing
is displayed when you reach 'localhost/domaintest'
router.get('/', function(req, res, next) {
});

//same for POST requests - notice, how the AJAX request above was defined as POST
router.post('/', function(req, res) {
 res.setHeader('Content-Type', 'application/json');

 //content generated here
 var some_json = {
 Title: "Test",
 Item: "Crate"
 };

 var result = JSON.stringify(some_json);

 //content got 'client.jade'
 var sent_data = req.body;
 sent_data.Nick = "ttony33";

 res.send(sent_data);

});

module.exports = router;

//based on a personally used gist: https://gist.github.com/Katamori/5c9850f02e4baf6e9896

Read Client-server communication online: https://riptutorial.com/node-js/topic/6222/client-server-
communication

https://riptutorial.com/ 57

https://gist.github.com/Katamori/5c9850f02e4baf6e9896
https://riptutorial.com/node-js/topic/6222/client-server-communication
https://riptutorial.com/node-js/topic/6222/client-server-communication

Chapter 13: Cluster Module

Syntax

const cluster = require("cluster")•
cluster.fork()•
cluster.isMaster•
cluster.isWorker•
cluster.schedulingPolicy•
cluster.setupMaster(settings)•
cluster.settings•
cluster.worker // in worker•
cluster.workers // in master•

Remarks

Note that cluster.fork() spawns a child process that begins executing the current script from the
beginning, in contrast to the fork() system call in C which clones the current process and
continues from the instruction after the system call in both parent and child process.

The Node.js Documentation has a more complete guide to clusters here

Examples

Hello World

This is your cluster.js:

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length;

if (cluster.isMaster) {
 // Fork workers.
 for (let i = 0; i < numCPUs; i++) {
 cluster.fork();
 }

 cluster.on('exit', (worker, code, signal) => {
 console.log(`worker ${worker.process.pid} died`);
 });
} else {
 // Workers can share any TCP connection
 // In this case it is an HTTP server
 require('./server.js')();
}

This is your main server.js:

https://riptutorial.com/ 58

https://nodejs.org/api/cluster.html

const http = require('http');

function startServer() {
 const server = http.createServer((req, res) => {
 res.writeHead(200);
 res.end('Hello Http');
 });

 server.listen(3000);
}

if(!module.parent) {
 // Start server if file is run directly
 startServer();
} else {
 // Export server, if file is referenced via cluster
 module.exports = startServer;
}

In this example, we host a basic web server, however, we spin up workers (child processes) using
the built-in cluster module. The number of processes forker depend on the number of CPU cores
available. This enables a Node.js application to take advantage of multi-core CPUs, since a single
instance of Node.js runs in a single thread. The application will now share the port 8000 across all
the processes. Loads will automatically be distributed between workers using the Round-Robin
method by default.

Cluster Example

A single instance of Node.js runs in a single thread. To take advantage of multi-core systems,
application can be launched in a cluster of Node.js processes to handle the load.

The cluster module allows you to easily create child processes that all share server ports.

Following example create the worker child process in main process that handles the load across
multiple cores.

Example

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length; //number of CPUS

if (cluster.isMaster) {
 // Fork workers.
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork(); //creating child process
 }

 //on exit of cluster
 cluster.on('exit', (worker, code, signal) => {
 if (signal) {
 console.log(`worker was killed by signal: ${signal}`);
 } else if (code !== 0) {
 console.log(`worker exited with error code: ${code}`);
 } else {

https://riptutorial.com/ 59

 console.log('worker success!');
 }
 });
} else {
 // Workers can share any TCP connection
 // In this case it is an HTTP server
 http.createServer((req, res) => {
 res.writeHead(200);
 res.end('hello world\n');
 }).listen(3000);
}

Read Cluster Module online: https://riptutorial.com/node-js/topic/2817/cluster-module

https://riptutorial.com/ 60

https://riptutorial.com/node-js/topic/2817/cluster-module

Chapter 14: Connect to Mongodb

Introduction

MongoDB is a free and open-source cross-platform document-oriented database program.
Classified as a NoSQL database program, MongoDB uses JSON-like documents with schemas.

For more details go to https://www.mongodb.com/

Syntax

MongoClient.connect('mongodb://127.0.0.1:27017/crud',function (err,db) {//do womething
here});

•

Examples

Simple example to Connect mongoDB from Node.JS

MongoClient.connect('mongodb://localhost:27017/myNewDB',function (err,db) {
 if(err)
 console.log("Unable to connect DB. Error: " + err)
 else
 console.log('Connected to DB');

 db.close();
});

myNewDB is DB name, if it does not exists in database then it will create automatically with this
call.

Simple way to Connect mongoDB with core Node.JS

 var MongoClient = require('mongodb').MongoClient;

 //connection with mongoDB
 MongoClient.connect("mongodb://localhost:27017/MyDb", function (err, db) {
 //check the connection
 if(err){
 console.log("connection failed.");
}else{
 console.log("successfully connected to mongoDB.");
 });

Read Connect to Mongodb online: https://riptutorial.com/node-js/topic/6280/connect-to-mongodb

https://riptutorial.com/ 61

https://www.mongodb.com/
https://riptutorial.com/node-js/topic/6280/connect-to-mongodb

Chapter 15: Creating a Node.js Library that
Supports Both Promises and Error-First
Callbacks

Introduction

Many people like working with promises and/or async/await syntax, but when writing a module it
would be useful to some programmers to support classic callback style methods as well. Rather
than creating two modules, or two sets of functions, or having the programmer promisify your
module, your module can support both programming methods at one using bluebird's asCallback()
or Q's nodeify().

Examples

Example Module and Corresponding Program using Bluebird

math.js

'use strict';

const Promise = require('bluebird');

module.exports = {

 // example of a callback-only method
 callbackSum: function(a, b, callback) {
 if (typeof a !== 'number')
 return callback(new Error('"a" must be a number'));
 if (typeof b !== 'number')
 return callback(new Error('"b" must be a number'));

 return callback(null, a + b);
 },

 // example of a promise-only method
 promiseSum: function(a, b) {
 return new Promise(function(resolve, reject) {
 if (typeof a !== 'number')
 return reject(new Error('"a" must be a number'));
 if (typeof b !== 'number')
 return reject(new Error('"b" must be a number'));
 resolve(a + b);
 });
 },

 // a method that can be used as a promise or with callbacks
 sum: function(a, b, callback) {
 return new Promise(function(resolve, reject) {
 if (typeof a !== 'number')
 return reject(new Error('"a" must be a number'));

https://riptutorial.com/ 62

 if (typeof b !== 'number')
 return reject(new Error('"b" must be a number'));
 resolve(a + b);
 }).asCallback(callback);
 },

};

index.js

'use strict';

const math = require('./math');

// classic callbacks

math.callbackSum(1, 3, function(err, result) {
 if (err)
 console.log('Test 1: ' + err);
 else
 console.log('Test 1: the answer is ' + result);
});

math.callbackSum(1, 'd', function(err, result) {
 if (err)
 console.log('Test 2: ' + err);
 else
 console.log('Test 2: the answer is ' + result);
});

// promises

math.promiseSum(2, 5)
.then(function(result) {
 console.log('Test 3: the answer is ' + result);
})
.catch(function(err) {
 console.log('Test 3: ' + err);
});

math.promiseSum(1)
.then(function(result) {
 console.log('Test 4: the answer is ' + result);
})
.catch(function(err) {
 console.log('Test 4: ' + err);
});

// promise/callback method used like a promise

math.sum(8, 2)
.then(function(result) {
 console.log('Test 5: the answer is ' + result);
})
.catch(function(err) {
 console.log('Test 5: ' + err);
});

https://riptutorial.com/ 63

// promise/callback method used with callbacks

math.sum(7, 11, function(err, result) {
 if (err)
 console.log('Test 6: ' + err);
 else
 console.log('Test 6: the answer is ' + result);
});

// promise/callback method used like a promise with async/await syntax

(async () => {

 try {
 let x = await math.sum(6, 3);
 console.log('Test 7a: ' + x);

 let y = await math.sum(4, 's');
 console.log('Test 7b: ' + y);

 } catch(err) {
 console.log(err.message);
 }

})();

Read Creating a Node.js Library that Supports Both Promises and Error-First Callbacks online:
https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-
and-error-first-callbacks

https://riptutorial.com/ 64

https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-and-error-first-callbacks
https://riptutorial.com/node-js/topic/9874/creating-a-node-js-library-that-supports-both-promises-and-error-first-callbacks

Chapter 16: Creating API's with Node.js

Examples

GET api using Express

Node.js apis can be easily constructed in Express web framework.

Following example creates a simple GET api for listing all users.

Example

var express = require('express');
var app = express();

var users =[{
 id: 1,
 name: "John Doe",
 age : 23,
 email: "john@doe.com"
 }];

// GET /api/users
app.get('/api/users', function(req, res){
 return res.json(users); //return response as JSON
});

app.listen('3000', function(){
 console.log('Server listening on port 3000');
});

POST api using Express

Following example create POST api using Express. This example is similar to GET example except the
use of body-parser that parses the post data and add it to req.body.

Example

var express = require('express');
var app = express();
// for parsing the body in POST request
var bodyParser = require('body-parser');

var users =[{
 id: 1,
 name: "John Doe",
 age : 23,
 email: "john@doe.com"
}];

app.use(bodyParser.urlencoded({ extended: false }));
app.use(bodyParser.json());

https://riptutorial.com/ 65

// GET /api/users
app.get('/api/users', function(req, res){
 return res.json(users);
});

/* POST /api/users
 {
 "user": {
 "id": 3,
 "name": "Test User",
 "age" : 20,
 "email": "test@test.com"
 }
 }
*/
app.post('/api/users', function (req, res) {
 var user = req.body.user;
 users.push(user);

 return res.send('User has been added successfully');
});

app.listen('3000', function(){
 console.log('Server listening on port 3000');
});

Read Creating API's with Node.js online: https://riptutorial.com/node-js/topic/5991/creating-api-s-
with-node-js

https://riptutorial.com/ 66

https://riptutorial.com/node-js/topic/5991/creating-api-s-with-node-js
https://riptutorial.com/node-js/topic/5991/creating-api-s-with-node-js

Chapter 17: csv parser in node js

Introduction

Reading data in from a csv can be handled in many ways. One solution is to read the csv file into
an array. From there you can do work on the array.

Examples

Using FS to read in a CSV

fs is the File System API in node. We can use the method readFile on our fs variable, pass it a
data.csv file, format and function that reads and splits the csv for further processing.

This assumes you have a file named data.csv in the same folder.

'use strict'

const fs = require('fs');

fs.readFile('data.csv', 'utf8', function (err, data) {
 var dataArray = data.split(/\r?\n/);
 console.log(dataArray);
});

You can now use the array like any other to do work on it.

Read csv parser in node js online: https://riptutorial.com/node-js/topic/9162/csv-parser-in-node-js

https://riptutorial.com/ 67

https://nodejs.org/api/fs.h
https://riptutorial.com/node-js/topic/9162/csv-parser-in-node-js

Chapter 18: Database (MongoDB with
Mongoose)

Examples

Mongoose connection

Make sure to have mongodb running first! mongod --dbpath data/

package.json

"dependencies": {
 "mongoose": "^4.5.5",
}

server.js (ECMA 6)

import mongoose from 'mongoose';

mongoose.connect('mongodb://localhost:27017/stackoverflow-example');
const db = mongoose.connection;
db.on('error', console.error.bind(console, 'DB connection error!'));

server.js (ECMA 5.1)

var mongoose = require('mongoose');

mongoose.connect('mongodb://localhost:27017/stackoverflow-example');
var db = mongoose.connection;
db.on('error', console.error.bind(console, 'DB connection error!'));

Model

Define your model(s):

app/models/user.js (ECMA 6)

import mongoose from 'mongoose';

const userSchema = new mongoose.Schema({
 name: String,
 password: String
});

const User = mongoose.model('User', userSchema);

export default User;

https://riptutorial.com/ 68

app/model/user.js (ECMA 5.1)

var mongoose = require('mongoose');

var userSchema = new mongoose.Schema({
 name: String,
 password: String
});

var User = mongoose.model('User', userSchema);

module.exports = User

Insert data

ECMA 6:

const user = new User({
 name: 'Stack',
 password: 'Overflow',
 }) ;

user.save((err) => {
 if (err) throw err;

 console.log('User saved!');
});

ECMA5.1:

var user = new User({
 name: 'Stack',
 password: 'Overflow',
 }) ;

user.save(function (err) {
 if (err) throw err;

 console.log('User saved!');
});

Read data

ECMA6:

User.findOne({
 name: 'stack'
}, (err, user) => {
 if (err) throw err;

 if (!user) {
 console.log('No user was found');
 } else {
 console.log('User was found');
 }

https://riptutorial.com/ 69

});

ECMA5.1:

User.findOne({
 name: 'stack'
}, function (err, user) {
 if (err) throw err;

 if (!user) {
 console.log('No user was found');
 } else {
 console.log('User was found');
 }
});

Read Database (MongoDB with Mongoose) online: https://riptutorial.com/node-
js/topic/6411/database--mongodb-with-mongoose-

https://riptutorial.com/ 70

https://riptutorial.com/node-js/topic/6411/database--mongodb-with-mongoose-
https://riptutorial.com/node-js/topic/6411/database--mongodb-with-mongoose-

Chapter 19: Debugging Node.js application

Examples

Core node.js debugger and node inspector

Using core debugger

Node.js provides a build in non graphical debugging utility. To start the build in the debugger, start
the application with this command:

node debug filename.js

Consider the following simple Node.js application contained in the debugDemo.js

'use strict';

function addTwoNumber(a, b){
// function returns the sum of the two numbers
debugger
 return a + b;
}

var result = addTwoNumber(5, 9);
console.log(result);

The keyword debugger will stop the debugger at that point in the code.

Command reference

Stepping1.

cont, c - Continue execution
next, n - Step next
step, s - Step in
out, o - Step out

Breakpoints2.

setBreakpoint(), sb() - Set breakpoint on current line
setBreakpoint(line), sb(line) - Set breakpoint on specific line

To Debug the above code run the following command

node debug debugDemo.js

https://riptutorial.com/ 71

Once the above commands runs you will see the following output. To exit from the debugger
interface, type process.exit()

Use watch(expression) command to add the variable or expression whose value you want to watch
and restart to restart the app and debugging.

Use repl to enter code interactively. The repl mode has the same context as the line you are
debugging. This allows you to examine the contents of variables and test out lines of code. Press
Ctrl+C to leave the debug repl.

Using Built-in Node inspector

v6.3.0

You can run node's built in v8 inspector! The node-inspector plug-in is not needed anymore.

Simply pass the inspector flag and you'll be provided with a URL to the inspector

node --inspect server.js

Using Node inspector

https://riptutorial.com/ 72

https://i.stack.imgur.com/XSJMF.png
https://nodejs.org/api/debugger.html#debugger_v8_inspector_integration_for_node_js
https://github.com/node-inspector/node-inspector

Install the node inspector:

npm install -g node-inspector

Run your app with the node-debug command:

node-debug filename.js

After that, hit in Chrome:

http://localhost:8080/debug?port=5858

Sometimes port 8080 might not be available on your computer. You may get the following error:

Cannot start the server at 0.0.0.0:8080. Error: listen EACCES.

In this case, start the node inspector on a different port using the following command.

$node-inspector --web-port=6500

You will see something like this:

https://riptutorial.com/ 73

https://i.stack.imgur.com/JpaL6.png

Read Debugging Node.js application online: https://riptutorial.com/node-js/topic/5900/debugging-
node-js-application

https://riptutorial.com/ 74

https://riptutorial.com/node-js/topic/5900/debugging-node-js-application
https://riptutorial.com/node-js/topic/5900/debugging-node-js-application

Chapter 20: Deliver HTML or any other sort of
file

Syntax

response.sendFile(fileName, options, function (err) {});•

Examples

Deliver HTML at specified path

Here's how to create an Express server and serve index.html by default (empty path /), and
page1.html for /page1 path.

Folder structure

project root
| server.js
|____views
 | index.html
 | page1.html

server.js

var express = require('express');
var path = require('path');
var app = express();

// deliver index.html if no file is requested
app.get("/", function (request, response) {
 response.sendFile(path.join(__dirname, 'views/index.html'));
});

// deliver page1.html if page1 is requested
app.get('/page1', function(request, response) {
 response.sendFile(path.join(__dirname, 'views', 'page1.html', function(error) {
 if (error) {
 // do something in case of error
 console.log(err);
 response.end(JSON.stringify({error:"page not found"}));
 }
 });
});

app.listen(8080);

Note that sendFile() just streams a static file as response, offering no opportunity to modify it. If

https://riptutorial.com/ 75

you are serving an HTML file and want to include dynamic data with it, then you will need to use a
template engine such as Pug, Mustache, or EJS.

Read Deliver HTML or any other sort of file online: https://riptutorial.com/node-
js/topic/6538/deliver-html-or-any-other-sort-of-file

https://riptutorial.com/ 76

https://riptutorial.com/node-js/topic/6538/deliver-html-or-any-other-sort-of-file
https://riptutorial.com/node-js/topic/6538/deliver-html-or-any-other-sort-of-file

Chapter 21: Dependency Injection

Examples

Why Use Dependency Injection

Fast Development process1.
Decoupling2.
Unit test writing3.

Fast Development process
When using dependency injection node developer can faster their development proceess because
after DI there is less code conflict and easy to manage all module.

Decoupling
Modules becomes less couple then it is easy to maintain.

Unit test writing
Hardcoded dependencies can pass them into the module then easy to write unit test for each
module.

Read Dependency Injection online: https://riptutorial.com/node-js/topic/7681/dependency-injection

https://riptutorial.com/ 77

https://riptutorial.com/node-js/topic/7681/dependency-injection

Chapter 22: Deploying Node.js application
without downtime.

Examples

Deployment using PM2 without downtime.

ecosystem.json

{
 "name": "app-name",
 "script": "server",
 "exec_mode": "cluster",
 "instances": 0,
 "wait_ready": true
 "listen_timeout": 10000,
 "kill_timeout": 5000,
}

wait_ready

Instead of reload waiting for listen event, wait for process.send('ready');

listen_timeout

Time in ms before forcing a reload if app not listening.

kill_timeout

Time in ms before sending a final SIGKLL.

server.js

const http = require('http');
const express = require('express');

const app = express();
const server = http.Server(app);
const port = 80;

server.listen(port, function() {
 process.send('ready');
});

process.on('SIGINT', function() {
 server.close(function() {
 process.exit(0);
 });
});

https://riptutorial.com/ 78

You might need to wait for your application to have etablished connections with your
DBs/caches/workers/whatever. PM2 needs to wait before considering your application as online.
To do this, you need to provide wait_ready: true in a process file. This will make PM2 listen for
that event. In your application you will need to add process.send('ready'); when you want your
application to be considered as ready.

When a process is stopped/restarted by PM2, some system signals are sent to your process in a
given order.

First a SIGINT a signal is sent to your processes, signal you can catch to know that your process is
going to be stopped. If your application does not exit by itself before 1.6s (customizable) it will
receive a SIGKILL signal to force the process exit. So if your application need to clean-up
something states or jobs you can catch the SIGINT signal to prepare your application to exit.

Read Deploying Node.js application without downtime. online: https://riptutorial.com/node-
js/topic/9752/deploying-node-js-application-without-downtime-

https://riptutorial.com/ 79

https://riptutorial.com/node-js/topic/9752/deploying-node-js-application-without-downtime-
https://riptutorial.com/node-js/topic/9752/deploying-node-js-application-without-downtime-

Chapter 23: Deploying Node.js applications in
production

Examples

Setting NODE_ENV="production"

Production deployments will vary in many ways, but a standard convention when deploying in
production is to define an environment variable called NODE_ENV and set its value to "production".

Runtime flags

Any code running in your application (including external modules) can check the value of NODE_ENV:

if(process.env.NODE_ENV === 'production') {
 // We are running in production mode
} else {
 // We are running in development mode
}

Dependencies

When the NODE_ENV environment variable is set to 'production' all devDependencies in your
package.json file will be completely ignored when running npm install. You can also enforce this
with a --production flag:

npm install --production

For setting NODE_ENV you can use any of these methods

method 1: set NODE_ENV for all node apps

Windows :

set NODE_ENV=production

Linux or other unix based system :

export NODE_ENV=production

This sets NODE_ENV for current bash session thus any apps started after this statement will have
NODE_ENV set to production.

https://riptutorial.com/ 80

method 2: set NODE_ENV for current app

NODE_ENV=production node app.js

This will set NODE_ENV for the current app only. This helps when we want to test our apps on
different environments.

method 3: create .env file and use it

This uses the idea explained here. Refer this post for more detailed explanation.

Basically you create .env file and run some bash script to set them on environment.

To avoid writing a bash script, the env-cmd package can be used to load the environment
variables defined in the .env file.

env-cmd .env node app.js

method 4: Use cross-env package

This package allows environment variables to be set in one way for every platform.

After installing it with npm, you can just add it to your deployment script in package.json as follows:

"build:deploy": "cross-env NODE_ENV=production webpack"

Manage app with process manager

It's a good practice to run NodeJS apps controlled by process managers. Process manager helps
to keep application alive forever, restart on failure, reload without downtime and simplifies
administrating. Most powerful of them (like PM2) have a built-in load balancer. PM2 also enables
you to manage application logging, monitoring, and clustering.

PM2 process manager

Installing PM2:

npm install pm2 -g

Process can be started in cluster mode involving integrated load balancer to spread load between
processes:

pm2 start app.js -i 0 --name "api" (-i is to specify number of processes to spawn. If it is 0, then
process number will be based on CPU cores count)

While having multiple users in production, its must to have a single point for PM2. Therefore pm2
command must be prefixed with a location (for PM2 config) else it will spawn a new pm2 process
for every user with config in respective home directory. And it will be inconsistent.

https://riptutorial.com/ 81

http://stackoverflow.com/a/28821696/620039
https://www.npmjs.com/package/env-cmd
https://www.npmjs.com/package/cross-env
http://pm2.keymetrics.io/

Usage: PM2_HOME=/etc/.pm2 pm2 start app.js

Deployment using PM2

PM2 is a production process manager for Node.js applications, that allows you to keep applications
alive forever and reload them without downtime. PM2 also enables you to manage application
logging, monitoring, and clustering.

Install pm2 globally.

npm install -g pm2

Then, run the node.js app using PM2.

pm2 start server.js --name "my-app"

Following commands are useful while working with PM2.

List all running processes:

pm2 list

Stop an app:

pm2 stop my-app

Restart an app:

pm2 restart my-app

To view detailed information about an app:

pm2 show my-app

To remove an app from PM2’s registry:

pm2 delete my-app

https://riptutorial.com/ 82

http://i.stack.imgur.com/9L2zo.png

Deployment using process manager

Process manager is generally used in production to deploy a nodejs app. The main functions of a
process manager are restarting the server if it crashes, checking resource consumption, improving
runtime performance, monitoring etc.

Some of the popular process managers made by the node community are forever, pm2, etc.

Forvever

forever is a command-line interface tool for ensuring that a given script runs continuously. forever
’s simple interface makes it ideal for running smaller deployments of Node.js apps and scripts.

forever monitors your process and restarts it if it crashes.

Install forever globally.

$ npm install -g forever

Run application :

$ forever start server.js

This starts the server and gives an id for the process(starts from 0).

Restart application :

$ forever restart 0

Here 0 is the id of the server.

Stop application :

$ forever stop 0

Similar to restart, 0 is the id the server. You can also give process id or script name in place of the
id given by the forever.

For more commands : https://www.npmjs.com/package/forever

Using different Properties/Configuration for different environments like dev,
qa, staging etc.

Large scale applications often need different properties when running on different environments.
we can achieve this by passing arguments to NodeJs application and using same argument in
node process to load specific environment property file.

https://riptutorial.com/ 83

https://github.com/foreverjs/forever
https://www.npmjs.com/package/forever

Suppose we have two property files for different environment.

dev.json

 {
 "PORT": 3000,
 "DB": {
 "host": "localhost",
 "user": "bob",
 "password": "12345"
 }
 }

•

qa.json

 {
 "PORT": 3001,
 "DB": {
 "host": "where_db_is_hosted",
 "user": "bob",
 "password": "54321"
 }
 }

•

Following code in application will export respective property file which we want to use.

process.argv.forEach(function (val) {
 var arg = val.split("=");
 if (arg.length > 0) {
 if (arg[0] === 'env') {
 var env = require('./' + arg[1] + '.json');
 exports.prop = env;
 }
 }
});

We give arguments to the application like following

node app.js env=dev

if we are using process manager like forever than it as simple as

forever start app.js env=dev

Taking advantage of clusters

A single instance of Node.js runs in a single thread. To take advantage of multi-core systems the
user will sometimes want to launch a cluster of Node.js processes to handle the load.

https://riptutorial.com/ 84

 var cluster = require('cluster');

 var numCPUs = require('os').cpus().length;

 if (cluster.isMaster) {
 // In real life, you'd probably use more than just 2 workers,
 // and perhaps not put the master and worker in the same file.
 //
 // You can also of course get a bit fancier about logging, and
 // implement whatever custom logic you need to prevent DoS
 // attacks and other bad behavior.
 //
 // See the options in the cluster documentation.
 //
 // The important thing is that the master does very little,
 // increasing our resilience to unexpected errors.
 console.log('your server is working on ' + numCPUs + ' cores');

 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }

 cluster.on('disconnect', function(worker) {
 console.error('disconnect!');
 //clearTimeout(timeout);
 cluster.fork();
 });

 } else {
 require('./app.js');

 }

Read Deploying Node.js applications in production online: https://riptutorial.com/node-
js/topic/2975/deploying-node-js-applications-in-production

https://riptutorial.com/ 85

https://riptutorial.com/node-js/topic/2975/deploying-node-js-applications-in-production
https://riptutorial.com/node-js/topic/2975/deploying-node-js-applications-in-production

Chapter 24: ECMAScript 2015 (ES6) with
Node.js

Examples

const/let declarations

Unlike var, const/let are bound to lexical scope rather than function scope.

{
 var x = 1 // will escape the scope
 let y = 2 // bound to lexical scope
 const z = 3 // bound to lexical scope, constant
}

console.log(x) // 1
console.log(y) // ReferenceError: y is not defined
console.log(z) // ReferenceError: z is not defined

Run in RunKit

Arrow functions

Arrow functions automatically bind to the 'this' lexical scope of the surrounding code.

performSomething(result => {
 this.someVariable = result
})

vs

performSomething(function(result) {
 this.someVariable = result
}.bind(this))

Arrow Function Example

Let's consider this example, that outputs the squares of the numbers 3, 5, and 7:

let nums = [3, 5, 7]
let squares = nums.map(function (n) {
 return n * n
})
console.log(squares)

Run in RunKit

The function passed to .map can also be written as arrow function by removing the function

https://riptutorial.com/ 86

https://runkit.com/594bb4eaaac7e6001294132c/595433650a7efc0011ffcf09
https://runkit.com/594bb4eaaac7e6001294132c/595611661cba570012815901

keyword and instead adding the arrow =>:

let nums = [3, 5, 7]
let squares = nums.map((n) => {
 return n * n
})
console.log(squares)

Run in RunKit

However, this can be written even more concise. If the function body consists of only one
statement and that statement computes the return value, the curly braces of wrapping the function
body can be removed, as well as the return keyword.

let nums = [3, 5, 7]
let squares = nums.map(n => n * n)
console.log(squares)

Run in RunKit

destructuring

 let [x,y, ...nums] = [0, 1, 2, 3, 4, 5, 6];
console.log(x, y, nums);

let {a, b, ...props} = {a:1, b:2, c:3, d:{e:4}}
console.log(a, b, props);

let dog = {name: 'fido', age: 3};
let {name:n, age} = dog;
console.log(n, age);

flow

/* @flow */

function product(a: number, b: number){
 return a * b;
}

const b = 3;
let c = [1,2,3,,{}];
let d = 3;

import request from 'request';

request('http://dev.markitondemand.com/MODApis/Api/v2/Quote/json?symbol=AAPL', (err, res,
payload)=>{
 payload = JSON.parse(payload);
 let {LastPrice} = payload;
 console.log(LastPrice);
});

https://riptutorial.com/ 87

https://runkit.com/594bb4eaaac7e6001294132c/595613101cba570012815999
https://runkit.com/594bb4eaaac7e6001294132c/59561361f9fe430012c7ab34

ES6 Class

class Mammel {
 constructor(legs){
 this.legs = legs;
 }
 eat(){
 console.log('eating...');
 }
 static count(){
 console.log('static count...');
 }
}

class Dog extends Mammel{
 constructor(name, legs){
 super(legs);
 this.name = name;
 }
 sleep(){
 super.eat();
 console.log('sleeping');
 }
}

let d = new Dog('fido', 4);
d.sleep();
d.eat();
console.log('d', d);

Read ECMAScript 2015 (ES6) with Node.js online: https://riptutorial.com/node-
js/topic/6732/ecmascript-2015--es6--with-node-js

https://riptutorial.com/ 88

https://riptutorial.com/node-js/topic/6732/ecmascript-2015--es6--with-node-js
https://riptutorial.com/node-js/topic/6732/ecmascript-2015--es6--with-node-js

Chapter 25: Environment

Examples

Accessing environment variables

The process.env property returns an object containing the user environment.

It returns an object like this one :

{
 TERM: 'xterm-256color',
 SHELL: '/usr/local/bin/bash',
 USER: 'maciej',
 PATH: '~/.bin/:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin',
 PWD: '/Users/maciej',
 EDITOR: 'vim',
 SHLVL: '1',
 HOME: '/Users/maciej',
 LOGNAME: 'maciej',
 _: '/usr/local/bin/node'
}

process.env.HOME // '/Users/maciej'

If you set environment variable FOO to foobar, it will be accessible with:

process.env.FOO // 'foobar'

process.argv command line arguments

process.argv is an array containing the command line arguments. The first element will be node,
the second element will be the name of the JavaScript file. The next elements will be any
additional command line arguments.

Code Example:

Output sum of all command line arguments

index.js

var sum = 0;
for (i = 2; i < process.argv.length; i++) {
 sum += Number(process.argv[i]);
}

console.log(sum);

Usage Exaple:

https://riptutorial.com/ 89

https://nodejs.org/docs/latest/api/process.html#process_process_argv

node index.js 2 5 6 7

Output will be 20

A brief explanation of the code:

Here in for loop for (i = 2; i < process.argv.length; i++) loop begins with 2 because first two
elements in process.argv array always is ['path/to/node.exe', 'path/to/js/file', ...]

Converting to number Number(process.argv[i]) because elements in process.argv array always is
string

Using different Properties/Configuration for different environments like dev,
qa, staging etc.

Large scale applications often need different properties when running on different environments.
we can achieve this by passing arguments to NodeJs application and using same argument in
node process to load specific environment property file.

Suppose we have two property files for different environment.

dev.json

 {
 PORT : 3000,
 DB : {
 host : "localhost",
 user : "bob",
 password : "12345"
 }
 }

•

qa.json

 {
 PORT : 3001,
 DB : {
 host : "where_db_is_hosted",
 user : "bob",
 password : "54321"
 }
 }

•

Following code in application will export respective property file which we want to use.

Suppose the code is in environment.js

process.argv.forEach(function (val, index, array) {

https://riptutorial.com/ 90

 var arg = val.split("=");
 if (arg.length > 0) {
 if (arg[0] === 'env') {
 var env = require('./' + arg[1] + '.json');
 module.exports = env;
 }
 }
});

We give arguments to the application like following

node app.js env=dev

if we are using process manager like forever than it as simple as

forever start app.js env=dev

How to use the configuration file

 var env= require("environment.js");

Loading environment properties from a "property file"

Install properties reader:•

npm install properties-reader --save

Create a directory env to store your properties files:•

mkdir env

Create environments.js:•

process.argv.forEach(function (val, index, array) {
 var arg = val.split("=");
 if (arg.length > 0) {
 if (arg[0] === 'env') {
 var env = require('./env/' + arg[1] + '.properties');
 module.exports = env;
 }
 }
});

Sample development.properties properties file:•

Dev properties
[main]
Application port to run the node server
app.port=8080

[database]

https://riptutorial.com/ 91

Database connection to mysql
mysql.host=localhost
mysql.port=2500
...

Sample usage of the loaded properties:•

var enviorment = require('./environments');
var PropertiesReader = require('properties-reader');
var properties = new PropertiesReader(enviorment);

var someVal = properties.get('main.app.port');

Starting the express server•

npm start env=development

or

npm start env=production

Read Environment online: https://riptutorial.com/node-js/topic/2340/environment

https://riptutorial.com/ 92

https://riptutorial.com/node-js/topic/2340/environment

Chapter 26: Event Emitters

Remarks

When an event "fires" (which means the same as "publishing an event" or "emitting an event"),
each listener will be called synchronously (source), along with any accompanying data that was
passed in to emit(), no matter how many arguments you pass in:

myDog.on('bark', (howLoud, howLong, howIntense) => {
 // handle the event
})
myDog.emit('bark', 'loudly', '5 seconds long', 'fiercely')

The listeners will be called in the order they were registered:

myDog.on('urinate', () => console.log('My first thought was "Oh-no"'))
myDog.on('urinate', () => console.log('My second thought was "Not my lawn :)"'))
myDog.emit('urinate')
// The console.logs will happen in the right order because they were registered in that order.

But if you need a listener to fire first, before all of the other listeners that have already been added,
you can use prependListener() like so:

myDog.prependListener('urinate', () => console.log('This happens before my first and second
thoughts, even though it was registered after them'))

If you need to listen to an event, but you only want to hear about it once, you can use once instead
of on, or prependOnceListener instead of prependListener. After the event is fired and the listener gets
called, the listener will automatically be removed, and won't be called again the next time the
event is fired.

Finally, if you want to remove all of the listeners and start over, feel free to do just that:

myDog.removeAllListeners()

Examples

HTTP Analytics through an Event Emitter

In the HTTP server code (e.g. server.js):

const EventEmitter = require('events')
const serverEvents = new EventEmitter()

// Set up an HTTP server
const http = require('http')
const httpServer = http.createServer((request, response) => {

https://riptutorial.com/ 93

https://nodejs.org/dist/latest-v6.x/docs/api/events.html#events_asynchronous_vs_synchronous

 // Handler the request...
 // Then emit an event about what happened
 serverEvents.emit('request', request.method, request.url)
});

// Expose the event emitter
module.exports = serverEvents

In supervisor code (e.g. supervisor.js):

const server = require('./server.js')
// Since the server exported an event emitter, we can listen to it for changes:
server.on('request', (method, url) => {
 console.log(`Got a request: ${method} ${url}`)
})

Whenever the server gets a request, it will emit an event called request which the supervisor is
listening for, and then the supervisor can react to the event.

Basics

Event Emitters are built into Node, and are for pub-sub, a pattern where a publisher will emit
events, which subscribers can listen and react to. In Node jargon, publishers are called Event
Emitters, and they emit events, while subscribers are called listeners, and they react to the events.

// Require events to start using them
const EventEmitter = require('events').EventEmitter;
// Dogs have events to publish, or emit
class Dog extends EventEmitter {};
class Food {};

let myDog = new Dog();

// When myDog is chewing, run the following function
myDog.on('chew', (item) => {
 if (item instanceof Food) {
 console.log('Good dog');
 } else {
 console.log(`Time to buy another ${item}`);
 }
});

myDog.emit('chew', 'shoe'); // Will result in console.log('Time to buy another shoe')
const bacon = new Food();
myDog.emit('chew', bacon); // Will result in console.log('Good dog')

In the above example, the dog is the publisher/EventEmitter, while the function that checks the
item was the subscriber/listener. You can make more listeners too:

myDog.on('bark', () => {
 console.log('WHO\'S AT THE DOOR?');
 // Panic
});

https://riptutorial.com/ 94

There can also be multiple listeners for a single event, and even remove listeners:

myDog.on('chew', takeADeepBreathe);
myDog.on('chew', calmDown);
// Undo the previous line with the next one:
myDog.removeListener('chew', calmDown);

If you want to listen to a event only once, you can use:

myDog.once('chew', pet);

Which will remove the listener automatically without race conditions.

Get the names of the events that are subscribed to

The function EventEmitter.eventNames() will return an array containing the names of the events
currently subscribed to.

const EventEmitter = require("events");
class MyEmitter extends EventEmitter{}

var emitter = new MyEmitter();

emitter
.on("message", function(){ //listen for message event
 console.log("a message was emitted!");
})
.on("message", function(){ //listen for message event
 console.log("this is not the right message");
})
.on("data", function(){ //listen for data event
 console.log("a data just occured!!");
});

console.log(emitter.eventNames()); //=> ["message","data"]
emitter.removeAllListeners("data");//=> removeAllListeners to data event
console.log(emitter.eventNames()); //=> ["message"]

Run in RunKit

Get the number of listeners registered to listen for a specific event

The function Emitter.listenerCount(eventName) will return the number of listeners that are
currently listening for the event provided as argument

const EventEmitter = require("events");
class MyEmitter extends EventEmitter{}
var emitter = new MyEmitter();

emitter
.on("data", ()=>{ // add listener for data event
 console.log("data event emitter");
});

https://riptutorial.com/ 95

https://runkit.com/594bb4eaaac7e6001294132c/594bb635aac7e600129413e7

console.log(emitter.listenerCount("data")) // => 1
console.log(emitter.listenerCount("message")) // => 0

emitter.on("message", function mListener(){ //add listener for message event
 console.log("message event emitted");
});
console.log(emitter.listenerCount("data")) // => 1
console.log(emitter.listenerCount("message")) // => 1

emitter.once("data", (stuff)=>{ //add another listener for data event
 console.log(`Tell me my ${stuff}`);
})

console.log(emitter.listenerCount("data")) // => 2
console.log(emitter.listenerCount("message"))// => 1

Read Event Emitters online: https://riptutorial.com/node-js/topic/1623/event-emitters

https://riptutorial.com/ 96

https://riptutorial.com/node-js/topic/1623/event-emitters

Chapter 27: Eventloop

Introduction

In this post we are going to discuss how the concept of Eventloop emerged and how it can be
used for high performance servers and event driven applications like GUIs.

Examples

How the concept of event loop evolved.

Eventloop in pseudo code

An event loop is a loop that waits for events and then reacts to those events

while true:
 wait for something to happen
 react to whatever happened

Example of a single-threaded HTTP server
with no event loop

 while true:
 socket = wait for the next TCP connection
 read the HTTP request headers from (socket)
 file_contents = fetch the requested file from disk
 write the HTTP response headers to (socket)
 write the (file_contents) to (socket)
 close(socket)

Here's a simple form of a HTTP server which is a single threaded but no event loop. The problem
here is that it waits until each request is finished before starting to process the next one. If it takes
a while to read the HTTP request headers or to fetch the file from disk, we should be able to start
processing the next request while we wait for that to finish.

The most common solution is to make the program multi-threaded.

Example of a multi-threaded HTTP server
with no event loop

https://riptutorial.com/ 97

function handle_connection(socket):
 read the HTTP request headers from (socket)
 file_contents = fetch the requested file from disk
 write the HTTP response headers to (socket)
 write the (file_contents) to (socket)
 close(socket)
while true:
 socket = wait for the next TCP connection
 spawn a new thread doing handle_connection(socket)

Now we have made our little HTTP server multi threaded. This way, we can immediately move on
to the next request because the current request is running in a background thread. Many servers,
including Apache, use this approach.

But it's not perfect. One limitation is that you can only spawn so many threads. For workloads
where you have a huge number of connections, but each connection only requires attention every
once in a while, the multi-threaded model won't perform very well. The solution for those cases is
to use an event loop:

Example of a HTTP server with event loop

while true:
 event = wait for the next event to happen
 if (event.type == NEW_TCP_CONNECTION):
 conn = new Connection
 conn.socket = event.socket
 start reading HTTP request headers from (conn.socket) with userdata = (conn)
 else if (event.type == FINISHED_READING_FROM_SOCKET):
 conn = event.userdata
 start fetching the requested file from disk with userdata = (conn)
 else if (event.type == FINISHED_READING_FROM_DISK):
 conn = event.userdata
 conn.file_contents = the data we fetched from disk
 conn.current_state = "writing headers"
 start writing the HTTP response headers to (conn.socket) with userdata = (conn)
 else if (event.type == FINISHED_WRITING_TO_SOCKET):
 conn = event.userdata
 if (conn.current_state == "writing headers"):
 conn.current_state = "writing file contents"
 start writing (conn.file_contents) to (conn.socket) with userdata = (conn)
 else if (conn.current_state == "writing file contents"):
 close(conn.socket)

Hopefully this pseudocode is intelligible. Here's what's going on: We wait for things to happen.
Whenever a new connection is created or an existing connection needs our attention, we go deal
with it, then go back to waiting. That way, we perform well when there are many connections and
each one only rarely requires attention.

In a real application (not pseudocode) running on Linux, the "wait for the next event to happen"
part would be implemented by calling the poll() or epoll() system call. The "start reading/writing
something to a socket" parts would be implemented by calling the recv() or send() system calls in
non-blocking mode.

https://riptutorial.com/ 98

Reference:

[1]. "How does an event loop work?" [Online]. Available : https://www.quora.com/How-does-an-
event-loop-work

Read Eventloop online: https://riptutorial.com/node-js/topic/8652/eventloop

https://riptutorial.com/ 99

https://www.quora.com/How-does-an-event-loop-work
https://www.quora.com/How-does-an-event-loop-work
https://riptutorial.com/node-js/topic/8652/eventloop

Chapter 28: Exception handling

Examples

Handling Exception In Node.Js

Node.js has 3 basic ways to handle exceptions/errors:

try-catch block1.
error as the first argument to a callback2.
emit an error event using eventEmitter3.

try-catch is used to catch the exceptions thrown from the synchronous code execution. If the
caller (or the caller's caller, ...) used try/catch, then they can catch the error. If none of the callers
had try-catch than the program crashes.
If using try-catch on an async operation and exception was thrown from callback of async method
than it will not get caught by try-catch. To catch an exception from async operation callback, it is
preferred to use promises.
Example to understand it better

// ** Example - 1 **
function doSomeSynchronousOperation(req, res) {
 if(req.body.username === ''){
 throw new Error('User Name cannot be empty');
 }
 return true;
}

// calling the method above
try {
 // synchronous code
 doSomeSynchronousOperation(req, res)
catch(e) {
 //exception handled here
 console.log(e.message);
}

// ** Example - 2 **
function doSomeAsynchronousOperation(req, res, cb) {
 // imitating async operation
 return setTimeout(function(){
 cb(null, []);
 },1000);
}

try {
 // asynchronous code
 doSomeAsynchronousOperation(req, res, function(err, rs){
 throw new Error("async operation exception");
 })
} catch(e) {
 // Exception will not get handled here
 console.log(e.message);

https://riptutorial.com/ 100

}
// The exception is unhandled and hence will cause application to break

callbacks are mostly used in Node.js as callback delivers an event asynchronously. The user
passes you a function (the callback), and you invoke it sometime later when the asynchronous
operation completes.
The usual pattern is that the callback is invoked as a callback(err, result), where only one of err
and result is non-null, depending on whether the operation succeeded or failed.

function doSomeAsynchronousOperation(req, res, callback) {
 setTimeout(function(){
 return callback(new Error('User Name cannot be empty'));
 }, 1000);
 return true;
}

doSomeAsynchronousOperation(req, res, function(err, result) {
 if (err) {
 //exception handled here
 console.log(err.message);
 }

 //do some stuff with valid data
});

emit For more complicated cases, instead of using a callback, the function itself can return an
EventEmitter object, and the caller would be expected to listen for error events on the emitter.

const EventEmitter = require('events');

function doSomeAsynchronousOperation(req, res) {
 let myEvent = new EventEmitter();

 // runs asynchronously
 setTimeout(function(){
 myEvent.emit('error', new Error('User Name cannot be empty'));
 }, 1000);

 return myEvent;
}

// Invoke the function
let event = doSomeAsynchronousOperation(req, res);

event.on('error', function(err) {
 console.log(err);
});

event.on('done', function(result) {
 console.log(result); // true
});

Unhanded Exception Management

Because Node.js runs on a single process uncaught exceptions are an issue to be aware of when

https://riptutorial.com/ 101

developing applications.

Silently Handling Exceptions

Most of the people let node.js server(s) silently swallow up the errors.

Silently handling the exception•

process.on('uncaughtException', function (err) {
 console.log(err);
});

This is bad, it will work but:

Root cause will remains unknown, as such will not contribute to resolution of what caused
the Exception (Error).

•

In case of database connection (pool) gets closed for some reason this will result in
constant propagation of errors, meaning that server will be running but it will not reconnect to
db.

•

Returning to Initial state

In case of an " uncaughtException " it is good to restart the server and return it to its initial state,
where we know it will work. Exception is logged, application is terminated but since it will be
running in a container that will make sure that the server is running we will achieve restarting of
the server (returning to the initial working state) .

Installing the forever (or other CLI tool to make sure that node server runs continuously)•

npm install forever -g

Starting the server in forever•

forever start app.js

Reason why is it started and why we use forever is after the server is terminated
forever process will start the server again.

Restarting the server•

process.on('uncaughtException', function (err) {
 console.log(err);

 // some logging mechanisam
 //

 process.exit(1); // terminates process

https://riptutorial.com/ 102

});

On a side note there was a way also to handle exceptions with Clusters and Domains.

Domains are deprecated more information here.

Errors and Promises

Promises handle errors differently to synchronous or callback-driven code.

const p = new Promise(function (resolve, reject) {
 reject(new Error('Oops'));
});

// anything that is `reject`ed inside a promise will be available through catch
// while a promise is rejected, `.then` will not be called
p
 .then(() => {
 console.log("won't be called");
 })
 .catch(e => {
 console.log(e.message); // output: Oops
 })
 // once the error is caught, execution flow resumes
 .then(() => {
 console.log('hello!'); // output: hello!
 });

currently, errors thrown in a promise that are not caught results in the error being swallowed,
which can make it difficult to track down the error. This can be solved using linting tools like eslint
or by ensuring you always have a catch clause.

This behaviour is deprecated in node 8 in favour of terminating the node process.

Read Exception handling online: https://riptutorial.com/node-js/topic/2819/exception-handling

https://riptutorial.com/ 103

https://nodejs.org/api/domain.html
https://www.npmjs.com/package/eslint-plugin-promise
http://eslint.org/
https://nodejs.org/dist/latest-v8.x/docs/api/deprecations.html#deprecations_dep0018_unhandled_promise_rejections
https://riptutorial.com/node-js/topic/2819/exception-handling

Chapter 29: Executing files or commands
with Child Processes

Syntax

child_process.exec(command[, options][, callback])•
child_process.execFile(file[, args][, options][, callback])•
child_process.fork(modulePath[, args][, options])•
child_process.spawn(command[, args][, options])•
child_process.execFileSync(file[, args][, options])•
child_process.execSync(command[, options])•
child_process.spawnSync(command[, args][, options])•

Remarks

When dealing with child processes, all of the asynchronous methods will return an instance of
ChildProcess, while all the synchronous versions will return the output of whatever was run. Like
other synchronous operations in Node.js, if an error occurs, it will throw.

Examples

Spawning a new process to execute a command

To spawn a new process in which you need unbuffered output (e.g. long-running processes which
might print output over a period of time rather than printing and exiting immediately), use
child_process.spawn().

This method spawns a new process using a given command and an array of arguments. The
return value is an instance of ChildProcess, which in turn provides the stdout and stderr properties.
Both of those streams are instances of stream.Readable.

The following code is equivalent to using running the command ls -lh /usr.

const spawn = require('child_process').spawn;
const ls = spawn('ls', ['-lh', '/usr']);

ls.stdout.on('data', (data) => {
 console.log(`stdout: ${data}`);
});

ls.stderr.on('data', (data) => {
 console.log(`stderr: ${data}`);
});

ls.on('close', (code) => {
 console.log(`child process exited with code ${code}`);

https://riptutorial.com/ 104

https://nodejs.org/api/child_process.html#child_process_class_childprocess
https://nodejs.org/dist/latest/docs/api/child_process.html#child_process_class_childprocess
https://nodejs.org/dist/latest/docs/api/stream.html#stream_class_stream_readable

});

Another example command:

zip -0vr "archive" ./image.png

Might be written as:

spawn('zip', ['-0vr', '"archive"', './image.png']);

Spawning a shell to execute a command

To run a command in a shell, in which you required buffered output (i.e. it is not a stream), use
child_process.exec. For example, if you wanted to run the command cat *.js file | wc -l, with no
options, that would look like this:

const exec = require('child_process').exec;
exec('cat *.js file | wc -l', (err, stdout, stderr) => {
 if (err) {
 console.error(`exec error: ${err}`);
 return;
 }

 console.log(`stdout: ${stdout}`);
 console.log(`stderr: ${stderr}`);
});

The function accepts up to three parameters:

child_process.exec(command[, options][, callback]);

The command parameter is a string, and is required, while the options object and callback are
both optional. If no options object is specified, then exec will use the following as a default:

{
 encoding: 'utf8',
 timeout: 0,
 maxBuffer: 200*1024,
 killSignal: 'SIGTERM',
 cwd: null,
 env: null
}

The options object also supports a shell parameter, which is by default /bin/sh on UNIX and
cmd.exe on Windows, a uid option for setting the user identity of the process, and a gid option for
the group identity.

The callback, which is called when the command is done executing, is called with the three
arguments (err, stdout, stderr). If the command executes successfully, err will be null,
otherwise it will be an instance of Error, with err.code being the exit code of the process and
err.signal

https://riptutorial.com/ 105

being the signal that was sent to terminate it.

The stdout and stderr arguments are the output of the command. It is decoded with the encoding
specified in the options object (default: string), but can otherwise be returned as a Buffer object.

There also exists a synchronous version of exec, which is execSync. The synchronous version does
not take a callback, and will return stdout instead of an instance of ChildProcess. If the synchronous
version encounters an error, it will throw and halt your program. It looks like this:

const execSync = require('child_process').execSync;
const stdout = execSync('cat *.js file | wc -l');
console.log(`stdout: ${stdout}`);

Spawning a process to run an executable

If you are looking to run a file, such as an executable, use child_process.execFile. Instead of
spawning a shell like child_process.exec would, it will directly create a new process, which is
slightly more efficient than running a command. The function can be used like so:

const execFile = require('child_process').execFile;
const child = execFile('node', ['--version'], (err, stdout, stderr) => {
 if (err) {
 throw err;
 }

 console.log(stdout);
});

Unlike child_process.exec, this function will accept up to four parameters, where the second
parameter is an array of arguments you'd like to supply to the executable:

child_process.execFile(file[, args][, options][, callback]);

Otherwise, the options and callback format are otherwise identical to child_process.exec. The
same goes for the synchronous version of the function:

const execFileSync = require('child_process').execFileSync;
const stdout = execFileSync('node', ['--version']);
console.log(stdout);

Read Executing files or commands with Child Processes online: https://riptutorial.com/node-
js/topic/2726/executing-files-or-commands-with-child-processes

https://riptutorial.com/ 106

https://riptutorial.com/node-js/topic/2726/executing-files-or-commands-with-child-processes
https://riptutorial.com/node-js/topic/2726/executing-files-or-commands-with-child-processes

Chapter 30: Exporting and Consuming
Modules

Remarks

While everything in Node.js is generally done asynchronously, require() is not one of those things.
Since modules in practice only need to be loaded once, it is a blocking operation and should be
used properly.

Modules are cached after the first time they are loaded. Should you be editing a module in
development, you will need to delete its entry in the module cache in order to use new changes.
That being said, even if a module is cleared out of the module cache, the module itself is not
garbage collected, so care should be taken for its use in production environments.

Examples

Loading and using a module

A module can be "imported", or otherwise "required" by the require() function. For example, to
load the http module that ships with Node.js, the following can be used:

const http = require('http');

Aside from modules that are shipped with the runtime, you can also require modules that you have
installed from npm, such as express. If you had already installed express on your system via npm
install express, you could simply write:

const express = require('express');

You can also include modules that you have written yourself as part of your application. In this
case, to include a file named lib.js in the same directory as current file:

const mylib = require('./lib');

Note that you can omit the extension, and .js will be assumed. Once you load a module, the
variable is populated with an object that contains the methods and properties published from the
required file. A full example:

const http = require('http');

// The `http` module has the property `STATUS_CODES`
console.log(http.STATUS_CODES[404]); // outputs 'Not Found'

// Also contains `createServer()`
http.createServer(function(req, res) {

https://riptutorial.com/ 107

 res.writeHead(200, {'Content-Type': 'text/html'});
 res.write('<html><body>Module Test</body></html>');
 res.end();
}).listen(80);

Creating a hello-world.js module

Node provides the module.exports interface to expose functions and variables to other files. The
most simple way to do so is to export only one object (function or variable), as shown in the first
example.

hello-world.js

module.exports = function(subject) {
 console.log('Hello ' + subject);
};

If we don't want the entire export to be a single object, we can export functions and variables as
properties of the exports object. The three following examples all demonstrate this in slightly
different ways :

hello-venus.js : the function definition is done separately then added as a property of
module.exports

•

hello-jupiter.js : the functions definitions are directly put as the value of properties of
module.exports

•

hello-mars.js : the function definition is directly declared as a property of exports which is a
short version of module.exports

•

hello-venus.js

function hello(subject) {
 console.log('Venus says Hello ' + subject);
}

module.exports = {
 hello: hello
};

hello-jupiter.js

module.exports = {
 hello: function(subject) {
 console.log('Jupiter says hello ' + subject);
 },

 bye: function(subject) {
 console.log('Jupiter says goodbye ' + subject);
 }
};

hello-mars.js

https://riptutorial.com/ 108

exports.hello = function(subject) {
 console.log('Mars says Hello ' + subject);
};

Loading module with directory name

We have a directory named hello which includes the following files:

index.js

// hello/index.js
module.exports = function(){
 console.log('Hej');
};

main.js

// hello/main.js
// We can include the other files we've defined by using the `require()` method
var hw = require('./hello-world.js'),
 hm = require('./hello-mars.js'),
 hv = require('./hello-venus.js'),
 hj = require('./hello-jupiter.js'),
 hu = require('./index.js');

// Because we assigned our function to the entire `module.exports` object, we
// can use it directly
hw('World!'); // outputs "Hello World!"

// In this case, we assigned our function to the `hello` property of exports, so we must
// use that here too
hm.hello('Solar System!'); // outputs "Mars says Hello Solar System!"

// The result of assigning module.exports at once is the same as in hello-world.js
hv.hello('Milky Way!'); // outputs "Venus says Hello Milky Way!"

hj.hello('Universe!'); // outputs "Jupiter says hello Universe!"
hj.bye('Universe!'); // outputs "Jupiter says goodbye Universe!"

hu(); //output 'hej'

Invalidating the module cache

In development, you may find that using require() on the same module multiple times always
returns the same module, even if you have made changes to that file. This is because modules
are cached the first time they are loaded, and any subsequent module loads will load from the
cache.

To get around this issue, you will have to delete the entry in the cache. For example, if you loaded
a module:

var a = require('./a');

https://riptutorial.com/ 109

You could then delete the cache entry:

var rpath = require.resolve('./a.js');
delete require.cache[rpath];

And then require the module again:

var a = require('./a');

Do note that this is not recommended in production because the delete will only delete the
reference to the loaded module, not the loaded data itself. The module is not garbage collected, so
improper use of this feature could lead to leaking memory.

Building your own modules

You can also reference an object to publicly export and continuously append methods to that
object:

const auth = module.exports = {}
const config = require('../config')
const request = require('request')

auth.email = function (data, callback) {
 // Authenticate with an email address
}

auth.facebook = function (data, callback) {
 // Authenticate with a Facebook account
}

auth.twitter = function (data, callback) {
 // Authenticate with a Twitter account
}

auth.slack = function (data, callback) {
 // Authenticate with a Slack account
}

auth.stack_overflow = function (data, callback) {
 // Authenticate with a Stack Overflow account
}

To use any of these, just require the module as you normally would:

const auth = require('./auth')

module.exports = function (req, res, next) {
 auth.facebook(req.body, function (err, user) {
 if (err) return next(err)

 req.user = user
 next()
 })
}

https://riptutorial.com/ 110

Every module injected only once

NodeJS executes the module only the first time you require it. Any further require functions will re-
use the same Object, thus not executing the code in the module another time. Also Node caches
the modules first time they are loaded using require. This reduces the number of file reads and
helps to speed up the application.

myModule.js

console.log(123) ;
exports.var1 = 4 ;

index.js

var a=require('./myModule') ; // Output 123
var b=require('./myModule') ; // No output
console.log(a.var1) ; // Output 4
console.log(b.var1) ; // Output 4
a.var2 = 5 ;
console.log(b.var2) ; // Output 5

Module loading from node_modules

Modules can be required without using relative paths by putting them in a special directory called
node_modules.

For example, to require a module called foo from a file index.js, you can use the following
directory structure:

index.js
 \- node_modules
 \- foo
 |- foo.js
 \- package.json

Modules should be placed inside a directory, along with a package.json file. The main field of the
package.json file should point to the entry point for your module--this is the file that is imported
when users do require('your-module'). main defaults to index.js if not provided. Alternatively, you
can refer to files relative to your module simply by appending the relative path to the require call:
require('your-module/path/to/file').

Modules can also be required from node_modules directories up the file system hierarchy. If we have
the following directory structure:

my-project
\- node_modules
 |- foo // the foo module
 \- ...
 \- baz // the baz module
 \- node_modules
 \- bar // the bar module

https://riptutorial.com/ 111

we will be able to require the module foo from any file within bar using require('foo').

Note that node will only match the module that is closest to the file in the filesystem hierarchy,
starting from (the file's current directory/node_modules). Node matches directories this way up to
the file system root.

You can either install new modules from the npm registry or other npm registries, or make your
own.

Folder as a module

Modules can be split across many .js files in the same folder. An example in a my_module folder:

function_one.js

module.exports = function() {
 return 1;
}

function_two.js

module.exports = function() {
 return 2;
}

index.js

exports.f_one = require('./function_one.js');
exports.f_two = require('./function_two.js');

A module like this one is used by referring to it by the folder name:

var split_module = require('./my_module');

Please note that if you required it by omitting ./ or any indication of a path to a folder from the
require function argument, Node will try to load a module from the node_modules folder.

Alternatively you can create in the same folder a package.json file with these contents:

{
 "name": "my_module",
 "main": "./your_main_entry_point.js"
}

This way you are not required to name the main module file "index".

Read Exporting and Consuming Modules online: https://riptutorial.com/node-
js/topic/547/exporting-and-consuming-modules

https://riptutorial.com/ 112

https://riptutorial.com/node-js/topic/547/exporting-and-consuming-modules
https://riptutorial.com/node-js/topic/547/exporting-and-consuming-modules

Chapter 31: Exporting and Importing Module
in node.js

Examples

Using a simple module in node.js

What is a node.js module (link to article):

A module encapsulates related code into a single unit of code. When creating a
module, this can be interpreted as moving all related functions into a file.

Now lets see an example. Imagine all files are in same directory:

File: printer.js

"use strict";

exports.printHelloWorld = function (){
 console.log("Hello World!!!");
}

Another way of using modules:

File animals.js

"use strict";

module.exports = {
 lion: function() {
 console.log("ROAARR!!!");
 }

};

File: app.js

Run this file by going to your directory and typing: node app.js

"use strict";

//require('./path/to/module.js') node which module to load
var printer = require('./printer');
var animals = require('./animals');

printer.printHelloWorld(); //prints "Hello World!!!"
animals.lion(); //prints "ROAARR!!!"

Using Imports In ES6

https://riptutorial.com/ 113

https://www.sitepoint.com/understanding-module-exports-exports-node-js/

Node.js is built against modern versions of V8. By keeping up-to-date with the latest releases of
this engine, we ensure new features from the JavaScript ECMA-262 specification are brought to
Node.js developers in a timely manner, as well as continued performance and stability
improvements.

All ECMAScript 2015 (ES6) features are split into three groups for shipping, staged, and in
progress features:

All shipping features, which V8 considers stable, are turned on by default on Node.js and do NOT
require any kind of runtime flag. Staged features, which are almost-completed features that are not
considered stable by the V8 team, require a runtime flag: --harmony. In progress features can be
activated individually by their respective harmony flag, although this is highly discouraged unless
for testing purposes. Note: these flags are exposed by V8 and will potentially change without any
deprecation notice.

Currently ES6 supports import statements natively Refer here

So if we have a file called fun.js…

export default function say(what){
 console.log(what);
}

export function sayLoud(whoot) {
 say(whoot.toUpperCase());
}

…and if there was another file named app.js where we want to put our previously defined
functions to use, there are three ways how to import them.

Import default

import say from './fun';
say('Hello Stack Overflow!!'); // Output: Hello Stack Overflow!!

Imports the say() function because it is marked as the default export in the source file (export
default …)

Named imports

import { sayLoud } from './fun';
sayLoud('JS modules are awesome.'); // Output: JS MODULES ARE AWESOME.

Named imports allow us to import exactly the parts of a module we actually need. We do this by
explicitly naming them. In our case by naming sayLoud in curly brackets within the import
statement.

Bundled import

import * as i from './fun';

https://riptutorial.com/ 114

https://developer.mozilla.org/en/docs/web/javascript/reference/statements/import

i.say('What?'); // Output: What?
i.sayLoud('Whoot!'); // Output: WHOOT!

If we want to have it all, this is the way to go. By using the syntax * as i we have the import
statement provide us with an object i that holds all exports of our fun module as correspondingly
named properties.

Paths

Keep in mind that you have to explicitly mark your import paths as relative paths even if the file to
be imported resided in the same directory like the file you are importing into by using ./. Imports
from unprefixed paths like

import express from 'express';

will be looked up in the local and global node_modules folders and will throw an error if no matching
modules are found.

Exporting with ES6 syntax

This is the equivalent of the other example but using ES6 instead.

export function printHelloWorld() {
 console.log("Hello World!!!");
}

Read Exporting and Importing Module in node.js online: https://riptutorial.com/node-
js/topic/1173/exporting-and-importing-module-in-node-js

https://riptutorial.com/ 115

http://www.riptutorial.com/node-js/example/3787/using-a-simple-module-in-node-js
https://riptutorial.com/node-js/topic/1173/exporting-and-importing-module-in-node-js
https://riptutorial.com/node-js/topic/1173/exporting-and-importing-module-in-node-js

Chapter 32: File upload

Examples

Single File Upload using multer

Remember to

create folder for upload (uploads in example).•
install multer npm i -S multer•

server.js:

var express = require("express");
var multer = require('multer');
var app = express();
var fs = require('fs');

app.get('/',function(req,res){
 res.sendFile(__dirname + "/index.html");
});

var storage = multer.diskStorage({
 destination: function (req, file, callback) {
 fs.mkdir('./uploads', function(err) {
 if(err) {
 console.log(err.stack)
 } else {
 callback(null, './uploads');
 }
 })
 },
 filename: function (req, file, callback) {
 callback(null, file.fieldname + '-' + Date.now());
 }
});

app.post('/api/file',function(req,res){
 var upload = multer({ storage : storage}).single('userFile');
 upload(req,res,function(err) {
 if(err) {
 return res.end("Error uploading file.");
 }
 res.end("File is uploaded");
 });
});

app.listen(3000,function(){
 console.log("Working on port 3000");
});

index.html:

<form id = "uploadForm"

https://riptutorial.com/ 116

 enctype = "multipart/form-data"
 action = "/api/file"
 method = "post"
>
<input type="file" name="userFile" />
<input type="submit" value="Upload File" name="submit">
</form>

Note:

To upload file with extension you can use Node.js path built-in library

For that just require path to server.js file:

var path = require('path');

and change:

callback(null, file.fieldname + '-' + Date.now());

adding a file extension in the following way:

callback(null, file.fieldname + '-' + Date.now() + path.extname(file.originalname));

How to filter upload by extension:

In this example, view how to upload files to allow only certain extensions.

For example only images extensions. Just add to var upload = multer({ storage :
storage}).single('userFile'); fileFilter condition

var upload = multer({
 storage: storage,
 fileFilter: function (req, file, callback) {
 var ext = path.extname(file.originalname);
 if(ext !== '.png' && ext !== '.jpg' && ext !== '.gif' && ext !== '.jpeg') {
 return callback(new Error('Only images are allowed'))
 }
 callback(null, true)
 }
}).single('userFile');

Now you can upload only image files with png, jpg, gif or jpeg extensions

Using formidable module

Install module and read docs

https://riptutorial.com/ 117

https://nodejs.org/api/path.html#path_path
https://github.com/felixge/node-formidable

npm i formidable@latest

Example of server on 8080 port

var formidable = require('formidable'),
 http = require('http'),
 util = require('util');

http.createServer(function(req, res) {
 if (req.url == '/upload' && req.method.toLowerCase() == 'post') {
 // parse a file upload
 var form = new formidable.IncomingForm();

 form.parse(req, function(err, fields, files) {
 if (err)
 do-smth; // process error

 // Copy file from temporary place
 // var fs = require('fs');
 // fs.rename(file.path, <targetPath>, function (err) { ... });

 // Send result on client
 res.writeHead(200, {'content-type': 'text/plain'});
 res.write('received upload:\n\n');
 res.end(util.inspect({fields: fields, files: files}));
 });

 return;
 }

 // show a file upload form
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(
 '<form action="/upload" enctype="multipart/form-data" method="post">'+
 '<input type="text" name="title">
'+
 '<input type="file" name="upload" multiple="multiple">
'+
 '<input type="submit" value="Upload">'+
 '</form>'
);
}).listen(8080);

Read File upload online: https://riptutorial.com/node-js/topic/4080/file-upload

https://riptutorial.com/ 118

https://riptutorial.com/node-js/topic/4080/file-upload

Chapter 33: Filesystem I/O

Remarks

In Node.js, resource intensive operations such as I/O are performed asynchronously, but have a
synchronous counterpart (e.g. there exists a fs.readFile and its counterpart is fs.readFileSync).
Since Node is single-threaded, you should be careful when using synchronous operations,
because they will block the entire process.

If a process is blocked by a synchronous operation, the entire execution cycle (including the event
loop) is halted. That means other asynchronous code, including events and event handlers, will
not run and your program will continue to wait until the single blocking operation has completed.

There are appropriate uses for both synchronous and asynchronous operations, but care must be
taken that they are utilized properly.

Examples

Writing to a file using writeFile or writeFileSync

var fs = require('fs');

// Save the string "Hello world!" in a file called "hello.txt" in
// the directory "/tmp" using the default encoding (utf8).
// This operation will be completed in background and the callback
// will be called when it is either done or failed.
fs.writeFile('/tmp/hello.txt', 'Hello world!', function(err) {
 // If an error occurred, show it and return
 if(err) return console.error(err);
 // Successfully wrote to the file!
});

// Save binary data to a file called "binary.txt" in the current
// directory. Again, the operation will be completed in background.
var buffer = new Buffer([0x48, 0x65, 0x6c, 0x6c, 0x6f]);
fs.writeFile('binary.txt', buffer, function(err) {
 // If an error occurred, show it and return
 if(err) return console.error(err);
 // Successfully wrote binary contents to the file!
});

fs.writeFileSync behaves similarly to fs.writeFile, but does not take a callback as it completes
synchronously and therefore blocks the main thread. Most node.js developers prefer the
asynchronous variants which will cause virtually no delay in the program execution.

Note: Blocking the main thread is bad practice in node.js. Synchronous function should only be
used when debugging or when no other options are availables.

// Write a string to another file and set the file mode to 0755

https://riptutorial.com/ 119

try {
 fs.writeFileSync('sync.txt', 'anni', { mode: 0o755 });
} catch(err) {
 // An error occurred
 console.error(err);
}

Asynchronously Read from Files

Use the filesystem module for all file operations:

const fs = require('fs');

With Encoding

In this example, read hello.txt from the directory /tmp. This operation will be completed in the
background and the callback occurs on completion or failure:

fs.readFile('/tmp/hello.txt', { encoding: 'utf8' }, (err, content) => {
 // If an error occurred, output it and return
 if(err) return console.error(err);

 // No error occurred, content is a string
 console.log(content);
});

Without Encoding

Read the binary file binary.txt from the current directory, asynchronously in the background. Note
that we do not set the 'encoding' option - this prevents Node.js from decoding the contents into a
string:

fs.readFile('binary', (err, binaryContent) => {
 // If an error occurred, output it and return
 if(err) return console.error(err);

 // No error occurred, content is a Buffer, output it in
 // hexadecimal representation.
 console.log(content.toString('hex'));
});

Relative paths

Keep in mind that, in general case, your script could be run with an arbitrary current working
directory. To address a file relative to the current script, use __dirname or __filename:

fs.readFile(path.resolve(__dirname, 'someFile'), (err, binaryContent) => {
 //Rest of Function

https://riptutorial.com/ 120

}

Listing Directory Contents with readdir or readdirSync

const fs = require('fs');

// Read the contents of the directory /usr/local/bin asynchronously.
// The callback will be invoked once the operation has either completed
// or failed.
fs.readdir('/usr/local/bin', (err, files) => {
 // On error, show it and return
 if(err) return console.error(err);

 // files is an array containing the names of all entries
 // in the directory, excluding '.' (the directory itself)
 // and '..' (the parent directory).

 // Display directory entries
 console.log(files.join(' '));
});

A synchronous variant is available as readdirSync which blocks the main thread and therefore
prevents execution of asynchronous code at the same time. Most developers avoid synchronous
IO functions in order to improve performance.

let files;

try {
 files = fs.readdirSync('/var/tmp');
} catch(err) {
 // An error occurred
 console.error(err);
}

Using a generator

const fs = require('fs');

// Iterate through all items obtained via
// 'yield' statements
// A callback is passed to the generator function because it is required by
// the 'readdir' method
function run(gen) {
 var iter = gen((err, data) => {
 if (err) { iter.throw(err); }

 return iter.next(data);
 });

 iter.next();
}

const dirPath = '/usr/local/bin';

// Execute the generator function

https://riptutorial.com/ 121

run(function* (resume) {
 // Emit the list of files in the directory from the generator
 var contents = yield fs.readdir(dirPath, resume);
 console.log(contents);
});

Reading from a file synchronously

For any file operations, you will need the filesystem module:

const fs = require('fs');

Reading a String

fs.readFileSync behaves similarly to fs.readFile, but does not take a callback as it completes
synchronously and therefore blocks the main thread. Most node.js developers prefer the
asynchronous variants which will cause virtually no delay in the program execution.

If an encoding option is specified, a string will be returned, otherwise a Buffer will be returned.

// Read a string from another file synchronously
let content;
try {
 content = fs.readFileSync('sync.txt', { encoding: 'utf8' });
} catch(err) {
 // An error occurred
 console.error(err);
}

Deleting a file using unlink or unlinkSync

Delete a file asynchronously:

var fs = require('fs');

fs.unlink('/path/to/file.txt', function(err) {
 if (err) throw err;

 console.log('file deleted');
});

You can also delete it synchronously*:

var fs = require('fs');

fs.unlinkSync('/path/to/file.txt');
console.log('file deleted');

* avoid synchronous methods because they block the entire process until the execution finishes.

https://riptutorial.com/ 122

Reading a file into a Buffer using streams

While reading content from a file is already asynchronous using the fs.readFile() method,
sometimes we want to get the data in a Stream versus in a simple callback. This allows us to pipe
this data to other locations or to process it as it comes in versus all at once at the end.

const fs = require('fs');

// Store file data chunks in this array
let chunks = [];
// We can use this variable to store the final data
let fileBuffer;

// Read file into stream.Readable
let fileStream = fs.createReadStream('text.txt');

// An error occurred with the stream
fileStream.once('error', (err) => {
 // Be sure to handle this properly!
 console.error(err);
});

// File is done being read
fileStream.once('end', () => {
 // create the final data Buffer from data chunks;
 fileBuffer = Buffer.concat(chunks);

 // Of course, you can do anything else you need to here, like emit an event!
});

// Data is flushed from fileStream in chunks,
// this callback will be executed for each chunk
fileStream.on('data', (chunk) => {
 chunks.push(chunk); // push data chunk to array

 // We can perform actions on the partial data we have so far!
});

Check Permissions of a File or Directory

fs.access() determines whether a path exists and what permissions a user has to the file or
directory at that path. fs.access doesn't return a result rather, if it doesn't return an error, the path
exists and the user has the desired permissions.

The permission modes are available as a property on the fs object, fs.constants

fs.constants.F_OK - Has read/write/execute permissions (If no mode is provided, this is the
default)

•

fs.constants.R_OK - Has read permissions•
fs.constants.W_OK - Has write permissions•
fs.constants.X_OK - Has execute permissions (Works the same as fs.constants.F_OK on
Windows)

•

https://riptutorial.com/ 123

Asynchronously

var fs = require('fs');
var path = '/path/to/check';

// checks execute permission
fs.access(path, fs.constants.X_OK, (err) => {
 if (err) {
 console.log("%s doesn't exist", path);
 } else {
 console.log('can execute %s', path);
 }
});
// Check if we have read/write permissions
// When specifying multiple permission modes
// each mode is separated by a pipe : `|`
fs.access(path, fs.constants.R_OK | fs.constants.W_OK, (err) => {
 if (err) {
 console.log("%s doesn't exist", path);
 } else {
 console.log('can read/write %s', path);
 }
});

Synchronously

fs.access also has a synchronous version fs.accessSync. When using fs.accessSync you must
enclose it within a try/catch block.

// Check write permission
try {
 fs.accessSync(path, fs.constants.W_OK);
 console.log('can write %s', path);
}
catch (err) {
 console.log("%s doesn't exist", path);
}

Avoiding race conditions when creating or using an existing directory

Due to Node's asynchronous nature, creating or using a directory by first:

checking for its existence with fs.stat(), then1.
creating or using it depending of the results of the existence check,2.

can lead to a race condition if the folder is created between the time of the check and the time of
the creation. The method below wraps fs.mkdir() and fs.mkdirSync() in error-catching wrappers
that let the exception pass if its code is EEXIST (already exists). If the error is something else, like
EPERM (pemission denied), throw or pass an error like the native functions do.

Asynchronous version with fs.mkdir()

https://riptutorial.com/ 124

https://www.wikiwand.com/en/Race_condition#/File_systems

var fs = require('fs');

function mkdir (dirPath, callback) {
 fs.mkdir(dirPath, (err) => {
 callback(err && err.code !== 'EEXIST' ? err : null);
 });
}

mkdir('./existingDir', (err) => {

 if (err)
 return console.error(err.code);

 // Do something with `./existingDir` here

});

Synchronous version with fs.mkdirSync()

function mkdirSync (dirPath) {
 try {
 fs.mkdirSync(dirPath);
 } catch(e) {
 if (e.code !== 'EEXIST') throw e;
 }
}

mkdirSync('./existing-dir');
// Do something with `./existing-dir` now

Checking if a file or a directory exists

Asynchronously

var fs = require('fs');

fs.stat('path/to/file', function(err) {
 if (!err) {
 console.log('file or directory exists');
 }
 else if (err.code === 'ENOENT') {
 console.log('file or directory does not exist');
 }
});

Synchronously

here, we must wrap the function call in a try/catch block to handle error.

var fs = require('fs');

try {
 fs.statSync('path/to/file');
 console.log('file or directory exists');

https://riptutorial.com/ 125

}
catch (err) {
 if (err.code === 'ENOENT') {
 console.log('file or directory does not exist');
 }
}

Cloning a file using streams

This program illustrates how one can copy a file using readable and writable streams using the
createReadStream(), and createWriteStream() functions provided by the file system module.

//Require the file System module
var fs = require('fs');

/*
 Create readable stream to file in current directory (__dirname) named 'node.txt'
 Use utf8 encoding
 Read the data in 16-kilobyte chunks
*/
var readable = fs.createReadStream(__dirname + '/node.txt', { encoding: 'utf8', highWaterMark:
16 * 1024 });

// create writable stream
var writable = fs.createWriteStream(__dirname + '/nodeCopy.txt');

// Write each chunk of data to the writable stream
readable.on('data', function(chunk) {
 writable.write(chunk);
});

Copying files by piping streams

This program copies a file using readable and a writable stream with the pipe() function provided
by the stream class

// require the file system module
var fs = require('fs');

/*
 Create readable stream to file in current directory named 'node.txt'
 Use utf8 encoding
 Read the data in 16-kilobyte chunks
*/
var readable = fs.createReadStream(__dirname + '/node.txt', { encoding: 'utf8', highWaterMark:
16 * 1024 });

// create writable stream
var writable = fs.createWriteStream(__dirname + '/nodePipe.txt');

// use pipe to copy readable to writable
readable.pipe(writable);

Changing contents of a text file

https://riptutorial.com/ 126

Example. It will be replacing the word email to a name in a text file index.txt with simple RegExp
replace(/email/gim, 'name')

var fs = require('fs');

fs.readFile('index.txt', 'utf-8', function(err, data) {
 if (err) throw err;

 var newValue = data.replace(/email/gim, 'name');

 fs.writeFile('index.txt', newValue, 'utf-8', function(err, data) {
 if (err) throw err;
 console.log('Done!');
 })
})

Determining the line count of a text file

app.js

const readline = require('readline');
const fs = require('fs');

var file = 'path.to.file';
var linesCount = 0;
var rl = readline.createInterface({
 input: fs.createReadStream(file),
 output: process.stdout,
 terminal: false
});
rl.on('line', function (line) {
 linesCount++; // on each linebreak, add +1 to 'linesCount'
});
rl.on('close', function () {
 console.log(linesCount); // print the result when the 'close' event is called
});

Usage:

node app

Reading a file line by line

app.js

const readline = require('readline');
const fs = require('fs');

var file = 'path.to.file';
var rl = readline.createInterface({
 input: fs.createReadStream(file),
 output: process.stdout,

https://riptutorial.com/ 127

 terminal: false
});

rl.on('line', function (line) {
 console.log(line) // print the content of the line on each linebreak
});

Usage:

node app

Read Filesystem I/O online: https://riptutorial.com/node-js/topic/489/filesystem-i-o

https://riptutorial.com/ 128

https://riptutorial.com/node-js/topic/489/filesystem-i-o

Chapter 34: Getting started with Nodes
profiling

Introduction

The aim of this post is to get started with profiling nodejs application and how to make sense of
this results to capture a bug or a memory leak. A nodejs running application is nothing but a v8
engine processes which is in many terms similar to a website running on a browser and we can
basically capture all the metrics which are related to a website process for a node application.

The tool of my preference is chrome devtools or chrome inspector coupled with the node-
inspector.

Remarks

The node-inspector fails to attach to the node bebug process sometimes in which case you will not
be able to get the debug breakpoint in devtools .Try refreshing the devtools tab multiple times and
wait for some seconds to see if it is in debug mode.

If not restart the node-inspector from command line.

Examples

Profiling a simple node application

Step 1 : Install the node-inspector package using npm globally on you machine

$ npm install -g node-inspector

Step 2 : Start the node-inspector server

$ node-inspector

Step 3 : Start debugging your node application

$ node --debug-brk your/short/node/script.js

Step 4 : Open http://127.0.0.1:8080/?port=5858 in the Chrome browser. And you will see a chrom-
dev tools interface with your nodejs application source code in left panel . And since we have used
debug break option while debugging the application the code execution will stop at the first line of
code.

https://riptutorial.com/ 129

http://127.0.0.1:8080/?port=5858

Step 5 : This is the easy part where you switch to the profiling tab and start profiling the
application . In case you want get the profile for a particular method or flow make sure the code
execution is break-pointed just before that piece of code is executed.

Step 6 : Once you have recorded your CPU profile or heap dump/snapshot or heap allocation you
can then view the results in the same window or save them to local drive for later analysis or

https://riptutorial.com/ 130

https://i.stack.imgur.com/jzeJH.png
https://i.stack.imgur.com/QKnPh.png

comparison with other profiles.

You can use this articles to know how to read the profiles :

Reading CPU Profiles•

Chrome CPU profiler and Heap profiler•

Read Getting started with Nodes profiling online: https://riptutorial.com/node-js/topic/9347/getting-
started-with-nodes-profiling

https://riptutorial.com/ 131

http://commandlinefanatic.com/cgi-bin/showarticle.cgi?article=art037
https://developer.chrome.com/devtools/docs/profiles
https://riptutorial.com/node-js/topic/9347/getting-started-with-nodes-profiling
https://riptutorial.com/node-js/topic/9347/getting-started-with-nodes-profiling

Chapter 35: Good coding style

Remarks

I would recommend to a beginner to start with this style of coding. And if anybody can suggest a
better way(p.s i opted this technique and is working efficiently for me in an app used by more then
100k users), feel free for any suggestions. TIA.

Examples

Basic program for signup

Through this example, it will be explained to divide the node.js code into different
modules/folders for better undertandibility. Following this technique makes it easier for other
developers to understand the code as he can directly refer to concerned file instead of going
through whole code. The major use is when you are working in a team and a new developer joins
at a later stage, it will get easier for him to gel up with the code itself.

index.js :- This file will manage server connection.

//Import Libraries
var express = require('express'),
 session = require('express-session'),
 mongoose = require('mongoose'),
 request = require('request');

//Import custom modules
var userRoutes = require('./app/routes/userRoutes');
var config = require('./app/config/config');

//Connect to Mongo DB
mongoose.connect(config.getDBString());

//Create a new Express application and Configure it
var app = express();

//Configure Routes
app.use(config.API_PATH, userRoutes());

//Start the server
app.listen(config.PORT);
console.log('Server started at - '+ config.URL+ ":" +config.PORT);

config.js:-This file will manage all the configuration related params which will remain same
throughout.

var config = {
VERSION: 1,
BUILD: 1,
URL: 'http://127.0.0.1',

https://riptutorial.com/ 132

API_PATH : '/api',
PORT : process.env.PORT || 8080,
DB : {
 //MongoDB configuration
 HOST : 'localhost',
 PORT : '27017',
 DATABASE : 'db'
},

/*
 * Get DB Connection String for connecting to MongoDB database
 */
getDBString : function(){
 return 'mongodb://'+ this.DB.HOST +':'+ this.DB.PORT +'/'+ this.DB.DATABASE;
},

/*
 * Get the http URL
 */
getHTTPUrl : function(){
 return 'http://' + this.URL + ":" + this.PORT;
}

module.exports = config;

user.js:- Model file where schema is defined

var mongoose = require('mongoose');
var Schema = mongoose.Schema;

//Schema for User
var UserSchema = new Schema({
 name: {
 type: String,
 // required: true
 },
 email: {
 type: String
 },
 password: {
 type: String,
 //required: true
 },
 dob: {
 type: Date,
 //required: true
 },
 gender: {
 type: String, // Male/Female
 // required: true
 }
});

//Define the model for User
var User;
if(mongoose.models.User)
 User = mongoose.model('User');
else
 User = mongoose.model('User', UserSchema);

https://riptutorial.com/ 133

//Export the User Model
module.exports = User;

userController:- This file contains the function for user signUp

var User = require('../models/user');
var crypto = require('crypto');

//Controller for User
var UserController = {

 //Create a User
 create: function(req, res){
 var repassword = req.body.repassword;
 var password = req.body.password;
 var userEmail = req.body.email;

 //Check if the email address already exists
 User.find({"email": userEmail}, function(err, usr){
 if(usr.length > 0){
 //Email Exists

 res.json('Email already exists');
 return;
 }
 else
 {
 //New Email

 //Check for same passwords
 if(password != repassword){
 res.json('Passwords does not match');
 return;
 }

 //Generate Password hash based on sha1
 var shasum = crypto.createHash('sha1');
 shasum.update(req.body.password);
 var passwordHash = shasum.digest('hex');

 //Create User
 var user = new User();
 user.name = req.body.name;
 user.email = req.body.email;
 user.password = passwordHash;
 user.dob = Date.parse(req.body.dob) || "";
 user.gender = req.body.gender;

 //Validate the User
 user.validate(function(err){
 if(err){
 res.json(err);
 return;
 }else{
 //Finally save the User
 user.save(function(err){
 if(err)
 {
 res.json(err);
 return;

https://riptutorial.com/ 134

 }

 //Remove Password before sending User details
 user.password = undefined;
 res.json(user);
 return;
 });
 }
 });
 }
 });
 }

}

module.exports = UserController;

userRoutes.js:- This the route for userController

var express = require('express');
var UserController = require('../controllers/userController');

//Routes for User
var UserRoutes = function(app)
{
 var router = express.Router();

router.route('/users')
 .post(UserController.create);

return router;

}

module.exports = UserRoutes;

The above example may appear too big but if a beginner at node.js with a little blend of express
knowledge tries to go through this will find it easy and really helpful.

Read Good coding style online: https://riptutorial.com/node-js/topic/6489/good-coding-style

https://riptutorial.com/ 135

https://riptutorial.com/node-js/topic/6489/good-coding-style

Chapter 36: Graceful Shutdown

Examples

Graceful Shutdown - SIGTERM

By using server.close() and process.exit(), we can catch the server exception and do a graceful
shutdown.

var http = require('http');

var server = http.createServer(function (req, res) {
 setTimeout(function () { //simulate a long request
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
 }, 4000);
}).listen(9090, function (err) {
 console.log('listening http://localhost:9090/');
 console.log('pid is ' + process.pid);
});

process.on('SIGTERM', function () {
 server.close(function () {
 process.exit(0);
 });
});

Read Graceful Shutdown online: https://riptutorial.com/node-js/topic/5996/graceful-shutdown

https://riptutorial.com/ 136

https://riptutorial.com/node-js/topic/5996/graceful-shutdown

Chapter 37: grunt

Remarks

Further reading:

The Installing grunt guide has detailed information about installing specific, production or in-
development, versions of Grunt and grunt-cli.

The Configuring Tasks guide has an in-depth explanation on how to configure tasks, targets,
options and files inside the Gruntfile, along with an explanation of templates, globbing patterns and
importing external data.

The Creating Tasks guide lists the differences between the types of Grunt tasks and shows a
number of sample tasks and configurations.

Examples

Introduction To GruntJs

Grunt is a JavaScript Task Runner, used for automation of repetitive tasks like minification,
compilation, unit testing, linting, etc.

In order to get started, you'll want to install Grunt's command line interface (CLI) globally.

npm install -g grunt-cli

Preparing a new Grunt project: A typical setup will involve adding two files to your project:
package.json and the Gruntfile.

package.json: This file is used by npm to store metadata for projects published as npm modules.
You will list grunt and the Grunt plugins your project needs as devDependencies in this file.

Gruntfile: This file is named Gruntfile.js and is used to configure or define tasks and load Grunt
plugins.

Example package.json:

{
 "name": "my-project-name",
 "version": "0.1.0",
 "devDependencies": {
 "grunt": "~0.4.5",
 "grunt-contrib-jshint": "~0.10.0",
 "grunt-contrib-nodeunit": "~0.4.1",
 "grunt-contrib-uglify": "~0.5.0"
 }
}

https://riptutorial.com/ 137

http://gruntjs.com/installing-grunt
http://gruntjs.com/configuring-tasks
http://gruntjs.com/creating-tasks

Example gruntfile:

module.exports = function(grunt) {

 // Project configuration.
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 uglify: {
 options: {
 banner: '/*! <%= pkg.name %> <%= grunt.template.today("yyyy-mm-dd") %> */\n'
 },
 build: {
 src: 'src/<%= pkg.name %>.js',
 dest: 'build/<%= pkg.name %>.min.js'
 }
 }
 });

 // Load the plugin that provides the "uglify" task.
 grunt.loadNpmTasks('grunt-contrib-uglify');

 // Default task(s).
 grunt.registerTask('default', ['uglify']);

};

Installing gruntplugins

Adding dependcy

To use a gruntplugin, you first need to add it as a dependency to your project. Let's use the jshint
plugin as an example.

npm install grunt-contrib-jshint --save-dev

The --save-dev option is used to add the plugin in the package.json, this way the plugin is always
installed after a npm install.

Loading the plugin

You can load your plugin in the gruntfile file using loadNpmTasks.

grunt.loadNpmTasks('grunt-contrib-jshint');

Configuring the task

You configure the task in the gruntfile adding a property called jshint to the object passed to
grunt.initConfig.

grunt.initConfig({
 jshint: {
 all: ['Gruntfile.js', 'lib/**/*.js', 'test/**/*.js']
 }

https://riptutorial.com/ 138

});

Don't forget you can have other properties for other plugins you are using.

Running the task

To just run the task with the plugin you can use the command line.

grunt jshint

Or you can add jshint to another task.

grunt.registerTask('default', ['jshint']);

The default task runs with the grunt command in the terminal without any options.

Read grunt online: https://riptutorial.com/node-js/topic/6059/grunt

https://riptutorial.com/ 139

https://riptutorial.com/node-js/topic/6059/grunt

Chapter 38: Hack

Examples

Add new extensions to require()

You can add new extensions to require() by extending require.extensions.

For a XML example:

// Add .xml for require()
require.extensions['.xml'] = (module, filename) => {
 const fs = require('fs')
 const xml2js = require('xml2js')

 module.exports = (callback) => {
 // Read required file.
 fs.readFile(filename, 'utf8', (err, data) => {
 if (err) {
 callback(err)
 return
 }
 // Parse it.
 xml2js.parseString(data, (err, result) => {
 callback(null, result)
 })
 })
 }
}

If the content of hello.xml is following:

<?xml version="1.0" encoding="UTF-8"?>
<foo>
 <bar>baz</bar>
 <qux />
</foo>

You can read and parse it through require():

require('./hello')((err, xml) {
 if (err)
 throw err;
 console.log(err);
})

It prints { foo: { bar: ['baz'], qux: [''] } }.

Read Hack online: https://riptutorial.com/node-js/topic/6645/hack

https://riptutorial.com/ 140

https://riptutorial.com/node-js/topic/6645/hack

Chapter 39: Handling POST request in
Node.js

Remarks

Node.js uses streams to handle incoming data.

Quoting from the docs,

A stream is an abstract interface for working with streaming data in Node.js. The
stream module provides a base API that makes it easy to build objects that implement
the stream interface.

To handle in request body of a POST request, use the request object, which is a readable stream.
Data streams are emitted as data events on the request object.

 request.on('data', chunk => {
 buffer += chunk;
 });
 request.on('end', () => {
 // POST request body is now available as `buffer`
 });

Simply create an empty buffer string and append the buffer data as it received via data events.

NOTE

Buffer data received on data events is of type Buffer1.
Create new buffer string to collect buffered data from data events for every request i.e.
create buffer string inside the request handler.

2.

Examples

Sample node.js server that just handles POST requests

'use strict';

const http = require('http');

const PORT = 8080;
const server = http.createServer((request, response) => {
 let buffer = '';
 request.on('data', chunk => {
 buffer += chunk;
 });
 request.on('end', () => {
 const responseString = `Received string ${buffer}`;
 console.log(`Responding with: ${responseString}`);

https://riptutorial.com/ 141

https://nodejs.org/api/stream.html#stream_stream
https://nodejs.org/api/buffer.html

 response.writeHead(200, "Content-Type: text/plain");
 response.end(responseString);
 });
}).listen(PORT, () => {
 console.log(`Listening on ${PORT}`);
});

Read Handling POST request in Node.js online: https://riptutorial.com/node-js/topic/5676/handling-
post-request-in-node-js

https://riptutorial.com/ 142

https://riptutorial.com/node-js/topic/5676/handling-post-request-in-node-js
https://riptutorial.com/node-js/topic/5676/handling-post-request-in-node-js

Chapter 40: How modules are loaded

Examples

Global Mode

If you installed Node using the default directory, while in the global mode, NPM installs packages
into /usr/local/lib/node_modules. If you type the following in the shell, NPM will search for,
download, and install the latest version of the package named sax inside the directory
/usr/local/lib/node_modules/express:

$ npm install -g express

Make sure that you have sufficient access rights to the folder. These modules will be available for
all node process which will be running in that machine

In local mode installation. Npm will down load and install modules in the current working folders by
creating a new folder called node_modules for example if you are in /home/user/apps/my_app a new
folder will be created called node_modules /home/user/apps/my_app/node_modules if its not already exist

Loading modules

When we refer the module in the code, node first looks up the node_module folder inside the
referenced folder in required statement If the module name is not relative and is not a core
module, Node will try to find it inside the node_modules folder in the current directory. For instance, if
you do the following, Node will try to look for the file ./node_modules/myModule.js:

var myModule = require('myModule.js');

If Node fails to find the file, it will look inside the parent folder called ../node_modules/myModule.js. If
it fails again, it will try the parent folder and keep descending until it reaches the root or finds the
required module.

You can also omit the .js extension if you like to, in which case node will append the .js extension
and will search for the file.

Loading a Folder Module

You can use the path for a folder to load a module like this:

var myModule = require('./myModuleDir');

If you do so, Node will search inside that folder. Node will presume this folder is a package and will
try to look for a package definition. That package definition should be a file named package.json. If

https://riptutorial.com/ 143

that folder does not contain a package definition file named package.json, the package entry point
will assume the default value of index.js, and Node will look, in this case, for a file under the path
./myModuleDir/index.js.

The last resort if module is not found in any of the folders is the global module installation folder.

Read How modules are loaded online: https://riptutorial.com/node-js/topic/7738/how-modules-are-
loaded

https://riptutorial.com/ 144

https://riptutorial.com/node-js/topic/7738/how-modules-are-loaded
https://riptutorial.com/node-js/topic/7738/how-modules-are-loaded

Chapter 41: http

Examples

http server

A basic example of HTTP server.

write following code in http_server.js file:

var http = require('http');

var httpPort = 80;

http.createServer(handler).listen(httpPort, start_callback);

function handler(req, res) {

 var clientIP = req.connection.remoteAddress;
 var connectUsing = req.connection.encrypted ? 'SSL' : 'HTTP';
 console.log('Request received: '+ connectUsing + ' ' + req.method + ' ' + req.url);
 console.log('Client IP: ' + clientIP);

 res.writeHead(200, "OK", {'Content-Type': 'text/plain'});
 res.write("OK");
 res.end();
 return;
}

function start_callback(){
 console.log('Start HTTP on port ' + httpPort)
}

then from your http_server.js location run this command:

node http_server.js

you should see this result:

> Start HTTP on port 80

now you need to test your server, you need to open your internet browser and navigate to this url:

http://127.0.0.1:80

if your machine running Linux server you can test it like this:

curl 127.0.0.1:80

you should see following result:

https://riptutorial.com/ 145

ok

in your console, that running the app, you will see this results:

> Request received: HTTP GET /
> Client IP: ::ffff:127.0.0.1

http client

a basic example for http client:

write the follwing code in http_client.js file:

var http = require('http');

var options = {
 hostname: '127.0.0.1',
 port: 80,
 path: '/',
 method: 'GET'
};

var req = http.request(options, function(res) {
 console.log('STATUS: ' + res.statusCode);
 console.log('HEADERS: ' + JSON.stringify(res.headers));
 res.setEncoding('utf8');
 res.on('data', function (chunk) {
 console.log('Response: ' + chunk);
 });
 res.on('end', function (chunk) {
 console.log('Response ENDED');
 });
});

req.on('error', function(e) {
 console.log('problem with request: ' + e.message);
});

req.end();

then from your http_client.js location run this command:

node http_client.js

you should see this result:

> STATUS: 200
> HEADERS: {"content-type":"text/plain","date":"Thu, 21 Jul 2016 11:27:17
GMT","connection":"close","transfer-encoding":"chunked"}
> Response: OK
> Response ENDED

note: this example depend on http server example.

https://riptutorial.com/ 146

Read http online: https://riptutorial.com/node-js/topic/2973/http

https://riptutorial.com/ 147

https://riptutorial.com/node-js/topic/2973/http

Chapter 42: Installing Node.js

Examples

Install Node.js on Ubuntu

Using the apt package manager

sudo apt-get update
sudo apt-get install nodejs
sudo apt-get install npm
sudo ln -s /usr/bin/nodejs /usr/bin/node

the node & npm versions in apt are outdated. This is how you can update them:
sudo npm install -g npm
sudo npm install -g n
sudo n stable # (or lts, or a specific version)

Using the latest of specific version (e.g. LTS
6.x) directly from nodesource

curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
apt-get install -y nodejs

Also, for the right way to install global npm modules, set the personal directory for them
(eliminates the need for sudo and avoids EACCES errors):

mkdir ~/.npm-global
echo "export PATH=~/.npm-global/bin:$PATH" >> ~/.profile
source ~/.profile
npm config set prefix '~/.npm-global'

Installing Node.js on Windows

Standard installation

All Node.js binaries, installers, and source files can be downloaded here.

You can download just the node.exe runtime or use the Windows installer (.msi), which will also
install npm, the recommended package manager for Node.js, and configure paths.

Installation by package manager

You can also install by package manager Chocolatey (Software Management Automation).

https://riptutorial.com/ 148

https://nodejs.org/en/download/
https://chocolatey.org/

choco install nodejs.install

More information about current version, you can find in the choco repository here.

Using Node Version Manager (nvm)

Node Version Manager, otherwise known as nvm, is a bash script that simplifies the management
of multiple Node.js versions.

To install nvm, use the provided install script:

$ curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

For windows there is a nvm-windows package with an installer. This GithHub page has the details
for installing and using the nvm-windows package.

After installing nvm, run "nvm on" from command line. This enables nvm to control the node
versions.

Note: You may need to restart your terminal for it to recognize the newly installed nvm command.

Then install the latest Node version:

$ nvm install node

You can also install a specific Node version, by passing the major, minor, and/or patch versions:

$ nvm install 6
$ nvm install 4.2

To list the versions available for install:

$ nvm ls-remote

You can then switch versions by passing the version the same way you do when installing:

$ nvm use 5

You can set a specific version of Node that you installed to be the default version by entering:

$ nvm alias default 4.2

To display a list of Node versions that are installed on your machine, enter:

$ nvm ls

To use project-specific node versions, you can save the version in .nvmrc file. This way, starting to

https://riptutorial.com/ 149

https://chocolatey.org/packages/nodejs.install
https://github.com/creationix/nvm
https://github.com/coreybutler/nvm-windows

work with another project will be less error-prone after fetching it from its repository.

$ echo "4.2" > .nvmrc
$ nvm use
Found '/path/to/project/.nvmrc' with version <4.2>
Now using node v4.2 (npm v3.7.3)

When Node is installed via nvm we don't have to use sudo to install global packages since they are
installed in home folder. Thus npm i -g http-server works without any permission errors.

Install Node.js From Source with APT package manager

Prerequisites

sudo apt-get install build-essential
sudo apt-get install python

[optional]
sudo apt-get install git

Get source and build

cd ~
git clone https://github.com/nodejs/node.git

OR For the latest LTS Node.js version 6.10.2

cd ~
wget https://nodejs.org/dist/v6.3.0/node-v6.10.2.tar.gz
tar -xzvf node-v6.10.2.tar.gz

Change to the source directory such as in cd ~/node-v6.10.2

./configure
make
sudo make install

Installing Node.js on Mac using package manager

Homebrew

You can install Node.js using the Homebrew package manager.

Start by updating brew:

brew update

You may need to change permissions or paths. It's best to run this before proceeding:

https://riptutorial.com/ 150

http://brew.sh

brew doctor

Next you can install Node.js by running:

brew install node

Once Node.js is installed, you can validate the version installed by running:

node -v

Macports

You can also install node.js through Macports.

First update it to make sure the lastest packages are referenced:

sudo port selfupdate

Then install nodejs and npm

sudo port install nodejs npm

You can now run node through CLI directly by invoking node. Also, you can check your current
node version with

node -v

Installing using MacOS X Installer

You can find the installers on Node.js download page. Normally, Node.js recommends two
versions of Node, the LTS version (long term support) and the current version (latest release). If
you are new to Node, just go for the LTS and then click the Macintosh Installer button to download
the package.

If you want to find other NodeJS releases, go here, choose your release then click download.
From the download page, look for a file with extension .pkg.

Once you downloaded the file (with extension .pkg ofcourse), double click it to install. The installer
packed with Node.js and npm, by default, the package will install both but you can customize which
one to install by clicking the customize button in the Installation Type step. Other than that, just
follow the installation instructions, it's pretty straightforward.

Check if Node is installed

https://riptutorial.com/ 151

https://www.macports.org/
https://nodejs.org/en/download/
https://nodejs.org/en/download/releases/

Open terminal (if you don't know how to open your terminal, look at this wikihow). In the terminal
type node --version then enter. Your terminal will look like this if Node is installed:

$ node --version
v7.2.1

The v7.2.1 is your Node.js version, if you receive the message command not found: node instead of
that, then it's mean there is a problem with your installation.

Installing Node.js on Raspberry PI

To install v6.x update the packages

curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -

Using the apt package manager

sudo apt-get install -y nodejs

Installing with Node Version Manager under Fish Shell with Oh My Fish!

Node Version Manager (nvm) greatly simplifies the management of Node.js versions, their
installation, and removes the need for sudo when dealing with packages (e.g. npm install ...).
Fish Shell (fish) "is a smart and user-friendly command line shell for OS X, Linux, and the rest of
the family" that is a popular alternative among programmers to common shells such as bash.
Lastly, Oh My Fish (omf) allows for customizing and installing packages within Fish shell.

This guide assumes you are already using Fish as your shell.

Install nvm

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.4/install.sh | bash

Install Oh My Fish

curl -L https://github.com/oh-my-fish/oh-my-fish/raw/master/bin/install | fish

(Note: You will be prompted to restart your terminal at this point. Go ahead and do so now.)

Install plugin-nvm for Oh My Fish

We will install plugin-nvm via Oh My Fish to expose nvm capabilities within the Fish shell:

omf install nvm

Install Node.js with Node Version Manager

You are now ready to use nvm. You may install and use the version of Node.js of your liking. Some
examples:

https://riptutorial.com/ 152

http://www.wikihow.com/Get-to-the-Command-Line-on-a-Mac
https://github.com/creationix/nvm
https://fishshell.com/
https://github.com/oh-my-fish/oh-my-fish
https://github.com/derekstavis/plugin-nvm

Install the most recent Node version: nvm install node•
Install 6.3.1 specifically: nvm install 6.3.1•
List installed verisons: nvm ls•
Switch to a previously installed 4.3.1: nvm use 4.3.1•

Final Notes

Remember again, that we no longer need sudo when dealing with Node.js using this method! Node
versions, packages, and so on are installed in your home directory.

Install Node.js from source on Centos, RHEL and Fedora

Prerequisites

git•
clang and clang++ 3.4^ or gcc and g++ 4.8^•
Python 2.6 or 2.7•
GNU Make 3.81^•

Get source

Node.js v6.x LTS

git clone -b v6.x https://github.com/nodejs/node.git

Node.js v7.x

git clone -b v7.x https://github.com/nodejs/node.git

Build

cd node
./configure
make -jX
su -c make install

X - the number of processor cores, greatly speeds up the build

Cleanup [Optional]

cd
rm -rf node

Installing Node.js with n

First, there is a really nice wrapper for setting up n on your system. Just run:

curl -L https://git.io/n-install | bash

https://riptutorial.com/ 153

to install n. Then install binaries in a variety of ways:

latest

n latest

stable

n stable

lts

n lts

Any other version

n <version>

e.g. n 4.4.7

If this version is already installed, this command will activate that version.

Switching versions

n by itself will produce a selection list of installed binaries. Use up and down to find the one you
want and Enter to activate it.

Read Installing Node.js online: https://riptutorial.com/node-js/topic/1294/installing-node-js

https://riptutorial.com/ 154

https://riptutorial.com/node-js/topic/1294/installing-node-js

Chapter 43: Interacting with Console

Syntax

console.log([data][, ...])•
console.error([data][, ...])•
console.time(label)•
console.timeEnd(label)•

Examples

Logging

Console Module

Similar to the browser environment of JavaScript node.js provides a console module which
provides simple logging and debugging possibilities.

The most important methods provided by the console module are console.log, console.error and
console.time. But there are several others like console.info.

console.log

The parameters will be printed to the standard output (stdout) with a new line.

console.log('Hello World');

console.error

The parameters will be printed to the standard error (stderr) with a new line.

console.error('Oh, sorry, there is an error.');

console.time, console.timeEnd

console.time starts a timer with an unique lable that can be used to compute the duration of an
operation. When you call console.timeEnd with the same label, the timer stops and it prints the
elapsed time in milliseconds to stdout.

https://riptutorial.com/ 155

http://i.stack.imgur.com/ebKzm.png
http://i.stack.imgur.com/tYA8Q.png

Process Module

It is possible to use the process module to write directly into the standard output of the console.
Therefore it exists the method process.stdout.write. Unlike console.log this method does not add a
new line before your output.

So in the following example the method is called two times, but no new line is added in between
their outputs.

Formatting

One can use terminal (control) codes to issue specific commands like switching colors or
positioning the cursor.

General

Effect Code

Reset \033[0m

Hicolor \033[1m

Underline \033[4m

Inverse \033[7m

Font Colors

Effect Code

Black \033[30m

Red \033[31m

Green \033[32m

https://riptutorial.com/ 156

http://i.stack.imgur.com/lAryO.png
http://i.stack.imgur.com/DlAXq.png
http://i.stack.imgur.com/EfFXm.png

Effect Code

Yellow \033[33m

Blue \033[34m

Magenta \033[35m

Cyan \033[36m

White \033[37m

Background Colors

Effect Code

Black \033[40m

Red \033[41m

Green \033[42m

Yellow \033[43m

Blue \033[44m

Magenta \033[45m

Cyan \033[46m

White \033[47m

Read Interacting with Console online: https://riptutorial.com/node-js/topic/5935/interacting-with-
console

https://riptutorial.com/ 157

https://riptutorial.com/node-js/topic/5935/interacting-with-console
https://riptutorial.com/node-js/topic/5935/interacting-with-console

Chapter 44: Keep a node application
constantly running

Examples

Use PM2 as a process manager

PM2 lets you run your nodejs scripts forever. In the event that your application crashes, PM2 will
also restart it for you.

Install PM2 globally to manager your nodejs instances

npm install pm2 -g

Navigate to the directory in which your nodejs script resides and run the following command each
time you want to start a nodejs instance to be monitored by pm2:

pm2 start server.js --name "app1"

Useful commands for monitoring the process

List all nodejs instances managed by pm2

pm2 list

1.

Stop a particular nodejs instance

pm2 stop <instance named>

2.

Delete a particular nodejs instance3.

https://riptutorial.com/ 158

http://i.stack.imgur.com/q0X0u.png

pm2 delete <instance name>

Restart a particular nodejs instance

pm2 restart <instance name>

4.

Monitoring all nodejs instances

pm2 monit

5.

Stop pm2

pm2 kill

6.

As opposed to restart, which kills and restarts the process, reload achieves a 0-second-
downtime reload

pm2 reload <instance name>

7.

View logs

pm2 logs <instance_name>

8.

Running and stopping a Forever daemon

To start the process:

$ forever start index.js
warn: --minUptime not set. Defaulting to: 1000ms
warn: --spinSleepTime not set. Your script will exit if it does not stay up for at least
1000ms
info: Forever processing file: index.js

List running Forever instances:

https://riptutorial.com/ 159

http://i.stack.imgur.com/y2LKx.png

$ forever list
info: Forever processes running

|data: | index | uid | command | script |forever pid|id | logfile
|uptime |
|------|-------|-----|------------------|-------------|-----------|-----|---------------------
---|--------------|
|data: | [0] |f4Kt |/usr/bin/nodejs | src/index.js|2131 |
2146|/root/.forever/f4Kt.log | 0:0:0:11.485 |

Stop the first process:

$ forever stop 0

$ forever stop 2146

$ forever stop --uid f4Kt

$ forever stop --pidFile 2131

Continuous running with nohup

An alternative to forever on Linux is nohup.

To start a nohup instance

cd to the location of app.js or wwwfolder1.
run nohup nodejs app.js &2.

To kill the process

run ps -ef|grep nodejs1.
kill -9 <the process number>2.

Process Mangement with Forever

Installation

npm install forever -g
cd /node/project/directory

Usages

forever start app.js

Read Keep a node application constantly running online: https://riptutorial.com/node-
js/topic/2820/keep-a-node-application-constantly-running

https://riptutorial.com/ 160

https://riptutorial.com/node-js/topic/2820/keep-a-node-application-constantly-running
https://riptutorial.com/node-js/topic/2820/keep-a-node-application-constantly-running

Chapter 45: Koa Framework v2

Examples

Hello World example

const Koa = require('koa')

const app = new Koa()

app.use(async ctx => {
 ctx.body = 'Hello World'
})

app.listen(8080)

Handling errors using middleware

app.use(async (ctx, next) => {
 try {
 await next() // attempt to invoke the next middleware downstream
 } catch (err) {
 handleError(err, ctx) // define your own error handling function
 }
})

Read Koa Framework v2 online: https://riptutorial.com/node-js/topic/6730/koa-framework-v2

https://riptutorial.com/ 161

https://riptutorial.com/node-js/topic/6730/koa-framework-v2

Chapter 46: Lodash

Introduction

Lodash is a handy JavaScript utility library.

Examples

Filter a collection

The code snippet below shows the various ways you can filter on an array of objects using lodash.

let lodash = require('lodash');

var countries = [
 {"key": "DE", "name": "Deutschland", "active": false},
 {"key": "ZA", "name": "South Africa", "active": true}
];

var filteredByFunction = lodash.filter(countries, function (country) {
 return country.key === "DE";
});
// => [{"key": "DE", "name": "Deutschland"}];

var filteredByObjectProperties = lodash.filter(countries, { "key": "DE" });
// => [{"key": "DE", "name": "Deutschland"}];

var filteredByProperties = lodash.filter(countries, ["key", "ZA"]);
// => [{"key": "ZA", "name": "South Africa"}];

var filteredByProperty = lodash.filter(countries, "active");
// => [{"key": "ZA", "name": "South Africa"}];

Read Lodash online: https://riptutorial.com/node-js/topic/9161/lodash

https://riptutorial.com/ 162

https://riptutorial.com/node-js/topic/9161/lodash

Chapter 47: Loopback - REST Based
connector

Introduction

Rest based connectors and how to deal with them. We all know Loopback does not provide
elegance to REST based connections

Examples

Adding a web based connector

//This example gets the response from iTunes
{
 "rest": {
 "name": "rest",
 "connector": "rest",
 "debug": true,
 "options": {
 "useQuerystring": true,
 "timeout": 10000,
 "headers": {
 "accepts": "application/json",
 "content-type": "application/json"
 }
 },
 "operations": [
 {
 "template": {
 "method": "GET",
 "url": "https://itunes.apple.com/search",
 "query": {
 "term": "{keyword}",
 "country": "{country=IN}",
 "media": "{itemType=music}",
 "limit": "{limit=10}",
 "explicit": "false"
 }
 },
 "functions": {
 "search": [
 "keyword",
 "country",
 "itemType",
 "limit"
]
 }
 },
 {
 "template": {
 "method": "GET",
 "url": "https://itunes.apple.com/lookup",
 "query": {

https://riptutorial.com/ 163

 "id": "{id}"
 }
 },
 "functions": {
 "findById": [
 "id"
]
 }
 }
]
 }
}

Read Loopback - REST Based connector online: https://riptutorial.com/node-
js/topic/9234/loopback---rest-based-connector

https://riptutorial.com/ 164

https://riptutorial.com/node-js/topic/9234/loopback---rest-based-connector
https://riptutorial.com/node-js/topic/9234/loopback---rest-based-connector

Chapter 48: metalsmith

Examples

Build a simple blog

Assuming that you have node and npm installed and available, create a project folder with a valid
package.json. Install the necessary dependencies:

npm install --save-dev metalsmith metalsmith-in-place handlebars

Create a file called build.js at the root of your project folder, containing the following:

var metalsmith = require('metalsmith');
var handlebars = require('handlebars');
var inPlace = require('metalsmith-in-place');

Metalsmith(__dirname)
 .use(inPlace('handlebars'))
 .build(function(err) {
 if (err) throw err;
 console.log('Build finished!');
 });

Create a folder called src at the root of your project folder. Create index.html in src, containing the
following:

title: My awesome blog

<h1>{{ title }}</h1>

Running node build.js will now build all files in src. After running this command, you'll have
index.html in your build folder, with the following contents:

<h1>My awesome blog</h1>

Read metalsmith online: https://riptutorial.com/node-js/topic/6111/metalsmith

https://riptutorial.com/ 165

https://riptutorial.com/node-js/topic/6111/metalsmith

Chapter 49: Mongodb integration

Syntax

db.collection.insertOne(document, options(w, wtimeout, j, serializeFuntions,
forceServerObjectId, bypassDocumentValidation), callback)

•

db.collection.insertMany([documents], options(w, wtimeout, j, serializeFuntions,
forceServerObjectId, bypassDocumentValidation), callback)

•

db.collection.find(query)•
db.collection.updateOne(filter, update, options(upsert, w, wtimeout, j,
bypassDocumentValidation), callback)

•

db.collection.updateMany(filter, update, options(upsert, w, wtimeout, j), callback)•
db.collection.deleteOne(filter, options(upsert, w, wtimeout, j), callback)•
db.collection.deleteMany(filter, options(upsert, w, wtimeout, j), callback)•

Parameters

Parameter Details

document A javascript object representing a document

documents An array of documents

query An object defining a search query

filter An object defining a search query

callback Function to be called when the operation is done

options (optional) Optional settings (default: null)

w (optional) The write concern

wtimeout (optional) The write concern timeout. (default: null)

j (optional) Specify a journal write concern (default: false)

upsert (optional) Update operation (default: false)

multi (optional) Update one/all documents (default: false)

serializeFunctions (optional) Serialize functions on any object (default: false)

forceServerObjectId
(optional) Force server to assign _id values instead of driver
(default: false)

(optional) Allow driver to bypass schema validation in MongoDB bypassDocumentValidation

https://riptutorial.com/ 166

Parameter Details

3.2 or higher (default: false)

Examples

Connect to MongoDB

Connect to MongoDB, print 'Connected!' and close the connection.

const MongoClient = require('mongodb').MongoClient;

var url = 'mongodb://localhost:27017/test';

MongoClient.connect(url, function(err, db) { // MongoClient method 'connect'
 if (err) throw new Error(err);
 console.log("Connected!");
 db.close(); // Don't forget to close the connection when you are done
});

MongoClient method Connect()

MongoClient.connect(url, options, callback)

Argument Type Description

url string A string specifying the server ip/hostname, port and database

options object (optional) Optional settings (default: null)

callback Function Function to be called when the connection attempt is done

The callback function takes two arguments

err : Error - If an error occurs the err argument will be defined•
db : object - The MongoDB instance•

Insert a document

Insert a document called 'myFirstDocument' and set 2 properties, greetings and farewell

const MongoClient = require('mongodb').MongoClient;

const url = 'mongodb://localhost:27017/test';

MongoClient.connect(url, function (err, db) {
 if (err) throw new Error(err);
 db.collection('myCollection').insertOne({ // Insert method 'insertOne'
 "myFirstDocument": {
 "greetings": "Hellu",

https://riptutorial.com/ 167

 "farewell": "Bye"
 }
 }, function (err, result) {
 if (err) throw new Error(err);
 console.log("Inserted a document into the myCollection collection!");
 db.close(); // Don't forget to close the connection when you are done
 });
});

Collection method insertOne()

db.collection(collection).insertOne(document, options, callback)

Argument Type Description

collection string A string specifying the collection

document object The document to be inserted into the collection

options object (optional) Optional settings (default: null)

callback Function Function to be called when the insert operation is done

The callback function takes two arguments

err : Error - If an error occurs the err argument will be defined•
result : object - An object containing details about the insert operation•

Read a collection

Get all documents in the collection 'myCollection' and print them to the console.

const MongoClient = require('mongodb').MongoClient;

const url = 'mongodb://localhost:27017/test';

MongoClient.connect(url, function (err, db) {
 if (err) throw new Error(err);
 var cursor = db.collection('myCollection').find(); // Read method 'find'
 cursor.each(function (err, doc) {
 if (err) throw new Error(err);
 if (doc != null) {
 console.log(doc); // Print all documents
 } else {
 db.close(); // Don't forget to close the connection when you are done
 }
 });
});

Collection method find()

https://riptutorial.com/ 168

db.collection(collection).find()

Argument Type Description

collection string A string specifying the collection

Update a document

Find a document with the property { greetings: 'Hellu' } and change it to { greetings: 'Whut?' }

const MongoClient = require('mongodb').MongoClient;

const url = 'mongodb://localhost:27017/test';

MongoClient.connect(url, function (err, db) {
 if (err) throw new Error(err);
 db.collection('myCollection').updateOne({ // Update method 'updateOne'
 greetings: "Hellu" },
 { $set: { greetings: "Whut?" }},
 function (err, result) {
 if (err) throw new Error(err);
 db.close(); // Don't forget to close the connection when you are done
 });
});

Collection method updateOne()

db.collection(collection).updateOne(filter, update, options. callback)

Parameter Type Description

filter object Specifies the selection critera

update object Specifies the modifications to apply

options object (optional) Optional settings (default: null)

callback Function Function to be called when the operation is done

The callback function takes two arguments

err : Error - If an error occurs the err argument will be defined•
db : object - The MongoDB instance•

Delete a document

Delete a document with the property { greetings: 'Whut?' }

const MongoClient = require('mongodb').MongoClient;

https://riptutorial.com/ 169

const url = 'mongodb://localhost:27017/test';

MongoClient.connect(url, function (err, db) {
 if (err) throw new Error(err);
 db.collection('myCollection').deleteOne(// Delete method 'deleteOne'
 { greetings: "Whut?" },
 function (err, result) {
 if (err) throw new Error(err);
 db.close(); // Don't forget to close the connection when you are done
 });
});

Collection method deleteOne()

db.collection(collection).deleteOne(filter, options, callback)

Parameter Type Description

filter object A document specifying the selection critera

options object (optional) Optional settings (default: null)

callback Function Function to be called when the operation is done

The callback function takes two arguments

err : Error - If an error occurs the err argument will be defined•
db : object - The MongoDB instance•

Delete multiple documents

Delete ALL documents with a 'farewell' property set to 'okay'.

const MongoClient = require('mongodb').MongoClient;

const url = 'mongodb://localhost:27017/test';

MongoClient.connect(url, function (err, db) {
 if (err) throw new Error(err);
 db.collection('myCollection').deleteMany(// MongoDB delete method 'deleteMany'
 { farewell: "okay" }, // Delete ALL documents with the property 'farewell: okay'
 function (err, result) {
 if (err) throw new Error(err);
 db.close(); // Don't forget to close the connection when you are done
 });
});

Collection method deleteMany()

db.collection(collection).deleteMany(filter, options, callback)

https://riptutorial.com/ 170

Parameter Type Description

filter document A document specifying the selection critera

options object (optional) Optional settings (default: null)

callback function Function to be called when the operation is done

The callback function takes two arguments

err : Error - If an error occurs the err argument will be defined•
db : object - The MongoDB instance•

Simple connect

MongoDB.connect('mongodb://localhost:27017/databaseName', function(error, database) {
 if(error) return console.log(error);
 const collection = database.collection('collectionName');
 collection.insert({key: 'value'}, function(error, result) {
 console.log(error, result);
 });
});

Simple connect, using promises

const MongoDB = require('mongodb');

MongoDB.connect('mongodb://localhost:27017/databaseName')
 .then(function(database) {
 const collection = database.collection('collectionName');
 return collection.insert({key: 'value'});
 })
 .then(function(result) {
 console.log(result);
 });
    ```

Read Mongodb integration online: https://riptutorial.com/node-js/topic/5002/mongodb-integration

https://riptutorial.com/ 171

https://riptutorial.com/node-js/topic/5002/mongodb-integration


Chapter 50: MongoDB Integration for 
Node.js/Express.js

Introduction

MongoDB is one of the most popular NoSQL databases, thanks to the help of the MEAN stack. 
Interfacing with a Mongo database from an Express app is quick and easy, once you understand 
the kinda-wonky query syntax. We'll use Mongoose to help us out.

Remarks

More information can be found here: http://mongoosejs.com/docs/guide.html

Examples

Installing MongoDB

npm install --save mongodb 
npm install --save mongoose //A simple wrapper for ease of development

In your server file (normally named index.js or server.js)

const express = require('express'); 
const mongodb = require('mongodb'); 
const mongoose = require('mongoose'); 
const mongoConnectString = 'http://localhost/database name'; 
 
mongoose.connect(mongoConnectString, (err) => { 
  if (err) { 
    console.log('Could not connect to the database'); 
  } 
});

Creating a Mongoose Model

const Schema = mongoose.Schema; 
const ObjectId = Schema.Types.ObjectId; 
 
const Article = new Schema({ 
  title: { 
    type: String, 
    unique: true, 
    required: [true, 'Article must have title'] 
  }, 
  author: { 
    type: ObjectId, 
    ref: 'User' 

https://riptutorial.com/ 172

http://mongoosejs.com/docs/guide.html


  } 
}); 
 
module.exports = mongoose.model('Article, Article);

Let's dissect this. MongoDB and Mongoose use JSON(actually BSON, but that's irrelevant here) 
as the data format. At the top, I've set a few variables to reduce typing.

I create a new Schema and assign it to a constant. It's simple JSON, and each attribute is another 
Object with properties that help enforce a more consistent schema. Unique forces new instances 
being inserted in the database to, obviously, be unique. This is great for preventing a user creating 
multiple accounts on a service.

Required is another, declared as an array. The first element is the boolean value, and the second 
the error message should the value being inserted or updated fail to exist.

ObjectIds are used for relationships between Models. Examples might be 'Users have many 
Comments`. Other attributes can be used instead of ObjectId. Strings like a username is one 
example.

Lastly, exporting the model for use with your API routes provides access to your schema.

Querying your Mongo Database

A simple GET request. Let's assume the Model from the example above is in the file 
./db/models/Article.js.

const express = require('express'); 
const Articles = require('./db/models/Article'); 
 
module.exports = function (app) { 
  const routes = express.Router(); 
 
  routes.get('/articles', (req, res) => { 
    Articles.find().limit(5).lean().exec((err, doc) => { 
      if (doc.length > 0) { 
        res.send({ data: doc }); 
      } else { 
        res.send({ success: false, message: 'No documents retrieved' }); 
      } 
    }); 
  }); 
 
app.use('/api', routes); 
};

We can now get the data from our database by sending an HTTP request to this endpoint. A few 
key things, though:

Limit does exactly what it looks like. I'm only getting 5 documents back.1. 
Lean strips away some stuff from the raw BSON, reducing complexity and overhead. Not 
required. But useful.

2. 

https://riptutorial.com/ 173



When using find instead of findOne, confirm that the doc.length is greater than 0. This is 
because find always returns an array, so an empty array will not handle your error unless it 
is checked for length

3. 

I personally like to send the error message in that format. Change it to suit your needs. 
Same thing for the returned document.

4. 

The code in this example is written under the assumption that you have placed it in another 
file and not directly on the express server. To call this in the server, include these lines in 
your server code:

5. 

const app = express(); 
require('./path/to/this/file')(app) // 

Read MongoDB Integration for Node.js/Express.js online: https://riptutorial.com/node-
js/topic/9020/mongodb-integration-for-node-js-express-js

https://riptutorial.com/ 174

https://riptutorial.com/node-js/topic/9020/mongodb-integration-for-node-js-express-js
https://riptutorial.com/node-js/topic/9020/mongodb-integration-for-node-js-express-js


Chapter 51: Mongoose Library

Examples

Connect to MongoDB Using Mongoose

First, install Mongoose with:

npm install mongoose

Then, add it to server.js as dependencies:

var mongoose = require('mongoose'); 
var Schema = mongoose.Schema;

Next, create the database schema and the name of the collection:

var schemaName = new Schema({ 
    request: String, 
    time: Number 
}, { 
    collection: 'collectionName' 
});

Create a model and connect to the database:

var Model = mongoose.model('Model', schemaName); 
mongoose.connect('mongodb://localhost:27017/dbName');

Next, start MongoDB and run server.js using node server.js

To check if we have successfully connected to the database, we can use the events open, error 
from the mongoose.connection object.

var db = mongoose.connection; 
db.on('error', console.error.bind(console, 'connection error:')); 
db.once('open', function() { 
  // we're connected! 
});

Save Data to MongoDB using Mongoose and Express.js Routes

Setup

First, install the necessary packages with:

https://riptutorial.com/ 175



npm install express cors mongoose

Code

Then, add dependencies to your server.js file, create the database schema and the name of the 
collection, create an Express.js server, and connect to MongoDB:

var express = require('express'); 
var cors = require('cors'); // We will use CORS to enable cross origin domain requests. 
var mongoose = require('mongoose'); 
var Schema = mongoose.Schema; 
 
var app = express(); 
 
var schemaName = new Schema({ 
    request: String, 
    time: Number 
}, { 
    collection: 'collectionName' 
}); 
 
var Model = mongoose.model('Model', schemaName); 
mongoose.connect('mongodb://localhost:27017/dbName'); 
 
var port = process.env.PORT || 8080; 
app.listen(port, function() { 
    console.log('Node.js listening on port ' + port); 
});

Now add Express.js routes that we will use to write the data:

app.get('/save/:query', cors(), function(req, res) { 
    var query = req.params.query; 
 
    var savedata = new Model({ 
        'request': query, 
        'time': Math.floor(Date.now() / 1000) // Time of save the data in unix timestamp 
format 
    }).save(function(err, result) { 
        if (err) throw err; 
 
        if(result) { 
            res.json(result) 
        } 
    }) 
})

Here the query variable will be the <query> parameter from the incoming HTTP request, which will 
be saved to MongoDB:

var savedata = new Model({ 
    'request': query, 
    //...

https://riptutorial.com/ 176



If an error occurs while trying to write to MongoDB, you will receive an error message on the 
console. If all is successful, you will see the saved data in JSON format on the page.

//... 
}).save(function(err, result) { 
    if (err) throw err; 
 
    if(result) { 
        res.json(result) 
    } 
}) 
//...

Now, you need to start MongoDB and run your server.js file using node server.js.

Usage

To use this to save data, go to the following URL in your browser:

http://localhost:8080/save/<query>

Where <query> is the new request you wish to save.

Example:

http://localhost:8080/save/JavaScript%20is%20Awesome

Output in JSON format:

{ 
    __v: 0, 
    request: "JavaScript is Awesome", 
    time: 1469411348, 
    _id: "57957014b93bc8640f2c78c4" 
}

Find Data in MongoDB Using Mongoose and Express.js Routes

Setup

First, install the necessary packages with:

npm install express cors mongoose

Code

https://riptutorial.com/ 177



Then, add dependencies to server.js, create the database schema and the name of the collection, 
create an Express.js server, and connect to MongoDB:

var express = require('express'); 
var cors = require('cors'); // We will use CORS to enable cross origin domain requests. 
var mongoose = require('mongoose'); 
var Schema = mongoose.Schema; 
 
var app = express(); 
 
var schemaName = new Schema({ 
    request: String, 
    time: Number 
}, { 
    collection: 'collectionName' 
}); 
 
var Model = mongoose.model('Model', schemaName); 
mongoose.connect('mongodb://localhost:27017/dbName'); 
 
var port = process.env.PORT || 8080; 
app.listen(port, function() { 
    console.log('Node.js listening on port ' + port); 
});

Now add Express.js routes that we will use to query the data:

app.get('/find/:query', cors(), function(req, res) { 
    var query = req.params.query; 
 
    Model.find({ 
        'request': query 
    }, function(err, result) { 
        if (err) throw err; 
        if (result) { 
            res.json(result) 
        } else { 
            res.send(JSON.stringify({ 
                error : 'Error' 
            })) 
        } 
    }) 
})

Assume that the following documents are in the collection in the model:

{ 
        "_id" : ObjectId("578abe97522ad414b8eeb55a"), 
        "request" : "JavaScript is Awesome", 
        "time" : 1468710551 
} 
{ 
        "_id" : ObjectId("578abe9b522ad414b8eeb55b"), 
        "request" : "JavaScript is Awesome", 
        "time" : 1468710555 
} 
{ 
        "_id" : ObjectId("578abea0522ad414b8eeb55c"), 

https://riptutorial.com/ 178



        "request" : "JavaScript is Awesome", 
        "time" : 1468710560 
}

And the goal is to find and display all the documents containing "JavaScript is Awesome" under the 
"request" key.

For this, start MongoDB and run server.js with node server.js:

Usage

To use this to find data, go to the following URL in a browser:

http://localhost:8080/find/<query>

Where <query> is the search query.

Example:

http://localhost:8080/find/JavaScript%20is%20Awesome

Output:

[{ 
    _id: "578abe97522ad414b8eeb55a", 
    request: "JavaScript is Awesome", 
    time: 1468710551, 
    __v: 0 
}, 
{ 
    _id: "578abe9b522ad414b8eeb55b", 
    request: "JavaScript is Awesome", 
    time: 1468710555, 
    __v: 0 
}, 
{ 
    _id: "578abea0522ad414b8eeb55c", 
    request: "JavaScript is Awesome", 
    time: 1468710560, 
    __v: 0 
}]

Find Data in MongoDB Using Mongoose, Express.js Routes and $text 
Operator

Setup

First, install the necessary packages with:

https://riptutorial.com/ 179



npm install express cors mongoose

Code

Then, add dependencies to server.js, create the database schema and the name of the collection, 
create an Express.js server, and connect to MongoDB:

var express = require('express'); 
var cors = require('cors'); // We will use CORS to enable cross origin domain requests. 
var mongoose = require('mongoose'); 
var Schema = mongoose.Schema; 
 
var app = express(); 
 
var schemaName = new Schema({ 
    request: String, 
    time: Number 
}, { 
    collection: 'collectionName' 
}); 
 
var Model = mongoose.model('Model', schemaName); 
mongoose.connect('mongodb://localhost:27017/dbName'); 
 
var port = process.env.PORT || 8080; 
app.listen(port, function() { 
    console.log('Node.js listening on port ' + port); 
});

Now add Express.js routes that we will use to query the data:

app.get('/find/:query', cors(), function(req, res) { 
    var query = req.params.query; 
 
    Model.find({ 
        'request': query 
    }, function(err, result) { 
        if (err) throw err; 
        if (result) { 
            res.json(result) 
        } else { 
            res.send(JSON.stringify({ 
                error : 'Error' 
            })) 
        } 
    }) 
})

Assume that the following documents are in the collection in the model:

{ 
        "_id" : ObjectId("578abe97522ad414b8eeb55a"), 
        "request" : "JavaScript is Awesome", 
        "time" : 1468710551 
} 

https://riptutorial.com/ 180



{ 
        "_id" : ObjectId("578abe9b522ad414b8eeb55b"), 
        "request" : "JavaScript is Awesome", 
        "time" : 1468710555 
} 
{ 
        "_id" : ObjectId("578abea0522ad414b8eeb55c"), 
        "request" : "JavaScript is Awesome", 
        "time" : 1468710560 
}

And that the goal is to find and display all the documents containing only "JavaScript" word under 
the "request" key.

To do this, first create a text index for "request" in the collection. For this, add the following code to 
server.js:

schemaName.index({ request: 'text' });

And replace:

    Model.find({ 
        'request': query 
    }, function(err, result) {

With:

Model.find({ 
    $text: { 
        $search: query 
    } 
}, function(err, result) {

Here, we are using $text and $search MongoDB operators for find all documents in collection 
collectionName which contains at least one word from the specified find query.

Usage

To use this to find data, go to the following URL in a browser:

http://localhost:8080/find/<query>

Where <query> is the search query.

Example:

http://localhost:8080/find/JavaScript

Output:

https://riptutorial.com/ 181



[{ 
    _id: "578abe97522ad414b8eeb55a", 
    request: "JavaScript is Awesome", 
    time: 1468710551, 
    __v: 0 
}, 
{ 
    _id: "578abe9b522ad414b8eeb55b", 
    request: "JavaScript is Awesome", 
    time: 1468710555, 
    __v: 0 
}, 
{ 
    _id: "578abea0522ad414b8eeb55c", 
    request: "JavaScript is Awesome", 
    time: 1468710560, 
    __v: 0 
}]

Indexes in models.

MongoDB supports secondary indexes. In Mongoose, we define these indexes within our schema. 
Defining indexes at schema level is necessary when we need to create compound indexes.

Mongoose Connection

var strConnection = 'mongodb://localhost:27017/dbName'; 
var db = mongoose.createConnection(strConnection)

Creating a basic schema

var Schema = require('mongoose').Schema; 
var usersSchema = new Schema({ 
    username: { 
        type: String, 
        required: true, 
        unique: true 
    }, 
    email: { 
        type: String, 
        required: true 
    }, 
    password: { 
        type: String, 
        required: true 
    }, 
    created: { 
        type: Date, 
        default: Date.now 
    } 
}); 
 
var usersModel = db.model('users', usersSchema); 
module.exports = usersModel;

By default, mongoose adds two new fields into our model, even when those are not defined in the 

https://riptutorial.com/ 182



model. Those fields are:

_id

Mongoose assigns each of your schemas an _id field by default if one is not passed into the 
Schema constructor. The type assigned is an ObjectId to coincide with MongoDB's default 
behavior. If you don't want an _id added to your schema at all, you may disable it using this option.

var usersSchema = new Schema({ 
    username: { 
        type: String, 
        required: true, 
        unique: true 
    }, { 
        _id: false 
});

__v or versionKey

The versionKey is a property set on each document when first created by Mongoose. This keys 
value contains the internal revision of the document. The name of this document property is 
configurable.

You can easy disable this field in the model configuration:

var usersSchema = new Schema({ 
    username: { 
        type: String, 
        required: true, 
        unique: true 
    }, { 
    versionKey: false 
});

Compound indexes

We can create another indexes besides those Mongoose creates.

usersSchema.index({username: 1 }); 
usersSchema.index({email: 1 });

In these case our model have two more indexes, one for the field username and another for email 
field. But we can create compound indexes.

usersSchema.index({username: 1, email: 1 });

Index performance impact

By default, mongoose always call the ensureIndex for each index sequentially and emit an 'index' 
event on the model when all the ensureIndex calls succeeded or when there was an error.

In MongoDB ensureIndex is deprecated since 3.0.0 version, now is an alias for createIndex.

https://riptutorial.com/ 183



Is recommended disable the behavior by setting the autoIndex option of your schema to false, or 
globally on the connection by setting the option config.autoIndex to false.

usersSchema.set('autoIndex', false);

Useful Mongoose functions

Mongoose contains some built in functions that build on the standard find().

doc.find({'some.value':5},function(err,docs){ 
    //returns array docs 
}); 
 
doc.findOne({'some.value':5},function(err,doc){ 
    //returns document doc 
}); 
 
doc.findById(obj._id,function(err,doc){ 
    //returns document doc 
});

find data in mongodb using promises

Setup

First, install the necessary packages with:

npm install express cors mongoose

Code

Then, add dependencies to server.js, create the database schema and the name of the collection, 
create an Express.js server, and connect to MongoDB:

var express = require('express'); 
var cors = require('cors'); // We will use CORS to enable cross origin domain requests. 
var mongoose = require('mongoose'); 
var Schema = mongoose.Schema; 
 
var app = express(); 
 
var schemaName = new Schema({ 
    request: String, 
    time: Number 
}, { 
    collection: 'collectionName' 
}); 
 
var Model = mongoose.model('Model', schemaName); 
mongoose.connect('mongodb://localhost:27017/dbName'); 

https://riptutorial.com/ 184



 
var port = process.env.PORT || 8080; 
app.listen(port, function() { 
    console.log('Node.js listening on port ' + port); 
}); 
 
app.use(function(err, req, res, next) { 
  console.error(err.stack); 
  res.status(500).send('Something broke!'); 
}); 
 
app.use(function(req, res, next) { 
  res.status(404).send('Sorry cant find that!'); 
});

Now add Express.js routes that we will use to query the data:

app.get('/find/:query', cors(), function(req, res, next) { 
    var query = req.params.query; 
 
    Model.find({ 
        'request': query 
    }) 
    .exec() //remember to add exec, queries have a .then attribute but aren't promises 
    .then(function(result) { 
        if (result) { 
            res.json(result) 
        } else { 
            next() //pass to 404 handler 
        } 
    }) 
    .catch(next) //pass to error handler 
})

Assume that the following documents are in the collection in the model:

{ 
        "_id" : ObjectId("578abe97522ad414b8eeb55a"), 
        "request" : "JavaScript is Awesome", 
        "time" : 1468710551 
} 
{ 
        "_id" : ObjectId("578abe9b522ad414b8eeb55b"), 
        "request" : "JavaScript is Awesome", 
        "time" : 1468710555 
} 
{ 
        "_id" : ObjectId("578abea0522ad414b8eeb55c"), 
        "request" : "JavaScript is Awesome", 
        "time" : 1468710560 
}

And the goal is to find and display all the documents containing "JavaScript is Awesome" under the 
"request" key.

For this, start MongoDB and run server.js with node server.js:

https://riptutorial.com/ 185



Usage

To use this to find data, go to the following URL in a browser:

http://localhost:8080/find/<query>

Where <query> is the search query.

Example:

http://localhost:8080/find/JavaScript%20is%20Awesome

Output:

[{ 
    _id: "578abe97522ad414b8eeb55a", 
    request: "JavaScript is Awesome", 
    time: 1468710551, 
    __v: 0 
}, 
{ 
    _id: "578abe9b522ad414b8eeb55b", 
    request: "JavaScript is Awesome", 
    time: 1468710555, 
    __v: 0 
}, 
{ 
    _id: "578abea0522ad414b8eeb55c", 
    request: "JavaScript is Awesome", 
    time: 1468710560, 
    __v: 0 
}]

Read Mongoose Library online: https://riptutorial.com/node-js/topic/3486/mongoose-library

https://riptutorial.com/ 186

https://riptutorial.com/node-js/topic/3486/mongoose-library


Chapter 52: MSSQL Intergration

Introduction

To integrate any database with nodejs you need a driver package or you can call it a npm module 
which will provide you with basic API to connect with the database and perform interactions . 
Same is true with mssql database , here we will integrate mssql with nodejs and perform some 
basic queries on SQL tabels.

Remarks

We have assumed that we will have a local instance of mssql database server running on local 
machine . You can refer this document to do the same .

Also make sure you appropriate user created with privileges added as well.

Examples

Connecting with SQL via. mssql npm module

We will start with creating a simple node application with a basic structure and then connecting 
with local sql server database and performing some queries on that database.

Step 1: Create a directory/folder by the name of project which you intent to create. Initialize a 
node application using npm init command which will create a package.json in current directory .

mkdir mySqlApp 
//folder created 
cd mwSqlApp 
//change to newly created directory 
npm init 
//answer all the question .. 
npm install 
//This will complete quickly since we have not added any packages to our app.

Step 2: Now we will create a App.js file in this directory and install some packages which we are 
going to need to connect to sql db.

sudo gedit App.js 
//This will create App.js file , you can use your fav. text editor :) 
npm install --save mssql 
//This will install the mssql package to you app

Step 3: Now we will add a basic configuration variable to our application which will be used by 
mssql module to establish a connection .

console.log("Hello world, This is an app to connect to sql server."); 

https://riptutorial.com/ 187

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-ubuntu


var config = { 
        "user": "myusername", //default is sa 
        "password": "yourStrong(!)Password", 
        "server": "localhost", // for local machine 
        "database": "staging", // name of database 
        "options": { 
            "encrypt": true 
        } 
      } 
 
sql.connect(config, err => { 
    if(err){ 
        throw err ; 
    } 
    console.log("Connection Successful !"); 
 
    new sql.Request().query('select 1 as number', (err, result) => { 
        //handle err 
        console.dir(result) 
        // This example uses callbacks strategy for getting results. 
    }) 
 
}); 
 
sql.on('error', err => { 
    // ... error handler 
    console.log("Sql database connection error " ,err); 
})

Step 4: This is the easiest step ,where we start the application and the application will connect to 
the sql server and print out some simple results .

node App.js 
// Output : 
// Hello world, This is an app to connect to sql server. 
// Connection Successful ! 
// 1

To use promises or async for query execution refer the official documents of the mssql 
package :

Promises•
Async/Await•

Read MSSQL Intergration online: https://riptutorial.com/node-js/topic/9884/mssql-intergration

https://riptutorial.com/ 188

https://www.npmjs.com/package/mssql#promises
https://www.npmjs.com/package/mssql#async-await
https://riptutorial.com/node-js/topic/9884/mssql-intergration


Chapter 53: Multithreading

Introduction

Node.js has been designed to be single threaded. So for all practical purposes, applications that 
launch with Node will run on a single thread.

However, Node.js itself runs multi-threaded. I/O operations and the like will run from a thread pool. 
Further will any instance of a node application run on a different thread, therefore to run multi-
threaded applications one launches multiple instances.

Remarks

Understanding the Event Loop is important to understand how and why to use multiple threads.

Examples

Cluster

The cluster module allows one to start the same application multiple times.

Clustering is desirable when the different instances have the same flow of execution and don't 
depend on one another. In this scenario, you have one master that can start forks and the forks (or 
children). The children work independently and have their one space of Ram and Event Loop.

Setting up clusters can be beneficial for websites / APIs. Any thread can serve any customer, as it 
doesn't depend on other threads. A Database (like Redis) would be used to share Cookies, as 
variables can't be shared! between the threads.

// runs in each instance 
var cluster = require('cluster'); 
var numCPUs = require('os').cpus().length; 
 
console.log('I am always called'); 
 
if (cluster.isMaster) { 
    // runs only once (within the master); 
    console.log('I am the master, launching workers!'); 
    for(var i = 0; i < numCPUs; i++) cluster.fork(); 
 
} else { 
    // runs in each fork 
    console.log('I am a fork!'); 
 
    // here one could start, as an example, a web server 
 
} 
 
console.log('I am always called as well');

https://riptutorial.com/ 189

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/


Child Process

Child Processes are the way to go when one wants to run processes independently with different 
initialization and concerns. Like forks in clusters, a child_process runs in its thread, but unlike forks, 
it has a way to communicate with its parent.

The communication goes both ways, so parent and child can listen for messages and send 
messages.

Parent (../parent.js)

var child_process = require('child_process'); 
console.log('[Parent]', 'initalize'); 
 
var child1 = child_process.fork(__dirname + '/child'); 
child1.on('message', function(msg) { 
    console.log('[Parent]', 'Answer from child: ', msg); 
}); 
 
// one can send as many messages as one want 
child1.send('Hello'); // Hello to you too :) 
child1.send('Hello'); // Hello to you too :) 
 
// one can also have multiple children 
var child2 = child_process.fork(__dirname + '/child');

Child (../child.js)

// here would one initialize this child 
// this will be executed only once 
console.log('[Child]', 'initalize'); 
 
// here one listens for new tasks from the parent 
process.on('message', function(messageFromParent) { 
 
    //do some intense work here 
    console.log('[Child]', 'Child doing some intense work'); 
 
    if(messageFromParent == 'Hello') process.send('Hello to you too :)'); 
    else process.send('what?'); 
 
})

Next to message one can listen to many events like 'error', 'connected' or 'disconnect'.

Starting a child process has a certain cost associated with it. One would want to spawn as few of 
them as possible.

Read Multithreading online: https://riptutorial.com/node-js/topic/10592/multithreading

https://riptutorial.com/ 190

https://nodejs.org/api/child_process.html#child_process_class_childprocess
https://riptutorial.com/node-js/topic/10592/multithreading


Chapter 54: Mysql Connection Pool

Examples

Using a connection pool without database

Achieving multitenancy on database server with multiple databases hosted on it.

Multitenancy is common requirement of enterprise application nowadays and creating connection 
pool for each database in database server is not recommended. so, what we can do instead is 
create connection pool with database server and than switch between databases hosted on 
database server on demand.

Suppose our application has different databases for each firm hosted on database server. We will 
connect to respective firm database when user hits the application. here is the example on how to 
do that:-

var pool  = mysql.createPool({ 
      connectionLimit : 10, 
      host            : 'example.org', 
      user            : 'bobby', 
      password        : 'pass' 
    }); 
 
pool.getConnection(function(err, connection){ 
    if(err){ 
        return cb(err); 
    } 
    connection.changeUser({database : "firm1"}); 
    connection.query("SELECT * from history", function(err, data){ 
        connection.release(); 
        cb(err, data); 
    }); 
});

Let me break down the example:-

When defining pool configuration i did not gave the database name but only gave database server 
i.e

{ 
  connectionLimit : 10, 
  host            : 'example.org', 
  user            : 'bobby', 
  password        : 'pass' 
}

so when we want to use the specific database on database server, we ask the connection to hit 
database by using:-

https://riptutorial.com/ 191



    connection.changeUser({database : "firm1"});

you can refer the official documentation here

Read Mysql Connection Pool online: https://riptutorial.com/node-js/topic/6353/mysql-connection-
pool

https://riptutorial.com/ 192

https://github.com/mysqljs/mysql#switching-users-and-altering-connection-state
https://riptutorial.com/node-js/topic/6353/mysql-connection-pool
https://riptutorial.com/node-js/topic/6353/mysql-connection-pool


Chapter 55: MySQL integration

Introduction

In this topic you will learn how to integrate with Node.js using MYSQL database management tool. 
You will learn various ways to connect and interact with data residing in mysql using a nodejs 
program and script.

Examples

Query a connection object with parameters

When you want to use user generated content in the SQL, it with done with parameters. For 
example for searching user with the name aminadav you should do:

var username = 'aminadav'; 
var querystring = 'SELECT name, email from users where name = ?'; 
connection.query(querystring, [username], function(err, rows, fields) { 
  if (err) throw err; 
  if (rows.length) { 
    rows.forEach(function(row) { 
      console.log(row.name, 'email address is', row.email); 
    }); 
  } else { 
    console.log('There were no results.'); 
  } 
});

Using a connection pool

a. Running multiple queries at same time

All queries in MySQL connection are done one after another. It means that if you want to do 10 
queries and each query takes 2 seconds then it will take 20 seconds to complete whole execution. 
The solution is to create 10 connection and run each query in a different connection. This can be 
done automatically using connection pool

var pool  = mysql.createPool({ 
  connectionLimit : 10, 
  host            : 'example.org', 
  user            : 'bobby', 
  password        : 'pass', 
  database        : 'schema' 
}); 
 
for(var i=0;i<10;i++){ 
  pool.query('SELECT ` as example', function(err, rows, fields) { 
    if (err) throw err; 
    console.log(rows[0].example); //Show 1 

https://riptutorial.com/ 193



  }); 
 }

It will run all the 10 queries in parallel.

When you use pool you don't need the connection anymore. You can query directly the pool. 
MySQL module will search for the next free connection to execute your query.

b. Achieving multi-tenancy on database server with different 
databases hosted on it.

Multitenancy is a common requirement of enterprise application nowadays and creating 
connection pool for each database in database server is not recommended. so, what we can do 
instead is create connection pool with database server and then switch them between databases 
hosted on database server on demand.

Suppose our application has different databases for each firm hosted on database server. We will 
connect to respective firm database when user hits the application. Here is the example on how to 
do that:-

var pool  = mysql.createPool({ 
      connectionLimit : 10, 
      host            : 'example.org', 
      user            : 'bobby', 
      password        : 'pass' 
    }); 
 
pool.getConnection(function(err, connection){ 
    if(err){ 
        return cb(err); 
    } 
    connection.changeUser({database : "firm1"}); 
    connection.query("SELECT * from history", function(err, data){ 
        connection.release(); 
        cb(err, data); 
    }); 
});

Let me break down the example:-

When defining pool configuration i did not gave the database name but only gave database server 
i.e

{ 
  connectionLimit : 10, 
  host            : 'example.org', 
  user            : 'bobby', 
  password        : 'pass' 
}

so when we want to use the specific database on database server, we ask the connection to hit 
database by using:-

https://riptutorial.com/ 194



    connection.changeUser({database : "firm1"});

you can refer the official documentation here

Connect to MySQL

One of the easiest ways to connect to MySQL is by using mysql module. This module handles the 
connection between Node.js app and MySQL server. You can install it like any other module:

npm install --save mysql

Now you have to create a mysql connection, which you can later query.

const mysql      = require('mysql'); 
const connection = mysql.createConnection({ 
  host     : 'localhost', 
  user     : 'me', 
  password : 'secret', 
  database : 'database_schema' 
}); 
 
connection.connect(); 
 
// Execute some query statements 
// I.e. SELECT * FROM FOO 
 
connection.end();

In the next example you will learn how to query the connection object.

Query a connection object without parameters

You send the query as a string and in response callback with the answer is received. The callback 
gives you error, array of rows and fields. Each row contains all the column of the returned table. 
Here is a snippet for the following explanation.

connection.query('SELECT name,email from users', function(err, rows, fields) { 
  if (err) throw err; 
 
  console.log('There are:', rows.length,' users'); 
  console.log('First user name is:',rows[0].name) 
});

Run a number of queries with a single connection from a pool

There may be situations where you have setup a pool of MySQL connections, but you have a 
number of queries you would like to run in sequence:

SELECT 1; 
SELECT 2;

https://riptutorial.com/ 195

https://github.com/mysqljs/mysql#switching-users-and-altering-connection-state
https://github.com/mysqljs/mysql


You could just run then using pool.query as seen elsewhere, however if you only have one free 
connection in the pool you must wait until a connection becomes available before you can run the 
second query.

You can, however, retain an active connection from the pool and run as many queries as you 
would like using a single connection using pool.getConnection:

pool.getConnection(function (err, conn) { 
  if (err) return callback(err); 
 
  conn.query('SELECT 1 AS seq', function (err, rows) { 
    if (err) throw err; 
 
    conn.query('SELECT 2 AS seq', function (err, rows) { 
      if (err) throw err; 
 
      conn.release(); 
      callback(); 
    }); 
  }); 
});

Note: You must remember to release the connection, otherwise there is one less MySQL 
connection available to the rest of the pool!

For more information on pooling MySQL connections check out the MySQL docs.

Return the query when an error occurs

You can attach the query executed to your err object when an error occurs:

var q = mysql.query('SELECT `name` FROM `pokedex` WHERE `id` = ?', [ 25 ], function (err, 
result) { 
  if (err) { 
    // Table 'test.pokedex' doesn't exist 
    err.query = q.sql; // SELECT `name` FROM `pokedex` WHERE `id` = 25 
    callback(err); 
  } 
  else { 
    callback(null, result); 
  } 
});

Export Connection Pool

// db.js 
 
const mysql = require('mysql'); 
 
const pool = mysql.createPool({ 
  connectionLimit : 10, 
  host            : 'example.org', 
  user            : 'bob', 
  password        : 'secret', 

https://riptutorial.com/ 196

http://www.riptutorial.com/node-js/example/4587/using-a-connection-pool
https://www.npmjs.com/package/mysql#pooling-connections


  database        : 'my_db' 
}); 
 
module.export = { 
  getConnection: (callback) => { 
    return pool.getConnection(callback); 
  } 
}

// app.js 
 
const db = require('./db'); 
 
db.getConnection((err, conn) => { 
  conn.query('SELECT something from sometable', (error, results, fields) => { 
    // get the results 
    conn.release(); 
  }); 
});

Read MySQL integration online: https://riptutorial.com/node-js/topic/1406/mysql-integration

https://riptutorial.com/ 197

https://riptutorial.com/node-js/topic/1406/mysql-integration


Chapter 56: N-API

Introduction

The N-API is a new and better way for creating native module for NodeJS. N-API is in early stage 
so it may have inconsistent documentation.

Examples

Hello to N-API

This module register hello function on hello module. hello function prints Hello world on console 
with printf and return 1373 from native function into javascript caller.

#include <node_api.h> 
#include <stdio.h> 
 
 
napi_value say_hello(napi_env env, napi_callback_info info) 
{ 
    napi_value retval; 
 
    printf("Hello world\n"); 
 
    napi_create_number(env, 1373, &retval); 
 
    return retval; 
} 
 
void init(napi_env env, napi_value exports, napi_value module, void* priv) 
{ 
    napi_status status; 
    napi_property_descriptor desc = { 
        /* 
         * String describing the key for the property, encoded as UTF8. 
         */ 
        .utf8name = "hello", 
        /* 
         * Set this to make the property descriptor object's value property 
         * to be a JavaScript function represented by method. 
         * If this is passed in, set value, getter and setter to NULL (since these members 
won't be used). 
         */ 
        .method = say_hello, 
        /* 
         * A function to call when a get access of the property is performed. 
         * If this is passed in, set value and method to NULL (since these members won't be 
used). 
         * The given function is called implicitly by the runtime when the property is 
accessed 
         * from JavaScript code (or if a get on the property is performed using a N-API call). 
         */ 
        .getter = NULL, 
        /* 

https://riptutorial.com/ 198



         * A function to call when a set access of the property is performed. 
         * If this is passed in, set value and method to NULL (since these members won't be 
used). 
         * The given function is called implicitly by the runtime when the property is set 
         * from JavaScript code (or if a set on the property is performed using a N-API call). 
         */ 
        .setter = NULL, 
        /* 
         * The value that's retrieved by a get access of the property if the property is a 
data property. 
         * If this is passed in, set getter, setter, method and data to NULL (since these 
members won't be used). 
         */ 
        .value = NULL, 
        /* 
         * The attributes associated with the particular property. See 
napi_property_attributes. 
         */ 
        .attributes = napi_default, 
        /* 
         * The callback data passed into method, getter and setter if this function is 
invoked. 
         */ 
        .data = NULL 
    }; 
    /* 
     * This method allows the efficient definition of multiple properties on a given object. 
     */ 
    status = napi_define_properties(env, exports, 1, &desc); 
 
    if (status != napi_ok) 
        return; 
} 
 
 
NAPI_MODULE(hello, init)

Read N-API online: https://riptutorial.com/node-js/topic/10539/n-api

https://riptutorial.com/ 199

https://riptutorial.com/node-js/topic/10539/n-api


Chapter 57: Node JS Localization

Introduction

Its very easy to maintain localization nodejs express

Examples

using i18n module to maintains localization in node js app

Lightweight simple translation module with dynamic json storage. Supports plain vanilla node.js 
apps and should work with any framework (like express, restify and probably more) that exposes 
an app.use() method passing in res and req objects. Uses common __('...') syntax in app and 
templates. Stores language files in json files compatible to webtranslateit json format. Adds new 
strings on-the-fly when first used in your app. No extra parsing needed.

express + i18n-node + cookieParser and avoid concurrency issues

// usual requirements 
var express = require('express'), 
    i18n = require('i18n'), 
    app = module.exports = express(); 
 
i18n.configure({ 
  // setup some locales - other locales default to en silently 
  locales: ['en', 'ru', 'de'], 
 
  // sets a custom cookie name to parse locale settings from 
  cookie: 'yourcookiename', 
 
  // where to store json files - defaults to './locales' 
  directory: __dirname + '/locales' 
}); 
 
app.configure(function () { 
  // you will need to use cookieParser to expose cookies to req.cookies 
  app.use(express.cookieParser()); 
 
  // i18n init parses req for language headers, cookies, etc. 
  app.use(i18n.init); 
 
}); 
 
// serving homepage 
app.get('/', function (req, res) { 
  res.send(res.__('Hello World')); 
}); 
 
// starting server 
if (!module.parent) { 
  app.listen(3000); 
}

https://riptutorial.com/ 200



Read Node JS Localization online: https://riptutorial.com/node-js/topic/9594/node-js-localization

https://riptutorial.com/ 201

https://riptutorial.com/node-js/topic/9594/node-js-localization


Chapter 58: Node server without framework

Remarks

Though Node has many framework to help you getting your server up and running, mainly:

Express: The most used framework

Total: The ALL-IN-ONE UNITY framework, that have everything and do not depend on any other 
framework or module.

But, there is always no one size fits all, so developer may need to build his/her own server, without 
any other dependency.

If the app i accessed through external server, CORS could be an issue, a code to avoid it had 
been provided.

Examples

Framework-less node server

var http = require('http'); 
var fs = require('fs'); 
var path = require('path'); 
 
http.createServer(function (request, response) { 
console.log('request ', request.url); 
 
var filePath = '.' + request.url; 
if (filePath == './') 
    filePath = './index.html'; 
 
var extname = String(path.extname(filePath)).toLowerCase(); 
var contentType = 'text/html'; 
var mimeTypes = { 
    '.html': 'text/html', 
    '.js': 'text/javascript', 
    '.css': 'text/css', 
    '.json': 'application/json', 
    '.png': 'image/png', 
    '.jpg': 'image/jpg', 
    '.gif': 'image/gif', 
    '.wav': 'audio/wav', 
    '.mp4': 'video/mp4', 
    '.woff': 'application/font-woff', 
    '.ttf': 'applilcation/font-ttf', 
    '.eot': 'application/vnd.ms-fontobject', 
    '.otf': 'application/font-otf', 
    '.svg': 'application/image/svg+xml' 
}; 
 
contentType = mimeTypes[extname] || 'application/octect-stream'; 

https://riptutorial.com/ 202

https://nodejs.org/en/
http://expressjs.com/
https://www.totaljs.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS


 
fs.readFile(filePath, function(error, content) { 
    if (error) { 
        if(error.code == 'ENOENT'){ 
            fs.readFile('./404.html', function(error, content) { 
                response.writeHead(200, { 'Content-Type': contentType }); 
                response.end(content, 'utf-8'); 
            }); 
        } 
        else { 
            response.writeHead(500); 
            response.end('Sorry, check with the site admin for error: '+error.code+' ..\n'); 
            response.end(); 
        } 
    } 
    else { 
        response.writeHead(200, { 'Content-Type': contentType }); 
        response.end(content, 'utf-8'); 
    } 
 }); 
 
}).listen(8125); 
console.log('Server running at http://127.0.0.1:8125/');

Overcoming CORS Issues

// Website you wish to allow to connect to 
response.setHeader('Access-Control-Allow-Origin', '*'); 
 
// Request methods you wish to allow 
response.setHeader('Access-Control-Allow-Methods', 'GET, POST, OPTIONS, PUT, PATCH, DELETE'); 
 
// Request headers you wish to allow 
response.setHeader('Access-Control-Allow-Headers', 'X-Requested-With,content-type'); 
 
// Set to true if you need the website to include cookies in the requests sent 
// to the API (e.g. in case you use sessions) 
response.setHeader('Access-Control-Allow-Credentials', true);

Read Node server without framework online: https://riptutorial.com/node-js/topic/5910/node-
server-without-framework

https://riptutorial.com/ 203

https://riptutorial.com/node-js/topic/5910/node-server-without-framework
https://riptutorial.com/node-js/topic/5910/node-server-without-framework


Chapter 59: Node.js (express.js) with 
angular.js Sample code

Introduction

This example shows how to create a basic express app and then serve AngularJS.

Examples

Creating our project.

We're good to go so, we run, again from console:

mkdir our_project 
cd our_project

Now we're in the place where our code will live. To create the main archive of our project you can 
run  

Ok, but how we create the express skeleton project?

It's simple:

npm install -g express express-generator

Linux distros and Mac should use sudo to install this because they're installed in the nodejs 
directory which is only accessible by the root user. If everything went fine we can, finally, create 
the express-app skeleton, just run

express

This command will create inside our folder an express example app. The structure is as follow:

bin/ 
public/ 
routes/ 
views/ 
app.js 
package.json

Now if we run npm start an go to http://localhost:3000 we'll see the express app up and running, 
fair enough we've generated an express app without too much trouble, but how can we mix this 
with AngularJS?.  

https://riptutorial.com/ 204

http://localhost:3000


How express works, briefly?

Express is a framework built on top of Nodejs, you can see the official documentation at the 
Express Site. But for our purpose we need to know that Express is the responsible when we type, 
for example, http://localhost:3000/home of rendering the home page of our application. From the 
recently created app created we can check:

FILE: routes/index.js 
var express = require('express'); 
var router = express.Router(); 
 
/* GET home page. */ 
router.get('/', function(req, res, next) { 
  res.render('index', { title: 'Express' }); 
}); 
 
module.exports = router;

What this code is telling us is that when the user goes to http://localhost:3000 it must render the 
index view and pass a JSON with a title property and value Express. But when we check the 
views directory and open index.jade we can see this:

extends layout 
block content 
    h1= title 
    p Welcome to #{title}

This is another powerful Express feature, template engines, they allow you to render content in 
the page by passing variables to it or inherit another template so your pages are more compact 
and better understandable by others. The file extension is .jade as far as I know Jade changed 
the name for Pug, basically is the same template engine but with some updates and core 
modifications.  

Installing Pug and updating Express template engine.

Ok, to start using Pug as the template engine of our project we need to run:

npm install --save pug

This will install Pug as a dependency of our project and save it to package.json. To use it we 
need to modify the file app.js:

var app = express(); 
// view engine setup 
app.set('views', path.join(__dirname, 'views')); 
app.set('view engine', 'pug');

And replace the line of view engine with pug and that's all. We can run again our project with npm 
start and we'll see that everything is working fine.

https://riptutorial.com/ 205

http://expressjs.com
http://localhost:3000/home
http://localhost:3000


How AngularJS fits in all of this?

AngularJS is an Javascript MVW(Model-View-Whatever) Framework mainly used to create SPA
(Simple Page Application) installing is fairly simple, you can go to AngularJS website and 
download the latest version which is v1.6.4. 

After we downloaded AngularJS when should copy the file to our public/javascripts folder inside 
our project, a little explanation, this is the folder that serves the static assets of our site, images, 
css, javacript files and so on. Of course this is configurable through the app.js file, but we'll keep it 
simple. Now we create a file named ng-app.js, the file where our application will live, inside our 
javascripts public folder, just where AngularJS lives. To bring AngularJS up we need to modify the 
content of views/layout.pug as follow:

doctype html 
html(ng-app='first-app') 
  head 
    title= title 
    link(rel='stylesheet', href='/stylesheets/style.css') 
  body(ng-controller='indexController') 
    block content 
 
  script(type='text-javascript', src='javascripts/angular.min.js') 
  script(type='text-javascript', src='javascripts/ng-app.js')

What are we doing here?, well, we're including AngularJS core and our recently created file ng-
app.js so when the template is rendered it will bring AngularJS up, notice the use of the ng-app 
directive, this is telling AngularJS that this is our application name and it should stick to it. 
So, the content of our ng-app.js will be:

angular.module('first-app', []) 
       .controller('indexController', ['$scope', indexController]); 
 
function indexController($scope) { 
    $scope.name = 'sigfried'; 
}

We're using the most basic AngularJS feature here, two-way data binding, this allows us to 
refresh the content of our view and controller instantly, this is a very simple explanation, but you 
can make a research in Google or StackOverflow to see how it really works.  

So, we have the basic blocks of our AngularJS application, but there is something we got to do, 
we need to update our index.pug page to see the changes of our angular app, let's do it:

extends layout 
block content 
  div(ng-controller='indexController') 
    h1= title 
    p Welcome {{name}} 
    input(type='text' ng-model='name')

Here we're just binding the input to our defined property name in the AngularJS scope inside our 

https://riptutorial.com/ 206

https://angularjs.org


controller:

$scope.name = 'sigfried';

The purpose of this is that whenever we change the text in the input the paragraph above will 
update it content inside the {{name}}, this is called interpolation, again another AngularJS feature 
to render our content in the template.  

So, all is setup, we can now run npm start go to http://localhost:3000 and see our express 
application serving the page and AngularJS managing the application frontend.

Read Node.js (express.js) with angular.js Sample code online: https://riptutorial.com/node-
js/topic/9757/node-js--express-js--with-angular-js-sample-code

https://riptutorial.com/ 207

http://localhost:3000
https://riptutorial.com/node-js/topic/9757/node-js--express-js--with-angular-js-sample-code
https://riptutorial.com/node-js/topic/9757/node-js--express-js--with-angular-js-sample-code


Chapter 60: Node.JS and MongoDB.

Remarks

These are the basic CRUD operations for using mongo db with nodejs.

Question: Are there other ways you can do what is done here ??

Answer : Yes, there are numerous way to do this.

Question: Is using mongoose necessary ??

Answer : No. There are other packages available which can help you.

Question: Where can I get full documentation of mongoose ??

Answer: Click Here

Examples

Connecting To a Database

To connect to a mongo database from node application we require mongoose.

Installing Mongoose Go to the toot of your application and install mongoose by

npm install mongoose

Next we connect to the database.

var mongoose = require('mongoose'); 
 
//connect to the test database running on default mongod port of localhost 
mongoose.connect('mongodb://localhost/test'); 
 
 
 
//Connecting with custom credentials 
mongoose.connect('mongodb://USER:PASSWORD@HOST:PORT/DATABASE'); 
 
 
//Using Pool Size to define the number of connections opening 
//Also you can use a call back function for error handling 
mongoose.connect('mongodb://localhost:27017/consumers', 
                 {server: { poolSize: 50 }}, 
                 function(err) { 
                    if(err) { 
                        console.log('error in this') 
                        console.log(err); 
                        // Do whatever to handle the error 
                    } else { 

https://riptutorial.com/ 208

http://mongoosejs.com/docs/api.html


                        console.log('Connected to the database'); 
                    } 
                }); 

Creating New Collection

With Mongoose, everything is derived from a Schema. Lets create a schema.

var mongoose = require('mongoose'); 
 
var Schema = mongoose.Schema; 
 
var AutoSchema = new Schema({ 
    name : String, 
    countOf: Number, 
}); 
// defining the document structure 
 
// by default the collection created in the db would be the first parameter we use (or the 
plural of it) 
module.exports = mongoose.model('Auto', AutoSchema); 
 
// we can over write it and define the collection name by specifying that in the third 
parameters. 
module.exports = mongoose.model('Auto', AutoSchema, 'collectionName'); 
 
 
// We can also define methods in the models. 
AutoSchema.methods.speak = function () { 
  var greeting = this.name 
    ? "Hello this is  " + this.name+ " and I have counts of "+ this.countOf 
    : "I don't have a name"; 
  console.log(greeting); 
} 
mongoose.model('Auto', AutoSchema, 'collectionName'); 

Remember methods must be added to the schema before compiling it with mongoose.model() like 
done above ..

Inserting Documents

For inserting a new document in the collection, we create a object of the schema.

var Auto = require('models/auto') 
var autoObj = new Auto({ 
    name: "NewName", 
    countOf: 10 
});

We save it like the following

autoObj.save(function(err, insertedAuto) { 
    if (err) return console.error(err); 
    insertedAuto.speak(); 
    // output: Hello this is NewName and I have counts of 10 

https://riptutorial.com/ 209



});

This will insert a new document in the collection

Reading

Reading Data from the collection is very easy. Getting all data of the collection.

var Auto = require('models/auto') 
Auto.find({}, function (err, autos) { 
      if (err) return console.error(err); 
       // will return a json array of all the documents in the collection 
      console.log(autos); 
})

Reading data with a condition

Auto.find({countOf: {$gte: 5}}, function (err, autos) { 
      if (err) return console.error(err); 
       // will return a json array of all the documents in the collection whose count is 
greater than 5 
      console.log(autos); 
})

You can also specify the second parameter as object of what all fields you need

Auto.find({},{name:1}, function (err, autos) { 
      if (err) return console.error(err); 
       // will return a json array of name field of all the documents in the collection 
      console.log(autos); 
})

Finding one document in a collection.

Auto.findOne({name:"newName"}, function (err, auto) { 
      if (err) return console.error(err); 
     //will return the first object of the document whose name is "newName" 
      console.log(auto); 
})

Finding one document in a collection by id .

Auto.findById(123, function (err, auto) { 
      if (err) return console.error(err); 
     //will return the first json object of the document whose id is 123 
      console.log(auto); 
})

Updating

For updating collections and documents we can use any of these methods:

https://riptutorial.com/ 210



Methods

update()•
updateOne()•
updateMany()•
replaceOne()•

Update()

The update() method modifies one or many documents (update parameters)

db.lights.update( 
   { room: "Bedroom" }, 
   { status: "On" } 
)

This operation searches the 'lights' collection for a document where room is Bedroom (1st 
parameter). It then updates the matching documents status property to On (2nd parameter) and 
returns a WriteResult object that looks like this:

{ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 }

UpdateOne

The UpdateOne() method modifies ONE document (update parameters)

db.countries.update( 
   { country: "Sweden" }, 
   { capital: "Stockholm" } 
)

This operation searches the 'countries' collection for a document where country is Sweden (1st 
parameter). It then updates the matching documents property capital to Stockholm (2nd 
parameter) and returns a WriteResult object that looks like this:

{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }

UpdateMany

The UpdateMany() method modifies multible documents (update parameters)

https://riptutorial.com/ 211



db.food.updateMany( 
   { sold: { $lt: 10 } }, 
   { $set: { sold: 55 } } 
)

This operation updates all documents (in a 'food' collection) where sold is lesser than 10 *(1st 
parameter) by setting sold to 55. It then returns a WriteResult object that looks like this:

{ "acknowledged" : true, "matchedCount" : a, "modifiedCount" : b }

a = Number of matched documents 
b = Number of modified documents

ReplaceOne

Replaces the first matching document (replacement document)

This example collection called countries contains 3 documents:

{ "_id" : 1, "country" : "Sweden" } 
{ "_id" : 2, "country" : "Norway" } 
{ "_id" : 3, "country" : "Spain" }

The following operation replaces the document { country: "Spain" } with document { country: 
"Finland" }

db.countries.replaceOne( 
   { country: "Spain" }, 
   { country: "Finland" } 
)

And returns:

{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }

The example collection countries now contains:

{ "_id" : 1, "country" : "Sweden" } 
{ "_id" : 2, "country" : "Norway" } 
{ "_id" : 3, "country" : "Finland" }

Deleting

Deleting documents from a collection in mongoose is done in the following manner.

Auto.remove({_id:123}, function(err, result){ 
    if (err) return console.error(err); 

https://riptutorial.com/ 212



    console.log(result); // this will specify the mongo default delete result. 
});

Read Node.JS and MongoDB. online: https://riptutorial.com/node-js/topic/7505/node-js-and-
mongodb-

https://riptutorial.com/ 213

https://riptutorial.com/node-js/topic/7505/node-js-and-mongodb-
https://riptutorial.com/node-js/topic/7505/node-js-and-mongodb-


Chapter 61: Node.js Architecture & Inner 
Workings

Examples

Node.js - under the hood

Node.js - in motion

https://riptutorial.com/ 214

http://i.stack.imgur.com/psKx9.png


Read Node.js Architecture & Inner Workings online: https://riptutorial.com/node-
js/topic/5892/node-js-architecture---inner-workings

https://riptutorial.com/ 215

http://i.stack.imgur.com/mW5Hp.png
https://riptutorial.com/node-js/topic/5892/node-js-architecture---inner-workings
https://riptutorial.com/node-js/topic/5892/node-js-architecture---inner-workings


Chapter 62: Node.js code for STDIN and 
STDOUT without using any library

Introduction

This is a simple program in node.js to which takes input from the user and prints it to the console.

The process object is a global that provides information about, and control over, the current 
Node.js process. As a global, it is always available to Node.js applications without using require().

Examples

Program

The process.stdin property returns a Readable stream equivalent to or associated with stdin.

The process.stdout property returns a Writable stream equivalent to or associated with stdout.

process.stdin.resume() 
console.log('Enter the data to be displayed '); 
process.stdin.on('data', function(data) { process.stdout.write(data) })

Read Node.js code for STDIN and STDOUT without using any library online: 
https://riptutorial.com/node-js/topic/8961/node-js-code-for-stdin-and-stdout-without-using--any-
library

https://riptutorial.com/ 216

https://riptutorial.com/node-js/topic/8961/node-js-code-for-stdin-and-stdout-without-using--any-library
https://riptutorial.com/node-js/topic/8961/node-js-code-for-stdin-and-stdout-without-using--any-library


Chapter 63: Node.js Design Fundamental

Examples

The Node.js philosophy

Small Core, Small Module :-

Build small and single purpose modules not in term of code size only, but also in term of scope 
that serves a single purpose

    a - "Small is beautiful" 
    b - "Make each program do one thing well."

The Reactor Pattern

The Reactor Pattern is the heart of the node.js asynchronous nature. Allowed the system to be 
implemented as a single-threaded process with a series of event generators and event handlers, 
with the help of event loop that runs continuously.

The non-blocking I/O engine of Node.js – libuv -

The Observer Pattern(EventEmitter) maintains a list of dependents/observers and notifies them

var events = require('events'); 
var eventEmitter = new events.EventEmitter(); 
 
var ringBell = function ringBell() 
{ 
  console.log('tring tring tring'); 
} 
eventEmitter.on('doorOpen', ringBell); 
 
eventEmitter.emit('doorOpen');

Read Node.js Design Fundamental online: https://riptutorial.com/node-js/topic/6274/node-js-
design-fundamental

https://riptutorial.com/ 217

https://riptutorial.com/node-js/topic/6274/node-js-design-fundamental
https://riptutorial.com/node-js/topic/6274/node-js-design-fundamental


Chapter 64: Node.js Error Management

Introduction

We will learn how to create Error objects and how to throw & handle errors in Node.js

Future edits related to best practices in error handling.

Examples

Creating Error object

new Error(message)

Creates new error object, where the value message is being set to message property of the created 
object. Usually the message arguments are being passed to Error constructor as a string. However if 
the message argument is object not a string then Error constructor calls .toString() method of the 
passed object and sets that value to message property of the created error object.

var err = new Error("The error message"); 
console.log(err.message); //prints: The error message 
console.log(err); 
//output 
//Error: The error message 
//    at ... 

Each error object has stack trace. Stack trace contains the information of error message and 
shows where the error happened (the above output shows the error stack). Once error object is 
created the system captures the stack trace of the error on current line. To get the stack trace use 
stack property of any created error object. Below two lines are identical:

console.log(err); 
console.log(err.stack);

Throwing Error

Throwing error means exception if any exception is not handled then the node server will crash.

The following line throws error:

throw new Error("Some error occurred"); 

or

var err = new Error("Some error occurred"); 
throw err;

https://riptutorial.com/ 218



or

throw "Some error occurred";

The last example (throwing strings) is not good practice and is not recommended (always throw 
errors which are instances of Error object).

Note that if you throw an error in your, then the system will crash on that line (if there is no 
exception handlers), no any code will be executed after that line.

var a = 5; 
var err = new Error("Some error message"); 
throw err; //this will print the error stack and node server will stop 
a++; //this line will never be executed 
console.log(a); //and this one also

But in this example:

var a = 5; 
var err = new Error("Some error message"); 
console.log(err); //this will print the error stack 
a++; 
console.log(a); //this line will be executed and will print 6

try...catch block

try...catch block is for handling exceptions, remember exception means the thrown error not the 
error.

try { 
    var a = 1; 
    b++; //this will cause an error because be is undefined 
    console.log(b); //this line will not be executed 
} catch (error) { 
    console.log(error); //here we handle the error caused in the try block 
}

In the try block b++ cause an error and that error passed to catch block which can be handled 
there or even can be thrown the same error in catch block or make little bit modification then 
throw. Let's see next example.

try { 
    var a = 1; 
    b++; 
    console.log(b); 
} catch (error) { 
    error.message = "b variable is undefined, so the undefined can't be incremented" 
    throw error; 
}

In the above example we modified the message property of error object and then throw the modified 
error.

https://riptutorial.com/ 219



You can through any error in your try block and handle it in the catch block:

try { 
    var a = 1; 
    throw new Error("Some error message"); 
    console.log(a); //this line will not be executed; 
} catch (error) { 
    console.log(error); //will be the above thrown error 
}

Read Node.js Error Management online: https://riptutorial.com/node-js/topic/8590/node-js-error-
management

https://riptutorial.com/ 220

https://riptutorial.com/node-js/topic/8590/node-js-error-management
https://riptutorial.com/node-js/topic/8590/node-js-error-management


Chapter 65: Node.js Performance

Examples

Event Loop

Blocking Operation Example

let loop = (i, max) => { 
  while (i < max) i++ 
  return i 
} 
 
// This operation will block Node.js 
// Because, it's CPU-bound 
// You should be careful about this kind of code 
loop(0, 1e+12)

Non-Blocking IO Operation Example

let i = 0 
 
const step = max => { 
  while (i < max) i++ 
  console.log('i = %d', i) 
} 
 
const tick = max => process.nextTick(step, max) 
 
// this will postpone tick run step's while-loop to event loop cycles 
// any other IO-bound operation (like filesystem reading) can take place 
// in parallel 
tick(1e+6) 
tick(1e+7) 
console.log('this will output before all of tick operations. i = %d', i) 
console.log('because tick operations will be postponed') 
tick(1e+8)

https://riptutorial.com/ 221



In simpler terms, Event Loop is a single-threaded queue mechanism which executes your CPU-
bound code until end of its execution and IO-bound code in a non-blocking fashion.

However, Node.js under the carpet uses multi-threading for some of its operations through libuv 
Library.

Performance Considerations

Non-blocking operations will not block the queue and will not effect the performance of the 
loop.

•

However, CPU-bound operations will block the queue, so you should be careful not to do 
CPU-bound operations in your Node.js code.

•

Node.js non-blocks IO because it offloads the work to the operating system kernel, and when the 
IO operation supplies data (as an event), it will notify your code with your supplied callbacks.

Increase maxSockets

Basics

require('http').globalAgent.maxSockets = 25 
 
// You can change 25 to Infinity or to a different value by experimenting

Node.js by default is using maxSockets = Infinity at the same time (since v0.12.0). Until Node 
v0.12.0, the default was maxSockets = 5 (see v0.11.0). So, after more than 5 requests they will be 
queued. If you want concurrency, increase this number.

https://riptutorial.com/ 222

https://i.stack.imgur.com/mWb6l.png
http://libuv.org/
https://nodejs.org/dist/v0.12.0/docs/api/http.html#http_agent_maxsockets
https://nodejs.org/dist/v0.11.0/docs/api/http.html#http_agent_maxsockets


Setting your own agent

http API is using a "Global Agent". You can supply your own agent. Like this:

const http = require('http') 
const myGloriousAgent = new http.Agent({ keepAlive: true }) 
myGloriousAgent.maxSockets = Infinity 
 
http.request({ ..., agent: myGloriousAgent }, ...)

Turning off Socket Pooling entirely

const http = require('http') 
const options = {.....} 
 
options.agent = false 
 
const request = http.request(options)

Pitfalls

You should do the same thing for https API if you want the same effects•

Beware that, for example, AWS will use 50 instead of Infinity.•

Enable gzip

const http = require('http') 
const fs   = require('fs') 
const zlib = require('zlib') 
 
http.createServer((request, response) => { 
  const stream          = fs.createReadStream('index.html') 
  const acceptsEncoding = request.headers['accept-encoding'] 
 
  let encoder = { 
    hasEncoder     : false, 
    contentEncoding: {}, 
    createEncoder  : () => throw 'There is no encoder' 
  } 
 
  if (!acceptsEncoding) { 
    acceptsEncoding = '' 
  } 
 
  if (acceptsEncoding.match(/\bdeflate\b/)) { 
    encoder = { 
      hasEncoder     : true, 
      contentEncoding: { 'content-encoding': 'deflate' }, 
      createEncoder  : zlib.createDeflate 

https://riptutorial.com/ 223

https://nodejs.org/api/http.html#http_class_http_agent
http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/node-configuring-maxsockets.html


    } 
  } else if (acceptsEncoding.match(/\bgzip\b/)) { 
    encoder = { 
      hasEncoder     : true, 
      contentEncoding: { 'content-encoding': 'gzip' }, 
      createEncoder  : zlib.createGzip 
    } 
  } 
 
  response.writeHead(200, encoder.contentEncoding) 
 
  if (encoder.hasEncoder) { 
    stream = stream.pipe(encoder.createEncoder()) 
  } 
 
  stream.pipe(response) 
 
}).listen(1337)

Read Node.js Performance online: https://riptutorial.com/node-js/topic/9410/node-js-performance

https://riptutorial.com/ 224

https://riptutorial.com/node-js/topic/9410/node-js-performance


Chapter 66: Node.js v6 New Features and 
Improvement

Introduction

With node 6 becoming the new LTS version of node. We can see an number of improvements to 
the language through the new ES6 standards introduces. We'll be walking through some of the 
new features introduced and examples of how to implement them.

Examples

Default Function Parameters

function addTwo(a, b = 2) { 
    return a + b; 
} 
 
addTwo(3) // Returns the result 5

With the addition of default function parameters you can now make arguments optional and have 
them default to a value of your choice.

Rest Parameters

function argumentLength(...args) { 
    return args.length; 
} 
 
argumentLength(5) // returns 1 
argumentLength(5, 3) //returns 2 
argumentLength(5, 3, 6) //returns 3

By prefacing the last argument of your function with ... all arguments passed to the function are 
read as an array. In this example we get pass in multiple arguments and get the length of the array 
created from those arguments.

Spread Operator

function myFunction(x, y, z) { } 
var args = [0, 1, 2]; 
myFunction(...args);

The spread syntax allows an expression to be expanded in places where multiple arguments (for 
function calls) or multiple elements (for array literals) or multiple variables are expected. Just like 
the rest parameters simply preface your array with ...

https://riptutorial.com/ 225



Arrow Functions

Arrow function is the new way of defining a function in ECMAScript 6.

// traditional way of declaring and defining function 
var sum = function(a,b) 
{ 
    return a+b; 
} 
 
// Arrow Function 
let sum = (a, b)=> a+b; 
 
//Function defination using multiple lines 
let checkIfEven = (a) => { 
    if( a % 2 == 0 ) 
        return true; 
    else 
        return false; 
}

"this" in Arrow Function

this in function refers to instance object used to call that function but this in arrow function is 
equal to this of function in which arrow function is defined.

Let's understand using diagram

Understanding using examples.

var normalFn = function(){ 
   console.log(this) // refers to global/window object. 

https://riptutorial.com/ 226

https://i.stack.imgur.com/iRsl1.jpg


} 
 
var arrowFn = () => console.log(this); // refers to window or global object as function is 
defined in scope of global/window object 
 
var service = { 
 
    constructorFn : function(){ 
 
        console.log(this); //  refers to service as service object used to call method. 
 
        var nestedFn = function(){ 
            console.log(this); // refers window or global object because no instance object 
was used to call this method. 
        } 
        nestedFn(); 
    }, 
 
    arrowFn : function(){ 
        console.log(this); // refers to service as service object was used to call method. 
        let fn = () => console.log(this); // refers to service object as arrow function 
defined in function which is called using instance object. 
        fn(); 
    } 
} 
 
// calling defined functions 
constructorFn(); 
arrowFn(); 
service.constructorFn(); 
service.arrowFn();

In arrow function, this is lexical scope which is the scope of function where arrow function is 
defined. 
The first example is the traditional way of defining functions and hence, this refers to 
global/window object. 
In the second example this is used inside arrow function hence this refers to the scope where it is 
defined(which is windows or global object). In the third example this is service object as service 
object is used to call the function. 
In fourth example, arrow function in defined and called from the function whose scope is service, 
hence it prints service object.

Note: - global object is printed in Node.Js and windows object in browser.

Read Node.js v6 New Features and Improvement online: https://riptutorial.com/node-
js/topic/8593/node-js-v6-new-features-and-improvement

https://riptutorial.com/ 227

https://riptutorial.com/node-js/topic/8593/node-js-v6-new-features-and-improvement
https://riptutorial.com/node-js/topic/8593/node-js-v6-new-features-and-improvement


Chapter 67: Node.js with CORS

Examples

Enable CORS in express.js

As node.js is often used to build API, proper CORS setting can be a life saver if you want to be 
able to request the API from different domains.

In the exemple, we'll set it up for the wider configuration (authorize all request types from any 
domain.

In your server.js after initializing express:

// Create express server 
const app = express(); 
 
app.use((req, res, next) => { 
    res.header('Access-Control-Allow-Origin', '*'); 
 
    // authorized headers for preflight requests 
    // https://developer.mozilla.org/en-US/docs/Glossary/preflight_request 
    res.header('Access-Control-Allow-Headers', 'Origin, X-Requested-With, Content-Type, 
Accept'); 
    next(); 
 
    app.options('*', (req, res) => { 
        // allowed XHR methods 
        res.header('Access-Control-Allow-Methods', 'GET, PATCH, PUT, POST, DELETE, OPTIONS'); 
        res.send(); 
    }); 
});

Usually, node is ran behind a proxy on production servers. Therefore the reverse proxy server 
(such as Apache or Nginx) will be responsible for the CORS config.

To conveniently adapt this scenario, it's possible to only enable node.js CORS when it's in 
development.

This is easily done by checking NODE_ENV:

const app = express(); 
 
if (process.env.NODE_ENV === 'development') { 
    // CORS settings 
}

Read Node.js with CORS online: https://riptutorial.com/node-js/topic/9272/node-js-with-cors

https://riptutorial.com/ 228

https://riptutorial.com/node-js/topic/9272/node-js-with-cors


Chapter 68: Node.JS with ES6

Introduction

ES6, ECMAScript 6 or ES2015 is the latest specification for JavaScript which introduces some 
syntactic sugar to the language. It's a big update to the language and introduces a lot of new 
features

More details on Node and ES6 can be found on their site https://nodejs.org/en/docs/es6/

Examples

Node ES6 Support and creating a project with Babel

The whole ES6 spec is not yet implemented in its entirety so you will only be able to use some of 
the new features. You can see a list of the current supported ES6 features at http://node.green/

Since NodeJS v6 there has been pretty good support. So if you using NodeJS v6 or above you 
can enjoy using ES6. However, you may also want to use some of the unreleased features and 
some from beyond. For this you will need to use a transpiler

It is possible to run a transpiler at run time and build, to use all of the ES6 features and more. The 
most popular transpiler for JavaScript is called Babel

Babel allows you to use all of the features from the ES6 specification and some additional not-in-
spec features with 'stage-0' such as import thing from 'thing instead of var thing = 
require('thing')

If we wanted to create a project where we use 'stage-0' features such as import we would need to 
add Babel as a transpiler. You'll see projects using react and Vue and other commonJS based 
patterns implement stage-0 quite often.

create a new node project

mkdir my-es6-app 
cd my-es6-app 
npm init

Install babel the ES6 preset and stage-0

npm install --save-dev babel-preset-es2015 babel-preset-stage-2 babel-cli babel-register

Create a new file called server.js and add a basic HTTP server.

import http from 'http' 
 
http.createServer((req, res) => { 
  res.writeHead(200, {'Content-Type': 'text/plain'}) 

https://riptutorial.com/ 229

http://www.ecma-international.org/ecma-262/6.0/
https://github.com/lukehoban/es6features
https://nodejs.org/en/docs/es6/
http://node.green/
https://babeljs.io/


  res.end('Hello World\n') 
}).listen(3000, '127.0.0.1') 
 
console.log('Server running at http://127.0.0.1:3000/')

Note that we use an import http from 'http' this is a stage-0 feature and if it works it means we've 
got the transpiler working correctly.

If you run node server.js it will fail not knowing how to handle the import.

Creating a .babelrc file in the root of your directory and add the following settings

{ 
  "presets": ["es2015", "stage-2"], 
  "plugins": [] 
}

you can now run the server with node src/index.js --exec babel-node

Finishing off it is not a good idea to run a transpiler at runtime on a production app. We can 
however implement some scripts in our package.json to make it easier to work with.

"scripts": { 
    "start": "node dist/index.js", 
    "dev": "babel-node src/index.js", 
    "build": "babel src -d dist", 
    "postinstall": "npm run build" 
  },

The above will on npm install build the transpiled code to the dist directory allow npm start to use 
the transpiled code for our production app.

npm run dev will boot the server and babel runtime which is fine and preferred when working on a 
project locally.

Going one further you could then install nodemon npm install nodemon --save-dev to watch for 
changes and then reboot the node app.

This really speeds up working with babel and NodeJS. In you package.json just update the "dev" 
script to use nodemon

"dev": "nodemon src/index.js --exec babel-node",

Use JS es6 on your NodeJS app

JS es6 (also known as es2015) is a set of new features to JS language aim to make it more 
intuitive when using OOP or while facing modern development tasks.

Prerequisites:

https://riptutorial.com/ 230



Check out the new es6 features at http://es6-features.org - it may clarify to you if you really 
intend to use it on your next NodeJS app

1. 

Check the compatibility level of your node version at http://node.green2. 

If all is ok - let's code on!3. 

Here is a very short sample of a simple hello world app with JS es6

'use strict' 
 
class Program 
{ 
    constructor() 
    { 
        this.message = 'hello es6 :)'; 
    } 
 
    print() 
    { 
        setTimeout(() => 
        { 
            console.log(this.message); 
 
            this.print(); 
 
        }, Math.random() * 1000); 
    } 
} 
 
new Program().print();

You can run this program and observe how it print the same message over and over again.

Now.. let break it down line by line:

'use strict'

This line is actually required if you intend to use js es6. strict mode, intentionally, has different 
semantics from normal code (please read more about it on MDN - https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Strict_mode)

class Program

Unbelievable - a class keyword! Just for a quick reference - before es6 the only way do define a 
class in js was with the... function keyword!

function MyClass() // class definition 
{ 
 
} 
 
var myClassObject = new MyClass(); // generating a new object with a type of MyClass

https://riptutorial.com/ 231

http://es6-features.org
http://node.green
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode)


When using OOP, a class is a very fundamental ability which assist the developer to represent a 
specific part of a system (breaking down code is crucial when the code is getting larger.. for 
instance: when writing server-side code)

constructor() 
{ 
    this.message = 'hello es6 :)'; 
}

You got to admit - this is pretty intuitive! This is the c'tor of my class - this unique "function" will 
occur every time an object is created from this particular class (in our program - only once)

print() 
{ 
    setTimeout(() => // this is an 'arrow' function 
    { 
        console.log(this.message); 
 
        this.print(); // here we call the 'print' method from the class template itself (a 
recursion in this particular case) 
 
    }, Math.random() * 1000); 
}

Because print is defined in the class scope - it is actually a method - which can be invoked from 
either the object of the class or from within the class itself!

So.. till now we defined our class.. time to use it:

new Program().print();

Which is truly equals to:

var prog = new Program(); // define a new object of type 'Program' 
 
prog.print(); // use the program to print itself

In conclusion: JS es6 can simplify your code - make it more intuitive and easy to understand 
(comparing with the previous version of JS).. you may try to re-write an existing code of yours and 
see the difference for yourself

ENJOY :)

Read Node.JS with ES6 online: https://riptutorial.com/node-js/topic/5934/node-js-with-es6

https://riptutorial.com/ 232

https://riptutorial.com/node-js/topic/5934/node-js-with-es6


Chapter 69: Node.js with Oracle

Examples

Connect to Oracle DB

A very easy way to connect to an ORACLE database is by using oracledb module. This module 
handles the connection between your Node.js app and Oracle server. You can install it like any 
other module:

npm install oracledb

Now you have to create an ORACLE connection, which you can later query.

const oracledb = require('oracledb'); 
 
oracledb.getConnection( 
  { 
    user          : "oli", 
    password      : "password", 
    connectString : "ORACLE_DEV_DB_TNS_NAME" 
  }, 
  connExecute 
);

The connectString "ORACLE_DEV_DB_TNA_NAME" may live in a tnsnames.org file in the same 
directory or where your oracle instant client is installed.

If you don't have any oracle instant client installed on you development machine you may follow 
the instant client installation guide for your operating system.

Query a connection object without parameters

Use may now use the connExecute-Function for executing a query. You have the option to get the 
query result as an object or array. The result ist printed to console.log.

function connExecute(err, connection) 
{ 
    if (err) { 
        console.error(err.message); 
        return; 
    } 
    sql = "select 'test' as c1, 'oracle' as c2 from dual"; 
    connection.execute(sql, {}, { outFormat: oracledb.OBJECT }, // or oracledb.ARRAY 
        function(err, result) 
        { 
            if (err) { 
                console.error(err.message); 
                connRelease(connection); 
                return; 

https://riptutorial.com/ 233

https://github.com/oracle/node-oracledb
https://github.com/oracle/node-oracledb/blob/master/INSTALL.md#which-instructions-to-follow


            } 
            console.log(result.metaData); 
            console.log(result.rows); 
            connRelease(connection); 
        }); 
}

Since we used a non-pooling connection, we have to release our connection again.

function connRelease(connection) 
{ 
  connection.close( 
    function(err) { 
      if (err) { 
        console.error(err.message); 
      } 
    }); 
}

The output for an object will be

[ { name: 'C1' }, { name: 'C2' } ] 
[ { C1: 'test', C2: 'oracle' } ]

and the output for an array will be

[ { name: 'C1' }, { name: 'C2' } ] 
[ [ 'test', 'oracle' ] ]

Using a local module for easier querying

To simplify your querying from ORACLE-DB, you may want to call your query like this:

const oracle = require('./oracle.js'); 
 
const sql = "select 'test' as c1, 'oracle' as c2 from dual"; 
oracle.queryObject(sql, {}, {}) 
    .then(function(result) { 
        console.log(result.rows[0]['C2']); 
    }) 
    .catch(function(err) { 
        next(err); 
    });

Building up the connection and executing is included in this oracle.js file with content as follows:

'use strict'; 
const oracledb = require('oracledb'); 
 
const oracleDbRelease = function(conn) { 
  conn.release(function (err) { 
    if (err) 
      console.log(err.message); 
  }); 

https://riptutorial.com/ 234



}; 
 
function queryArray(sql, bindParams, options) { 
    options.isAutoCommit = false; // we only do SELECTs 
 
    return new Promise(function(resolve, reject) { 
        oracledb.getConnection( 
                  { 
                    user          : "oli", 
                    password      : "password", 
                    connectString : "ORACLE_DEV_DB_TNA_NAME" 
                }) 
        .then(function(connection){ 
            //console.log("sql log: " + sql + " params " + bindParams); 
            connection.execute(sql, bindParams, options) 
            .then(function(results) { 
                resolve(results); 
                process.nextTick(function() { 
                    oracleDbRelease(connection); 
                }); 
            }) 
            .catch(function(err) { 
                reject(err); 
 
                process.nextTick(function() { 
                    oracleDbRelease(connection); 
                        }); 
                    }); 
            }) 
            .catch(function(err) { 
                reject(err); 
            }); 
    }); 
} 
 
function queryObject(sql, bindParams, options) { 
    options['outFormat'] = oracledb.OBJECT; // default is oracledb.ARRAY 
    return queryArray(sql, bindParams, options); 
} 
 
module.exports = queryArray; 
module.exports.queryArray = queryArray; 
module.exports.queryObject = queryObject;

Note that you have both methods queryArray and queryObject to call on your oracle object.

Read Node.js with Oracle online: https://riptutorial.com/node-js/topic/8248/node-js-with-oracle

https://riptutorial.com/ 235

https://riptutorial.com/node-js/topic/8248/node-js-with-oracle


Chapter 70: NodeJS Beginner Guide

Examples

Hello World !

Place the following code into a file name helloworld.js

console.log("Hello World");

Save the file, and execute it through Node.js:

node helloworld.js

Read NodeJS Beginner Guide online: https://riptutorial.com/node-js/topic/7693/nodejs-beginner-
guide

https://riptutorial.com/ 236

https://riptutorial.com/node-js/topic/7693/nodejs-beginner-guide
https://riptutorial.com/node-js/topic/7693/nodejs-beginner-guide


Chapter 71: NodeJS Frameworks

Examples

Web Server Frameworks

Express

var express = require('express'); 
var app = express(); 
 
app.get('/', function (req, res) { 
  res.send('Hello World!'); 
}); 
 
app.listen(3000, function () { 
  console.log('Example app listening on port 3000!'); 
});

Koa

var koa = require('koa'); 
var app = koa(); 
 
app.use(function *(next){ 
  var start = new Date; 
  yield next; 
  var ms = new Date - start; 
  console.log('%s %s - %s', this.method, this.url, ms); 
}); 
 
app.use(function *(){ 
  this.body = 'Hello World'; 
}); 
 
app.listen(3000);

Command Line Interface Frameworks

Commander.js

var program = require('commander'); 
 
program 
  .version('0.0.1') 
 
program 
  .command('hi') 
  .description('initialize project configuration') 
  .action(function(){ 

https://riptutorial.com/ 237



        console.log('Hi my Friend!!!'); 
}); 
 
program 
  .command('bye [name]') 
  .description('initialize project configuration') 
  .action(function(name){ 
        console.log('Bye ' + name + '. It was good to see you!'); 
}); 
 
program 
  .command('*') 
  .action(function(env){ 
    console.log('Enter a Valid command'); 
    terminate(true); 
}); 
 
program.parse(process.argv);

Vorpal.js

const vorpal = require('vorpal')(); 
 
vorpal 
  .command('foo', 'Outputs "bar".') 
  .action(function(args, callback) { 
    this.log('bar'); 
    callback(); 
  }); 
 
vorpal 
  .delimiter('myapp$') 
  .show();

Read NodeJS Frameworks online: https://riptutorial.com/node-js/topic/6042/nodejs-frameworks

https://riptutorial.com/ 238

https://riptutorial.com/node-js/topic/6042/nodejs-frameworks


Chapter 72: Nodejs History

Introduction

Here we are going to discuss about the history of Node.js, version information and it's current 
status.

Examples

Key events in each year

2009

3rd March : The project was named as "node"•
1st October : First very early preview of npm, the Node package 
manager

•

8th November : Ryan Dahl's (Creator of Node.js) Original Node.js Talk at JSConf 2009•

2010

Express: A Node.js web development framework•
Socket.io initial release•
28th April : Experimental Node.js Support on Heroku•
28th July : Ryan Dahl's Google Tech Talk on Node.js•
20th August : Node.js 0.2.0 released•

2011

31st March : Node.js Guide•
1st May : npm 1.0: Released•
1st May : Ryan Dahl's AMA on Reddit•
10th July : The Node Beginner Book, an introduction to Node.js, is completed.

A comprehensive Node.js tutorial for beginners.○

•

16th August : LinkedIn uses Node.js
LinkedIn launched its completely overhauled mobile app with new features and new 
parts under the hood.

○

•

5th October : Ryan Dahl talks about the history of Node.js and why he created it•
5th December : Node.js in production at Uber

Uber Engineering Manager Curtis Chambers explains why his company completely re-
engineered their application using Node.js to increase efficiency and improve the 
partner and customer experience.

○

•

https://riptutorial.com/ 239

https://github.com/nodejs/node-v0.x-archive/commit/19478ed4b14263c489e872156ca55ff16a07ebe0
https://groups.google.com/forum/?hl=en#!topic/nodejs/erDWyS4xPw8
https://groups.google.com/forum/?hl=en#!topic/nodejs/erDWyS4xPw8
https://groups.google.com/forum/?hl=en#!topic/nodejs/erDWyS4xPw8
https://www.youtube.com/watch?v=ztspvPYybIY
https://blog.heroku.com/archives/2010/4/28/node_js_support_experimental
https://www.youtube.com/watch?v=F6k8lTrAE2g
https://groups.google.com/forum/#!topic/nodejs/wEDF_X12HVc
https://nodejs.org/en/blog/npm/npm-1-0-released/
https://www.reddit.com/r/node/comments/h1m2o/i_am_ryan_dahl_creator_of_nodejs_ama/
http://nodebeginner.org/index.html
http://venturebeat.com/2011/08/16/linkedin-node/
https://www.youtube.com/watch?v=SAc0vQCC6UQ
https://www.joyent.com/developers/videos/node-js-office-hours-curtis-chambers-uber


2012

30th January : Node.js creator Ryan Dahl steps away from Node’s day-to-day•
25th June : Node.js v0.8.0 [stable] is out•
20th December : Hapi, a Node.js framework is released•

2013

30th April : The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.js•
17th May : How We Built eBay’s First Node.js Application•
15th November : PayPal releases Kraken, a Node.js framework•
22nd November : Node.js Memory Leak at Walmart

Eran Hammer of Wal-Mart labs came to the Node.js core team complaining of a 
memory leak he had been tracking down for months.

○

•

19th December : Koa - Web framework for Node.js•

2014

15th January : TJ Fontaine takes over Node project•
23rd October : Node.js Advisory Board

Joyent and several members of the Node.js community announced a proposal for a 
Node.js Advisory Board as a next step towards a fully open governance model for the 
Node.js open source project.

○

•

19th November : Node.js in Flame Graphs - Netflix•
28th November : IO.js – Evented I/O for V8 Javascript•

2015

Q1

14th January : IO.js 1.0.0•
10th Febraury : Joyent Moves to Establish Node.js Foundation

Joyent, IBM, Microsoft, PayPal, Fidelity, SAP and The Linux Foundation Join Forces to 
Support Node.js Community With Neutral and Open Governance

○

•

27th Febraury : IO.js and Node.js reconciliation proposal•

Q2

14th April : npm Private Modules•
28th May : Node lead TJ Fontaine is stepping down and leaving Joyent•
13th May : Node.js and io.js are merging under the Node Foundation•

https://riptutorial.com/ 240

https://groups.google.com/forum/#!topic/nodejs/hfajgpvGTLY
https://nodejs.org/en/blog/release/v0.8.0/
http://hueniverse.com/2012/12/20/hapi-a-prologue/
http://blog.mongodb.org/post/49262866911/the-mean-stack-mongodb-expressjs-angularjs-and
http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-first-node-js-application/
https://github.com/krakenjs/kraken-js/releases/tag/v0.6.1
http://www.joyent.com/blog/walmart-node-js-memory-leak
https://nodejs.org/en/blog/uncategorized/tj-fontaine-new-node-lead/
https://www.joyent.com/blog/node-js-advisory-board
http://techblog.netflix.com/2014/11/nodejs-in-flames.html
https://iojs.org/
https://github.com/nodejs/node/commit/b82bb600370db7207a39e53329af228f6af3ffa1
http://www.joyent.com/about/press/joyent-moves-to-establish-nodejs-foundation
https://github.com/nodejs/node/issues/978
https://www.npmjs.com/private-modules
http://venturebeat.com/2015/05/08/node-lead-tj-fontaine-is-stepping-down-and-leaving-joyent-too/
https://github.com/nodejs/node/issues/1664#issuecomment-101828384


Q3

2nd August : Trace - Node.js performance monitoring and debugging
Trace is a visualized microservice monitoring tool that gets you all the metrics you 
need when operating microservices.

○

•

13th August : 4.0 is the new 1.0•

Q4

12th October : Node v4.2.0, first Long Term Support release•
8th December : Apigee, RisingStack and Yahoo join the Node.js Foundation•
8th & 9th December : Node Interactive

The first annual Node.js conference by the Node.js Foundation○

•

2016

Q1

10th February : Express becomes an incubated project•
23rd March : The leftpad incident•
29th March : Google Cloud Platform joins the Node.js Foundation•

Q2

26th April : npm has 210.000 users•

Q3

18th July : CJ Silverio becomes the CTO of npm•
1st August : Trace, the Node.js debugging solution becomes generally available•
15th September : The first Node Interactive in Europe•

Q4

11th October : The yarn package manager got released•
18th October : Node.js 6 becomes the LTS version•

Reference

"History of Node.js on a Timeline" [Online]. Available : [https://blog.risingstack.com/history-
of-node-js]

1. 

Read Nodejs History online: https://riptutorial.com/node-js/topic/8653/nodejs-history

https://riptutorial.com/ 241

http://trace.risingstack.com/
https://medium.com/node-js-javascript/4-0-is-the-new-1-0-386597a3436d#.pjnzem4ar
https://nodejs.org/en/blog/release/v4.2.0/
http://finance.yahoo.com/news/apigee-risingstack-yahoo-join-node-170000939.html
http://events.linuxfoundation.org/events/node-interactive/program/schedule
https://nodejs.org/en/blog/announcements/foundation-express-news/
http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://nodejs.org/en/blog/announcements/welcome-google/
http://blog.npmjs.org/post/143451680695/how-many-npm-users-are-there
http://blog.npmjs.org/post/147604242320/npm-has-a-new-cto
https://trace.risingstack.com/
https://medium.com/@nodejs/news-from-the-node-js-ecosystem-6141bb3b2f10
https://code.facebook.com/posts/1840075619545360
https://medium.com/@nodejs/node-js-v6-transitions-to-lts-be7f18c17159
https://blog.risingstack.com/history-of-node-js%5D
https://blog.risingstack.com/history-of-node-js%5D
https://riptutorial.com/node-js/topic/8653/nodejs-history


Chapter 73: NodeJs Routing

Introduction

How to set up basic Express web server under the node js and Exploring the Express router.

Remarks

At last, Using Express Router you can use routing facility in you application and it is easy to 
implement.

Examples

Express Web Server Routing

Creating Express Web Server

Express server came handy and it deeps through many user and community. It is getting popular.

Lets create a Express Server. For Package Management and Flexibility for Dependency We will 
use NPM(Node Package Manager).

Go to the Project directory and create package.json file. package.json { "name": 
"expressRouter", "version": "0.0.1", "scripts": { "start": "node Server.js" }, "dependencies": { 
"express": "^4.12.3" } }

1. 

Save the file and install the express dependency using following command npm install. This 
will create node_modules in you project directory along with required dependency.

2. 

Let's create Express Web Server. Go to the Project directory and create server.js file. 
server.js

var express = require("express"); var app = express();

3. 

//Creating Router() object

var router = express.Router();

// Provide all routes here, this is for Home page.

router.get("/",function(req,res){ 
res.json({"message" : "Hello World"});

});

app.use("/api",router);

https://riptutorial.com/ 242



// Listen to this Port

app.listen(3000,function(){ console.log("Live at Port 3000"); });

For more detail on setting node server you can see [here][1].

Run the server by typing following command.

node server.js

If Server runs successfully, you will se something like this.

.

4. 

Now go to the browser or postman and made a request

http://localhost:3000/api/

The output will be 

5. 

https://riptutorial.com/ 243

https://i.stack.imgur.com/3ITls.png
http://localhost:3000/api/


.

That is all, the basic of Express routing.

Now let's handle the GET,POST etc.

Change yous server.js file like

var express = require("express"); 
var app = express(); 
 
//Creating Router() object 
 
var router = express.Router(); 
 
// Router middleware, mentioned it before defining routes. 
 
router.use(function(req,res,next) { 
  console.log("/" + req.method); 
  next(); 
}); 
 
// Provide all routes here, this is for Home page. 
 
router.get("/",function(req,res){ 
  res.json({"message" : "Hello World"}); 
}); 
 
 
app.use("/api",router); 
 
 
app.listen(3000,function(){ 
  console.log("Live at Port 3000"); 
});

https://riptutorial.com/ 244

https://i.stack.imgur.com/9sCpz.png


Now if you restart the server and made the request to

http://localhost:3000/api/

You Will see something like 

Accessing Parameter in Routing

You can access the parameter from url also, Like http://example.com/api/:name/. So name 
parameter can be access. Add the following code into your server.js

router.get("/user/:id",function(req,res){ 
  res.json({"message" : "Hello "+req.params.id}); 
});

Now restart server and go to [http://localhost:3000/api/user/Adem][4], the output will be like 

https://riptutorial.com/ 245

https://i.stack.imgur.com/3ERM7.png
http://example.com/api/:name/
http://localhost:3000/api/user/Adem%5D%5B4%5D


.

Read NodeJs Routing online: https://riptutorial.com/node-js/topic/9846/nodejs-routing

https://riptutorial.com/ 246

https://i.stack.imgur.com/TNuOh.png
https://riptutorial.com/node-js/topic/9846/nodejs-routing


Chapter 74: NodeJS with Redis

Remarks

We have covered the basic and most commonly used operations in node_redis. You can use this 
module to leverage the full power of Redis and create really sophisticated Node.js apps. You can 
build many interesting things with this library such as a strong caching layer, a powerful Pub/Sub 
messaging system and more. To know more about the library check out their documentation.

Examples

Getting Started

node_redis, as you may have guessed, is the Redis client for Node.js. You can install it via npm 
using the following command.

npm install redis

Once you have installed node_redis module you are good to go. Let’s create a simple file, app.js, 
and see how to connect with Redis from Node.js.

app.js

var redis = require('redis'); 
client = redis.createClient(); //creates a new client

By default, redis.createClient() will use 127.0.0.1 and 6379 as the hostname and port respectively. 
If you have a different host/port you can supply them as following:

var client = redis.createClient(port, host);

Now, you can perform some action once a connection has been established. Basically, you just 
need to listen for connect events as shown below.

client.on('connect', function() { 
    console.log('connected'); 
});

So, the following snippet goes into app.js:

var redis = require('redis'); 
var client = redis.createClient(); 
 
client.on('connect', function() { 
    console.log('connected'); 
});

https://riptutorial.com/ 247

https://www.npmjs.com/package/redis
https://www.npmjs.com/package/redis


Now, type node app in the terminal to run the app. Make sure your Redis server is up and running 
before running this snippet.

Storing Key-Value Pairs

Now that you know how to connect with Redis from Node.js, let’s see how to store key-value pairs 
in Redis storage.

Storing Strings

All the Redis commands are exposed as different functions on the client object. To store a simple 
string use the following syntax:

client.set('framework', 'AngularJS');

Or

client.set(['framework', 'AngularJS']);

The above snippets store a simple string AngularJS against the key framework. You should note 
that both the snippets do the same thing. The only difference is that the first one passes a variable 
number of arguments while the later passes an args array to client.set() function. You can also 
pass an optional callback to get a notification when the operation is complete:

client.set('framework', 'AngularJS', function(err, reply) { 
  console.log(reply); 
});

If the operation failed for some reason, the err argument to the callback represents the error. To 
retrieve the value of the key do the following:

client.get('framework', function(err, reply) { 
    console.log(reply); 
});

client.get() lets you retrieve a key stored in Redis. The value of the key can be accessed via the 
callback argument reply. If the key doesn’t exist, the value of reply will be empty.

Storing Hash

Many times storing simple values won’t solve your problem. You will need to store hashes 
(objects) in Redis. For that you can use hmset() function as following:

client.hmset('frameworks', 'javascript', 'AngularJS', 'css', 'Bootstrap', 'node', 'Express'); 
 
client.hgetall('frameworks', function(err, object) { 
    console.log(object); 
});

https://riptutorial.com/ 248



The above snippet stores a hash in Redis that maps each technology to its framework. The first 
argument to hmset() is the name of the key. Subsequent arguments represent key-value pairs. 
Similarly, hgetall() is used to retrieve the value of the key. If the key is found, the second 
argument to the callback will contain the value which is an object.

Note that Redis doesn’t support nested objects. All the property values in the object will be 
coerced into strings before getting stored. You can also use the following syntax to store objects in 
Redis:

client.hmset('frameworks', { 
    'javascript': 'AngularJS', 
    'css': 'Bootstrap', 
    'node': 'Express' 
});

An optional callback can also be passed to know when the operation is completed.

All the functions (commands) can be called with uppercase/lowercase equivalents. For example, 
client.hmset() and client.HMSET() are the same. Storing Lists

If you want to store a list of items, you can use Redis lists. To store a list use the following syntax:

client.rpush(['frameworks', 'angularjs', 'backbone'], function(err, reply) { 
    console.log(reply); //prints 2 
});

The above snippet creates a list called frameworks and pushes two elements to it. So, the length 
of the list is now two. As you can see I have passed an args array to rpush. The first item of the 
array represents the name of the key while the rest represent the elements of the list. You can 
also use lpush() instead of rpush() to push the elements to the left.

To retrieve the elements of the list you can use the lrange() function as following:

client.lrange('frameworks', 0, -1, function(err, reply) { 
    console.log(reply); // ['angularjs', 'backbone'] 
});

Just note that you get all the elements of the list by passing -1 as the third argument to lrange(). If 
you want a subset of the list, you should pass the end index here.

Storing Sets

Sets are similar to lists, but the difference is that they don’t allow duplicates. So, if you don’t want 
any duplicate elements in your list you can use a set. Here is how we can modify our previous 
snippet to use a set instead of list.

client.sadd(['tags', 'angularjs', 'backbonejs', 'emberjs'], function(err, reply) { 
    console.log(reply); // 3 
});

https://riptutorial.com/ 249



As you can see, the sadd() function creates a new set with the specified elements. Here, the 
length of the set is three. To retrieve the members of the set, use the smembers() function as 
following:

client.smembers('tags', function(err, reply) { 
    console.log(reply); 
});

This snippet will retrieve all the members of the set. Just note that the order is not preserved while 
retrieving the members.

This was a list of the most important data structures found in every Redis powered app. Apart from 
strings, lists, sets, and hashes, you can store sorted sets, hyperLogLogs, and more in Redis. If 
you want a complete list of commands and data structures, visit the official Redis documentation. 
Remember that almost every Redis command is exposed on the client object offered by the 
node_redis module.

Some more important operations supported by node_redis.

Checking the Existence of Keys

Sometimes you may need to check if a key already exists and proceed accordingly. To do so you 
can use exists() function as shown below:

client.exists('key', function(err, reply) { 
    if (reply === 1) { 
        console.log('exists'); 
    } else { 
        console.log('doesn\'t exist'); 
    } 
});

Deleting and Expiring Keys

At times you will need to clear some keys and reinitialize them. To clear the keys, you can use del 
command as shown below:

client.del('frameworks', function(err, reply) { 
    console.log(reply); 
});

You can also give an expiration time to an existing key as following:

client.set('key1', 'val1'); 
client.expire('key1', 30);

The above snippet assigns an expiration time of 30 seconds to the key key1.

Incrementing and Decrementing

https://riptutorial.com/ 250



Redis also supports incrementing and decrementing keys. To increment a key use incr() function 
as shown below:

client.set('key1', 10, function() { 
    client.incr('key1', function(err, reply) { 
        console.log(reply); // 11 
    }); 
});

The incr() function increments a key value by 1. If you need to increment by a different amount, 
you can use incrby() function. Similarly, to decrement a key you can use the functions like decr() 
and decrby().

Read NodeJS with Redis online: https://riptutorial.com/node-js/topic/7107/nodejs-with-redis

https://riptutorial.com/ 251

https://riptutorial.com/node-js/topic/7107/nodejs-with-redis


Chapter 75: npm

Introduction

Node Package Manager (npm) provides following two main functionalities: Online repositories for 
node.js packages/modules which are searchable on search.nodejs.org. Command line utility to 
install Node.js packages, do version management and dependency management of Node.js 
packages.

Syntax

npm <command> where <command> is one of:
add-user○

adduser○

apihelp○

author○

bin○

bugs○

c○

cache○

completion○

config○

ddp○

dedupe○

deprecate○

docs○

edit○

explore○

faq○

find○

find-dupes○

get○

help○

help-search○

home○

i○

install○

info○

init○

isntall○

issues○

la○

link○

list○

•

https://riptutorial.com/ 252

https://docs.npmjs.com/cli/adduser
https://docs.npmjs.com/cli/adduser
https://docs.npmjs.com/cli/cache
https://docs.npmjs.com/cli/config
https://docs.npmjs.com/cli/dedupe
https://docs.npmjs.com/cli/dedupe
https://docs.npmjs.com/cli/config
https://docs.npmjs.com/cli/help
https://docs.npmjs.com/cli/help-search
http://www.riptutorial.com/node-js/example/1588/installing-packages
http://www.riptutorial.com/node-js/example/1588/installing-packages
http://www.riptutorial.com/node-js/example/2257/setting-up-a-package-configuration
https://docs.npmjs.com/cli/link
http://www.riptutorial.com/node-js/example/8732/listing-currently-installed-packages


ll○

ln○

login○

ls○

outdated○

owner○

pack○

prefix○

prune○

publish○

r○

rb○

rebuild○

remove○

repo○

restart○

rm○

root○

run-script○

s○

se○

search○

set○

show○

shrinkwrap○

star○

stars○

start○

stop○

submodule○

tag○

test○

tst○

un○

uninstall○

unlink○

unpublish○

unstar○

up○

update○

v○

version○

view○

whoami○

Parameters

https://riptutorial.com/ 253

https://docs.npmjs.com/cli/owner
http://www.riptutorial.com/node-js/example/8731/removing-extraneous-packages
http://www.riptutorial.com/node-js/example/1588/installing-packages
https://docs.npmjs.com/cli/rebuild
https://docs.npmjs.com/cli/rebuild
https://docs.npmjs.com/cli/repo
https://docs.npmjs.com/cli/restart
https://docs.npmjs.com/cli/rm
http://www.riptutorial.com/node-js/example/4592/running-scripts
https://docs.npmjs.com/cli/search
https://docs.npmjs.com/cli/search
https://docs.npmjs.com/cli/search
https://docs.npmjs.com/cli/config
https://docs.npmjs.com/cli/star
https://docs.npmjs.com/cli/stars
https://docs.npmjs.com/cli/start
https://docs.npmjs.com/cli/stop
https://docs.npmjs.com/cli/submodule
https://docs.npmjs.com/cli/tag
https://docs.npmjs.com/cli/test
https://docs.npmjs.com/cli/test
http://www.riptutorial.com/node-js/example/2153/uninstalling-packages
http://www.riptutorial.com/node-js/example/2153/uninstalling-packages
https://docs.npmjs.com/cli/link
https://docs.npmjs.com/cli/unpublish
https://docs.npmjs.com/cli/star
https://docs.npmjs.com/cli/update
https://docs.npmjs.com/cli/update
https://docs.npmjs.com/cli/version
https://docs.npmjs.com/cli/version
https://docs.npmjs.com/cli/view
https://docs.npmjs.com/cli/whoami


Parameter Example

access npm publish --access=public

bin npm bin -g

edit npm edit connect

help npm help init

init npm init

install npm install

link npm link

prune npm prune

publish npm publish ./

restart npm restart

start npm start

stop npm start

update npm update

version npm version

Examples

Installing packages

Introduction

Package is a term used by npm to denote tools that developers can use for their projects. This 
includes everything from libraries and frameworks such as jQuery and AngularJS to task runners 
such as Gulp.js. The packages will come in a folder typically called node_modules, which will also 
contain a package.json file. This file contains information regarding all the packages including any 
dependencies, which are additional modules needed to use a particular package.

Npm uses the command line to both install and manage packages, so users attempting to use 
npm should be familiar with basic commands on their operating system i.e.: traversing directories 
as well as being able to see the contents of directories.

https://riptutorial.com/ 254

https://docs.npmjs.com/cli/access
https://docs.npmjs.com/cli/bin
https://docs.npmjs.com/cli/edit
https://docs.npmjs.com/cli/help
https://docs.npmjs.com/cli/init
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/link
https://docs.npmjs.com/cli/prune
https://docs.npmjs.com/cli/publish
https://docs.npmjs.com/cli/restart
https://docs.npmjs.com/cli/start
https://docs.npmjs.com/cli/stop
https://docs.npmjs.com/cli/update
https://docs.npmjs.com/cli/version


Installing NPM

Note that in order to install packages, you must have NPM installed.

The recommended way to install NPM is to use one of the installers from the Node.js download 
page. You can check to see if you already have node.js installed by running either the npm -v or 
the npm version command.

After installing NPM via the Node.js installer, be sure to check for updates. This is because NPM 
gets updated more frequently than the Node.js installer. To check for updates run the following 
command:

npm install npm@latest -g

How to install packages

To install one or more packages use the following:

npm install <package-name> 
# or 
npm i <package-name>... 
 
# e.g. to install lodash and express 
npm install lodash express

Note: This will install the package in the directory that the command line is currently in, 
thus it is important to check whether the appropriate directory has been chosen

If you already have a package.json file in your current working directory and dependencies are 
defined in it, then npm install will automatically resolve and install all dependencies listed in the 
file. You can also use the shorthand version of the npm install command which is: npm i

If you want to install a specific version of a package use:

npm install <name>@<version> 
 
# e.g. to install version 4.11.1 of the package lodash 
npm install lodash@4.11.1

If you want to install a version which matches a specific version range use:

npm install <name>@<version range> 
 
# e.g. to install a version which matches "version >= 4.10.1" and "version < 4.11.1" 
# of the package lodash 
npm install lodash@">=4.10.1 <4.11.1"

https://riptutorial.com/ 255

https://nodejs.org/en/download/
https://nodejs.org/en/download/


If you want to install the latest version use:

npm install <name>@latest

The above commands will search for packages in the central npm repository at npmjs.com. If you 
are not looking to install from the npm registry, other options are supported, such as:

# packages distributed as a tarball 
npm install <tarball file> 
npm install <tarball url> 
 
# packages available locally 
npm install <local path> 
 
# packages available as a git repository 
npm install <git remote url> 
 
# packages available on GitHub 
npm install <username>/<repository> 
 
# packages available as gist (need a package.json) 
npm install gist:<gist-id> 
 
# packages from a specific repository 
npm install --registry=http://myreg.mycompany.com <package name> 
 
# packages from a related group of packages 
# See npm scope 
npm install @<scope>/<name>(@<version>) 
 
# Scoping is useful for separating private packages hosted on private registry from 
# public ones by setting registry for specific scope 
npm config set @mycompany:registry http://myreg.mycompany.com 
npm install @mycompany/<package name>

Usually, modules will be installed locally in a folder named node_modules, which can be found in 
your current working directory. This is the directory require() will use to load modules in order to 
make them available to you.

If you already created a package.json file, you can use the --save (shorthand -S) option or one of its 
variants to automatically add the installed package to your package.json as a dependency. If 
someone else installs your package, npm will automatically read dependencies from the 
package.json file and install the listed versions. Note that you can still add and manage your 
dependencies by editing the file later, so it's usually a good idea to keep track of dependencies, for 
example using:

npm install --save <name> # Install dependencies 
# or 
npm install -S <name> # shortcut version --save 
# or 
npm i -S <name>

In order to install packages and save them only if they are needed for development, not for 
running them, not if they are needed for the application to run, follow the following command:

https://riptutorial.com/ 256

https://www.npmjs.com/


npm install --save-dev <name> # Install dependencies for development purposes 
# or 
npm install -D <name> # shortcut version --save-dev 
# or 
npm i -D <name>

Installing dependencies

Some modules do not only provide a library for you to use, but they also provide one or more 
binaries which are intended to be used via the command line. Although you can still install those 
packages locally, it is often preferred to install them globally so the command-line tools can be 
enabled. In that case, npm will automatically link the binaries to appropriate paths (e.g. 
/usr/local/bin/<name>) so they can be used from the command line. To install a package globally, 
use:

npm install --global <name> 
# or 
npm install -g <name> 
# or 
npm i -g <name> 
 
# e.g. to install the grunt command line tool 
npm install -g grunt-cli

If you want to see a list of all the installed packages and their associated versions in the current 
workspace, use:

npm list 
npm list <name>

Adding an optional name argument can check the version of a specific package.

Note: If you run into permission issues while trying to install an npm module globally, resist the 
temptation to issue a sudo npm install -g ... to overcome the issue. Granting third-party scripts to 
run on your system with elevated privileges is dangerous. The permission issue might mean that 
you have an issue with the way npm itself was installed. If you're interested in installing Node in 
sandboxed user environments, you might want to try using nvm.

If you have build tools, or other development-only dependencies (e.g. Grunt), you might not want 
to have them bundled with the application you deploy. If that's the case, you'll want to have it as a 
development dependency, which is listed in the package.json under devDependencies. To install a 
package as a development-only dependency, use --save-dev (or -D).

npm install --save-dev <name> // Install development dependencies which is not included in 
production 
# or 
npm install -D <name>

https://riptutorial.com/ 257

https://github.com/creationix/nvm


You will see that the package is then added to the devDependencies of your package.json.

To install dependencies of a downloaded/cloned node.js project, you can simply use

npm install 
# or 
npm i

npm will automatically read the dependencies from package.json and install them.

NPM Behind A Proxy Server

If your internet access is through a proxy server, you might need to modify npm install commands 
that access remote repositories. npm uses a configuration file which can be updated via command 
line:

npm config set

You can locate your proxy settings from your browser's settings panel. Once you have obtained 
the proxy settings (server URL, port, username and password); you need to configure your npm 
configurations as follows.

$ npm config set proxy http://<username>:<password>@<proxy-server-url>:<port> 
$ npm config set https-proxy http://<username>:<password>@<proxy-server-url>:<port>

username, password, port fields are optional. Once you have set these, your npm install, npm i -g 
etc. would work properly.

Scopes and repositories

# Set the repository for the scope "myscope" 
npm config set @myscope:registry http://registry.corporation.com 
 
# Login at a repository and associate it with the scope "myscope" 
npm adduser --registry=http://registry.corporation.com --scope=@myscope 
 
# Install a package "mylib" from the scope "myscope" 
npm install @myscope/mylib

If the name of your own package starts with @myscope and the scope "myscope" is associated with 
a different repository, npm publish will upload your package to that repository instead.

You can also persist these settings in a .npmrc file:

@myscope:registry=http://registry.corporation.com 
//registry.corporation.com/:_authToken=xxxxxxxx-xxxx-xxxx-xxxxxxxxxxxxxxx

This is useful when automating the build on a CI server f.e.

https://riptutorial.com/ 258



Uninstalling packages

To uninstall one or more locally installed packages, use:

npm uninstall <package name>

The uninstall command for npm has five aliases that can also be used:

npm remove <package name> 
npm rm <package name> 
npm r <package name> 
 
npm unlink <package name> 
npm un <package name>

If you would like to remove the package from the package.json file as part of the uninstallation, use 
the --save flag (shorthand: -S):

npm uninstall --save <package name> 
npm uninstall -S <package name>

For a development dependency, use the --save-dev flag (shorthand: -D):

npm uninstall --save-dev <package name> 
npm uninstall -D <package name>

For an optional dependency, use the --save-optional flag (shorthand: -O):

npm uninstall --save-optional <package name> 
npm uninstall -O <package name>

For packages that are installed globally use the --global flag (shorthand: -g):

npm uninstall -g <package name>

Basic semantic versioning

Before publishing a package you have to version it. npm supports semantic versioning, this means 
there are patch, minor and major releases.

For example, if your package is at version 1.2.3 to change version you have to:

patch release: npm version patch => 1.2.41. 
minor release: npm version minor => 1.3.02. 
major release: npm version major => 2.0.03. 

You can also specify a version directly with:

npm version 3.1.4 => 3.1.4

https://riptutorial.com/ 259

http://semver.org/


When you set a package version using one of the npm commands above, npm will modify the 
version field of the package.json file, commit it, and also create a new Git tag with the version 
prefixed with a "v", as if you've issued the command:

git tag v3.1.4

Unlike other package managers like Bower, the npm registry doesn't rely on Git tags being created 
for every version. But, if you like using tags, you should remember to push the newly created tag 
after bumping the package version:

git push origin master (to push the change to package.json)

git push origin v3.1.4 (to push the new tag)

Or you can do this in one swoop with:

git push origin master --tags

Setting up a package configuration

Node.js package configurations are contained in a file called package.json that you can find at the 
root of each project. You can setup a brand new configuration file by calling:

npm init

That will try to read the current working directory for Git repository information (if it exists) and 
environment variables to try and autocomplete some of the placeholder values for you. Otherwise, 
it will provide an input dialog for the basic options.

If you'd like to create a package.json with default values use:

npm init --yes 
# or 
npm init -y 

If you're creating a package.json for a project that you are not going to be publishing as an npm 
package (i.e. solely for the purpose of rounding up your dependencies), you can convey this intent 
in your package.json file:

Optionally set the private property to true to prevent accidental publishing.1. 
Optionally set the license property to "UNLICENSED" to deny others the right to use your 
package.

2. 

To install a package and automatically save it to your package.json, use:

npm install --save <package>

The package and associated metadata (such as the package version) will appear in your 
dependencies. If you save if as a development dependency (using --save-dev), the package will 
instead appear in your devDependencies.

https://riptutorial.com/ 260



With this bare-bones package.json, you will encounter warning messages when installing or 
upgrading packages, telling you that you are missing a description and the repository field. While it 
is safe to ignore these messages, you can get rid of them by opening the package.json in any text 
editor and adding the following lines to the JSON object:

[...] 
"description": "No description", 
"repository": { 
  "private": true 
}, 
[...]

Publishing a package

First, make sure that you have configured your package (as said in Setting up a package 
configuration). Then, you have to be logged in to npmjs.

If you already have a npm user

npm login

If you don't have a user

npm adduser

To check that your user is registered in the current client

npm config ls

After that, when your package is ready to be published use

npm publish

And you are done.

If you need to publish a new version, ensure that you update your package version, as stated in 
Basic semantic versioning. Otherwise, npm will not let you publish the package.

{ 
    name: "package-name", 
    version: "1.0.4" 
}

Running scripts

You may define scripts in your package.json, for example:

{ 
  "name": "your-package", 

https://riptutorial.com/ 261

http://www.riptutorial.com/node-js/example/2257/setting-up-a-package-configuration
http://www.riptutorial.com/node-js/example/2257/setting-up-a-package-configuration
http://www.riptutorial.com/node-js/example/2178/basic-semantic-versioning


  "version": "1.0.0", 
  "description": "", 
  "main": "index.js", 
  "author": "", 
  "license": "ISC", 
  "dependencies": {}, 
  "devDependencies": {}, 
  "scripts": { 
    "echo": "echo hello!" 
  } 
} 
 

To run the echo script, run npm run echo from the command line. Arbitrary scripts, such as echo 
above, have to be be run with npm run <script name>. npm also has a number of official scripts that 
it runs at certain stages of the package's life (like preinstall). See here for the entire overview of 
how npm handles script fields.

npm scripts are used most often for things like starting a server, building the project, and running 
tests. Here's a more realistic example:

  "scripts": { 
    "test": "mocha tests", 
    "start": "pm2 start index.js" 
  }

In the scripts entries, command-line programs like mocha will work when installed either globally or 
locally. If the command-line entry does not exist in the system PATH, npm will also check your 
locally installed packages.

If your scripts become very long, they can be split into parts, like this:

  "scripts": { 
    "very-complex-command": "npm run chain-1 && npm run chain-2", 
    "chain-1": "webpack", 
    "chain-2": "node app.js" 
  }

Removing extraneous packages

To remove extraneous packages (packages that are installed but not in dependency list) run the 
following command:

npm prune

To remove all dev packages add --production flag:

npm prune --production

More on it

https://riptutorial.com/ 262

https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/cli/prune


Listing currently installed packages

To generate a list (tree view) of currently installed packages, use

npm list

ls, la and ll are aliases of list command. la and ll commands shows extended information like 
description and repository.

Options

The response format can be changed by passing options.

npm list --json

json - Shows information in json format•
long - Shows extended information•
parseable - Shows parseable list instead of tree•
global - Shows globally installed packages•
depth - Maximum display depth of dependency tree•
dev/development - Shows devDependencies•
prod/production - Shows dependencies•

If you want, you can also go to the package's home page.

npm home <package name>

Updating npm and packages

Since npm itself is a Node.js module, it can be updated using itself.

If OS is Windows must be running command prompt as Admin

npm install -g npm@latest

If you want to check for updated versions you can do:

npm outdated

In order to update a specific package:

npm update <package name>

This will update the package to the latest version according to the restrictions in 
package.json

In case you also want to lock the updated version in package.json:

https://riptutorial.com/ 263



npm update <package name> --save

Locking modules to specific versions

By default, npm installs the latest available version of modules according to each dependencies' 
semantic version. This can be problematic if a module author doesn't adhere to semver and 
introduces breaking changes in a module update, for example.

To lock down each dependencies' version (and the versions of their dependencies, etc) to the 
specific version installed locally in the node_modules folder, use

npm shrinkwrap

This will then create a npm-shrinkwrap.json alongside your package.json which lists the specific 
versions of dependancies.

Setting up for globally installed packages

You can use npm install -g to install a package "globally." This is typically done to install an 
executable that you can add to your path to run. For example:

npm install -g gulp-cli

If you update your path, you can call gulp directly.

On many OSes, npm install -g will attempt to write to a directory that your user may not be able to 
write to such as /usr/bin. You should not use sudo npm install in this case since there is a 
possible security risk of running arbitrary scripts with sudo and the root user may create directories 
in your home that you cannot write to which makes future installations more difficult.

You can tell npm where to install global modules to via your configuration file, ~/.npmrc. This is 
called the prefix which you can view with npm prefix.

prefix=~/.npm-global-modules

This will use the prefix whenever you run npm install -g. You can also use npm install --prefix 
~/.npm-global-modules to set the prefix when you install. If the prefix is the same as your 
configuration, you don't need to use -g.

In order to use the globally installed module, it needs to be on your path:

export PATH=$PATH:~/.npm-global-modules/bin

Now when you run npm install -g gulp-cli you will be able to use gulp.

Note: When you npm install (without -g) the prefix will be the directory with package.json or the 
current directory if none is found in the hierarchy. This also creates a directory node_modules/.bin 

https://riptutorial.com/ 264

http://www.riptutorial.com/node-js/example/2178/basic-semantic-versioning


that has the executables. If you want to use an executable that is specific to a project, it's not 
necessary to use npm install -g. You can use the one in node_modules/.bin.

Linking projects for faster debugging and development

Building project dependencies can sometimes be a tedious task. Instead of publishing a package 
version to NPM and installing the dependency to test the changes, use npm link. npm link creates 
a symlink so the latest code can be tested in a local environment. This makes testing global tools 
and project dependencies easier by allowing the latest code run before making a published 
version.

Help text

NAME 
       npm-link - Symlink a package folder 
 
SYNOPSIS 
         npm link (in package dir) 
         npm link [<@scope>/]<pkg>[@<version>] 
 
         alias: npm ln

Steps for linking project dependencies

When creating the dependency link, note that the package name is what is going to be referenced 
in the parent project.

CD into a dependency directory (ex: cd ../my-dep)1. 
npm link2. 
CD into the project that is going to use the dependency3. 
npm link my-dep or if namespaced npm link @namespace/my-dep4. 

Steps for linking a global tool

CD into the project directory (ex: cd eslint-watch)1. 
npm link2. 
Use the tool3. 
esw --quiet4. 

Problems that may arise

Linking projects can sometimes cause issues if the dependency or global tool is already installed. 
npm uninstall (-g) <pkg> and then running npm link normally resolves any issues that may arise.

Read npm online: https://riptutorial.com/node-js/topic/482/npm

https://riptutorial.com/ 265

https://riptutorial.com/node-js/topic/482/npm


Chapter 76: nvm - Node Version Manager

Remarks

The urls used in the above examples reference a specific version of Node Version Manager. It is 
most likely that the latest version is different to what's being referenced. To install nvm using the 
latest version, click here to access nvm on GitHub, which will provide you with latest urls.

Examples

Install NVM

You can use curl:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

Or you can use wget:

wget -qO- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

Check NVM version

To verify that nvm has been installed, do:

command -v nvm

which should output 'nvm' if the installation was successful.

Installing an specific Node version

Listing available remote versions for installation

nvm ls-remote

Installing a remote version

nvm install <version>

For example

nvm install 0.10.13

Using an already installed node version

https://riptutorial.com/ 266

https://github.com/creationix/nvm


To list available local versions of node through NVM:

nvm ls

For example, if nvm ls returns:

$ nvm ls 
     v4.3.0 
     v5.5.0

You can switch to v5.5.0 with:

nvm use v5.5.0

Install nvm on Mac OSX

INSTALLATION PROCESS

You can install Node Version Manager using git, curl or wget. You run these commands in 
Terminal on Mac OSX.

curl example:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

wget example:

wget -qO- https://raw.githubusercontent.com/creationix/nvm/v0.31.3/install.sh | bash

TEST THAT NVM WAS PROPERLY INSTALLED

To test that nvm was properly installed, close and re-open Terminal and enter nvm. If you get a 
nvm: command not found message, your OS may not have the necessary .bash_profile file. In 
Terminal, enter touch ~/.bash_profile and run the above install script again.

If you still get nvm: command not found, try the following:

In Terminal, enter nano .bashrc. You should see an export script almost identical to the 
following:

•

export NVM_DIR=”/Users/johndoe/.nvm” [ -s “$NVM_DIR/nvm.sh” ] && . 
“$NVM_DIR/nvm.sh”

Copy the export script and remove it from .bashrc•
Save and Close the .bashrc file (CTRL+O – Enter – CTRL+X)•
Next, enter nano .bash_profile to open the Bash Profile•
Paste the export script you copied into the Bash Profile on a new line•

https://riptutorial.com/ 267



Save and Close the Bash Profile (CTRL+O – Enter – CTRL+X)•
Finally enter nano .bashrc to re-open the .bashrc file•
Paste the following line into the file:•

source ~/.nvm/nvm.sh

Save and Close (CTRL+O – Enter – CTRL+X)•
Restart Terminal and enter nvm to test if it's working•

Setting alias for node version

If you want to set some alias name to installed node version, do:

nvm alias <name> <version>

Similary to unalias, do:

nvm unalias <name>

A proper usecase would be, if you want to set some other version than stable version as default 
alias. default aliased versions are loaded on console by default.

Like:

nvm alias default 5.0.1

Then every time console/terminal starts 5.0.1 would be present by default.

Note:

nvm alias # lists all aliases created on nvm

Run any arbitrary command in a subshell with the desired version of node

List all the node versions installed

nvm ls 
    v4.5.0 
    v6.7.0

Run command using any node installed version

nvm run 4.5.0 --version or nvm exec 4.5.0 node --version 
Running node v4.5.0 (npm v2.15.9) 
v4.5.0

nvm run 6.7.0 --version or nvm exec 6.7.0 node --version 
Running node v6.7.0 (npm v3.10.3) 

https://riptutorial.com/ 268



v6.7.0

using alias

nvm run default --version or nvm exec default node --version 
Running node v6.7.0 (npm v3.10.3) 
v6.7.0

To install node LTS version

nvm install --lts

Version Switching

nvm use v4.5.0 or nvm use stable ( alias )

Read nvm - Node Version Manager online: https://riptutorial.com/node-js/topic/2823/nvm---node-
version-manager

https://riptutorial.com/ 269

https://riptutorial.com/node-js/topic/2823/nvm---node-version-manager
https://riptutorial.com/node-js/topic/2823/nvm---node-version-manager


Chapter 77: OAuth 2.0

Examples

OAuth 2 with Redis Implementation - grant_type: password

In this example I will be using oauth2 in rest api with redis database

Important: You will need to install redis database on your machine, Download it from 
here for linux users and from here to install windows version, and we will be using redis 
manager desktop app, install it from here.

Now we have to set our node.js server to use redis database.

Creating Server file: app.js•

    var express = require('express'), 
  bodyParser = require('body-parser'), 
  oauthserver = require('oauth2-server'); // Would be: 'oauth2-server' 
 
var app = express(); 
 
app.use(bodyParser.urlencoded({ extended: true })); 
 
app.use(bodyParser.json()); 
 
app.oauth = oauthserver({ 
  model: require('./routes/Oauth2/model'), 
  grants: ['password', 'refresh_token'], 
  debug: true 
}); 
 
// Handle token grant requests 
app.all('/oauth/token', app.oauth.grant()); 
 
app.get('/secret', app.oauth.authorise(), function (req, res) { 
  // Will require a valid access_token 
  res.send('Secret area'); 
}); 
 
app.get('/public', function (req, res) { 
  // Does not require an access_token 
  res.send('Public area'); 
}); 
 
// Error handling 
app.use(app.oauth.errorHandler()); 
 
app.listen(3000);

Create Oauth2 model in routes/Oauth2/model.js•

https://riptutorial.com/ 270

https://redis.io/download
https://github.com/ServiceStack/redis-windows
https://redisdesktop.com/download


 var model = module.exports, 
  util = require('util'), 
  redis = require('redis'); 
 
var db = redis.createClient(); 
 
var keys = { 
  token: 'tokens:%s', 
  client: 'clients:%s', 
  refreshToken: 'refresh_tokens:%s', 
  grantTypes: 'clients:%s:grant_types', 
  user: 'users:%s' 
}; 
 
model.getAccessToken = function (bearerToken, callback) { 
  db.hgetall(util.format(keys.token, bearerToken), function (err, token) { 
    if (err) return callback(err); 
 
    if (!token) return callback(); 
 
    callback(null, { 
      accessToken: token.accessToken, 
      clientId: token.clientId, 
      expires: token.expires ? new Date(token.expires) : null, 
      userId: token.userId 
    }); 
  }); 
}; 
 
model.getClient = function (clientId, clientSecret, callback) { 
  db.hgetall(util.format(keys.client, clientId), function (err, client) { 
    if (err) return callback(err); 
 
    if (!client || client.clientSecret !== clientSecret) return callback(); 
 
    callback(null, { 
      clientId: client.clientId, 
      clientSecret: client.clientSecret 
    }); 
  }); 
}; 
 
model.getRefreshToken = function (bearerToken, callback) { 
  db.hgetall(util.format(keys.refreshToken, bearerToken), function (err, token) { 
    if (err) return callback(err); 
 
    if (!token) return callback(); 
 
    callback(null, { 
      refreshToken: token.accessToken, 
      clientId: token.clientId, 
      expires: token.expires ? new Date(token.expires) : null, 
      userId: token.userId 
    }); 
  }); 
}; 
 
model.grantTypeAllowed = function (clientId, grantType, callback) { 
  db.sismember(util.format(keys.grantTypes, clientId), grantType, callback); 
}; 
 

https://riptutorial.com/ 271



model.saveAccessToken = function (accessToken, clientId, expires, user, callback) { 
  db.hmset(util.format(keys.token, accessToken), { 
    accessToken: accessToken, 
    clientId: clientId, 
    expires: expires ? expires.toISOString() : null, 
    userId: user.id 
  }, callback); 
}; 
 
model.saveRefreshToken = function (refreshToken, clientId, expires, user, callback) { 
  db.hmset(util.format(keys.refreshToken, refreshToken), { 
    refreshToken: refreshToken, 
    clientId: clientId, 
    expires: expires ? expires.toISOString() : null, 
    userId: user.id 
  }, callback); 
}; 
 
model.getUser = function (username, password, callback) { 
  db.hgetall(util.format(keys.user, username), function (err, user) { 
    if (err) return callback(err); 
 
    if (!user || password !== user.password) return callback(); 
 
    callback(null, { 
      id: username 
    }); 
  }); 
};

You only need to install redis on your machine and run the following node file

  #! /usr/bin/env node 
 
var db = require('redis').createClient(); 
 
db.multi() 
  .hmset('users:username', { 
    id: 'username', 
    username: 'username', 
    password: 'password' 
  }) 
  .hmset('clients:client', { 
    clientId: 'client', 
    clientSecret: 'secret' 
  })//clientId + clientSecret to base 64 will generate Y2xpZW50OnNlY3JldA== 
  .sadd('clients:client:grant_types', [ 
    'password', 
    'refresh_token' 
  ]) 
  .exec(function (errs) { 
    if (errs) { 
      console.error(errs[0].message); 
      return process.exit(1); 
    } 
 
    console.log('Client and user added successfully'); 
    process.exit(); 
  });

https://riptutorial.com/ 272



Note: This file will set credentials for your frontend to request token So your request from

Sample redis database after calling the above file: 

Request will be as follows:

Sample Call to api

https://riptutorial.com/ 273

https://i.stack.imgur.com/8kn1X.png


Header:

authorization: Basic followed by the password set when you first setup redis:

a. clientId + secretId to base64

1. 

Data form:

username: user that request token

password: user password

grant_type: depends on what options do you want, I choose passwod which 

2. 

https://riptutorial.com/ 274

https://i.stack.imgur.com/D7TCi.png


takes only username and password to be created in redis, Data on redis will be 
as below:

{ 
  "access_token":"1d3fe602da12a086ecb2b996fd7b7ae874120c4f", 
  "token_type":"bearer", // Will be used to access api + access+token e.g. bearer 
1d3fe602da12a086ecb2b996fd7b7ae874120c4f 
  "expires_in":3600, 
  "refresh_token":"b6ad56e5c9aba63c85d7e21b1514680bbf711450" 
}

So We need to call our api and grab some secured data with our access token we have just 
created, see below:

https://riptutorial.com/ 275

https://i.stack.imgur.com/5C93O.png


when token expires api will throw an error that the token expires and you cannot have access to 
any of the api calls, see image below :

Lets see what to do if the token expires, Let me first explain it to you, if access token 
expires a refresh_token exists in redis that reference the expired access_token So 
what we need is to call oauth/token again with the refresh_token grant_type and set 
the authorization to the Basic clientId:clientsecret ( to base 64 ! ) and finally send the 
refresh_token, this will generate a new access_token with a new expiry data.

The following picture shows how to get a new access token: 

https://riptutorial.com/ 276

https://i.stack.imgur.com/ijnIf.png


Hope to Help!

Read OAuth 2.0 online: https://riptutorial.com/node-js/topic/9566/oauth-2-0

https://riptutorial.com/ 277

https://i.stack.imgur.com/mECkH.png
https://riptutorial.com/node-js/topic/9566/oauth-2-0


Chapter 78: package.json

Remarks

You can create package.json with

npm init

which will ask you about basic facts about your projects, including license identifier.

Examples

Basic project definition

{ 
    "name": "my-project", 
    "version": "0.0.1", 
    "description": "This is a project.", 
    "author": "Someone <someone@example.com>", 
    "contributors": [{ 
        "name": "Someone Else", 
        "email": "else@example.com" 
    }], 
    "keywords": ["improves", "searching"] 
}

Field Description

name
a required field for a package to install. Needs to be lowercase, single word 
without spaces. (Dashes and underscores allowed)

version a required field for the package version using semantic versioning.

description a short description of the project

author specifies the author of the package

contributors an array of objects, one for each contributor

keywords an array of strings, this will help people finding your package

Dependencies

"dependencies": { "module-name": "0.1.0" }

exact: 0.1.0 will install that specific version of the module.•
newest minor version: ^0.1.0 will install the newest minor version, for example 0.2.0, but •

https://riptutorial.com/ 278

https://spdx.org/licenses/
https://docs.npmjs.com/getting-started/semantic-versioning


won't install a module with a higher major version e.g. 1.0.0
newest patch: 0.1.x or ~0.1.0 will install the newest patch version available, for example 
0.1.4, but won't install a module with higher major or minor version, e.g. 0.2.0 or 1.0.0.

•

wildcard: * will install the latest version of the module.•
git repository: the following will install a tarball from the master branch of a git repo. A #sha, 
#tag or #branch can also be provided:

GitHub: user/project or user/project#v1.0.0○

url: git://gitlab.com/user/project.git or git://gitlab.com/user/project.git#develop○

•

local path: file:../lib/project•

After adding them to your package.json, use the command npm install in your project directory in 
terminal.

devDependencies

"devDependencies": { 
    "module-name": "0.1.0" 
}

For dependencies required only for development, like testing styling proxies ext. Those dev-
dependencies won't be installed when running "npm install" in production mode.

Scripts

You can define scripts that can be executed or are triggered before or after another script.

{ 
  "scripts": { 
    "pretest": "scripts/pretest.js", 
    "test": "scripts/test.js", 
    "posttest": "scripts/posttest.js" 
  } 
}

In this case, you can execute the script by running either of these commands:

$ npm run-script test 
$ npm run test 
$ npm test 
$ npm t

Pre-defined scripts

Script Name Description

prepublish Run before the package is published.

https://riptutorial.com/ 279



Script Name Description

publish, postpublish Run after the package is published.

preinstall Run before the package is installed.

install, postinstall Run after the package is installed.

preuninstall, uninstall Run before the package is uninstalled.

postuninstall Run after the package is uninstalled.

preversion, version Run before bump the package version.

postversion Run after bump the package version.

pretest, test, posttest Run by the npm test command

prestop, stop, poststop Run by the npm stop command

prestart, start, poststart Run by the npm start command

prerestart, restart, postrestart Run by the npm restart command

User-defined scripts

You can also define your own scripts the same way you do with the pre-defined scripts:

{ 
  "scripts": { 
    "preci": "scripts/preci.js", 
    "ci": "scripts/ci.js", 
    "postci": "scripts/postci.js" 
  } 
}

In this case, you can execute the script by running either of these commands:

$ npm run-script ci 
$ npm run ci

User-defined scripts also supports pre and post scripts, as shown in the example above.

Extended project definition

Some of the additional attributes are parsed by the npm website like repository, bugs or homepage 
and shown in the infobox for this packages

{ 

https://riptutorial.com/ 280



  "main": "server.js", 
  "repository" :  { 
    "type": "git", 
    "url": "git+https://github.com/<accountname>/<repositoryname>.git" 
  }, 
  "bugs": { 
    "url": "https://github.com/<accountname>/<repositoryname>/issues" 
  }, 
  "homepage": "https://github.com/<accountname>/<repositoryname>#readme", 
  "files": [ 
    "server.js", // source files 
    "README.md", // additional files 
    "lib" // folder with all included files 
  ] 
}

Field Description

main
Entry script for this package. This script is returned when a user requires the 
package.

repository Location and type of the public repository

bugs Bugtracker for this package (e.g. github)

homepage Homepage for this package or the general project

files List of files and folders which should be downloaded when a user does a npm 
install <packagename>

Exploring package.json

A package.json file, usually present in the project root, contains metadata about your app or 
module as well as the list of dependencies to install from npm when running npm install.

To initialize a package.json type npm init in your command prompt.

To create a package.json with default values use:

npm init --yes 
# or 
npm init -y

To install a package and save it to package.json use:

npm install {package name} --save

You can also use the shorthand notation:

 npm i -S {package name}

https://riptutorial.com/ 281



NPM aliases -S to --save and -D to --save-dev to save in your production or development 
dependencies respectively.

The package will appear in your dependencies; if you use --save-dev instead of --save, the 
package will appear in your devDependencies.

Important properties of package.json:

{ 
  "name": "module-name", 
  "version": "10.3.1", 
  "description": "An example module to illustrate the usage of a package.json", 
  "author": "Your Name <your.name@example.org>", 
  "contributors": [{ 
    "name": "Foo Bar", 
    "email": "foo.bar@example.com" 
  }], 
  "bin": { 
    "module-name": "./bin/module-name" 
  }, 
  "scripts": { 
    "test": "vows --spec --isolate", 
    "start": "node index.js", 
    "predeploy": "echo About to deploy", 
    "postdeploy": "echo Deployed", 
    "prepublish": "coffee --bare --compile --output lib/foo src/foo/*.coffee" 
  }, 
  "main": "lib/foo.js", 
  "repository": { 
    "type": "git", 
    "url": "https://github.com/username/repo" 
  }, 
  "bugs": { 
    "url": "https://github.com/username/issues" 
  }, 
  "keywords": [ 
    "example" 
  ], 
  "dependencies": { 
    "express": "4.2.x" 
  }, 
  "devDependencies": { 
    "assume": "<1.0.0 || >=2.3.1 <2.4.5 || >=2.5.2 <3.0.0" 
  }, 
  "peerDependencies": { 
    "moment": ">2.0.0" 
  }, 
  "preferGlobal": true, 
  "private": true, 
  "publishConfig": { 
    "registry": "https://your-private-hosted-npm.registry.domain.com" 
  }, 
  "subdomain": "foobar", 
  "analyze": true, 
  "license": "MIT", 
  "files": [ 
    "lib/foo.js" 
  ] 
}

https://riptutorial.com/ 282



Information about some important properties:

name

The unique name of your package and should be down in lowercase. This property is required and 
your package will not install without it.

The name must be less than or equal to 214 characters.1. 
The name can't start with a dot or an underscore.2. 
New packages must not have uppercase letters in the name.3. 

version

The version of the package is specified by Semantic Versioning (semver). Which assumes that a 
version number is written as MAJOR.MINOR.PATCH and you increment the:

MAJOR version when you make incompatible API changes1. 
MINOR version when you add functionality in a backwards-compatible manner2. 
PATCH version when you make backwards-compatible bug fixes3. 

description

The description of the project. Try to keep it short and concise.

author

The author of this package.

bin

An object which is used to expose binary scripts from your package. The object assumes that the 
key is the name of the binary script and the value a relative path to the script.

This property is used by packages that contain a CLI (command line interface).

script

A object which exposes additional npm commands. The object assumes that the key is the npm 
command and the value is the script path. These scripts can get executed when you run npm run 
{command name} or npm run-script {command name}.

Packages that contain a command line interface and are installed locally can be called without a 
relative path. So instead of calling ./node-modules/.bin/mocha you can directly call mocha.

main

The main entry point to your package. When calling require('{module name}') in node, this will be 

https://riptutorial.com/ 283

http://semver.org/


actual file that is required.

It's highly advised that requiring the main file does not generate any side affects. For instance, 
requiring the main file should not start up a HTTP server or connect to a database. Instead, you 
should create something like exports.init = function () {...} in your main script.

keywords

An array of keywords which describe your package. These will help people find your package.

devDependencies

These are the dependencies that are only intended for development and testing of your module. 
The dependencies will be installed automatically unless the NODE_ENV=production environment 
variable has been set. If this is the case you can still these packages using npm install --dev

peerDependencies

If you are using this module, then peerDependencies lists the modules you must install alongside 
this one. For example, moment-timezone must be installed alongside moment because it is a plugin for 
moment, even if it doesn't directly require("moment").

preferGlobal

A property that indicates that this page prefers to be installed globally using npm install -g 
{module-name}. This property is used by packages that contain a CLI (command line interface).

In all other situations you should NOT use this property.

publishConfig

The publishConfig is an object with configuration values that will be used for publishing modules. 
The configuration values that are set override your default npm configuration.

The most common use of the publishConfig is to publish your package to a private npm registry so 
you still have the benefits of npm but for private packages. This is done by simply setting URL of 
your private npm as value for the registry key.

files

This is an array of all the files to include in the published package. Either a file path or folder path 
can be used. All the contents of a folder path will be included. This reduces the total size of your 
package by only including the correct files to be distributed. This field works in conjunction with a 
.npmignore rules file.

Source

https://riptutorial.com/ 284

http://browsenpm.org/package.json


Read package.json online: https://riptutorial.com/node-js/topic/1515/package-json

https://riptutorial.com/ 285

https://riptutorial.com/node-js/topic/1515/package-json


Chapter 79: Parsing command line 
arguments

Examples

Passing action (verb) and values

const options = require("commander"); 
 
options 
  .option("-v, --verbose", "Be verbose"); 
 
options 
  .command("convert") 
  .alias("c") 
  .description("Converts input file to output file") 
  .option("-i, --in-file <file_name>", "Input file") 
  .option("-o, --out-file <file_name>", "Output file") 
  .action(doConvert); 
 
options.parse(process.argv); 
 
if (!options.args.length) options.help(); 
 
function doConvert(options){ 
    //do something with options.inFile and options.outFile 
};

Passing boolean switches

const options = require("commander"); 
 
options 
  .option("-v, --verbose") 
  .parse(process.argv); 
 
if (options.verbose){ 
  console.log("Let's make some noise!"); 
}

Read Parsing command line arguments online: https://riptutorial.com/node-js/topic/6174/parsing-
command-line-arguments

https://riptutorial.com/ 286

https://riptutorial.com/node-js/topic/6174/parsing-command-line-arguments
https://riptutorial.com/node-js/topic/6174/parsing-command-line-arguments


Chapter 80: Passport integration

Remarks

Password must always be hashed. A simple way to secure passwords using NodeJS would be to 
use bcrypt-nodejs module.

Examples

Getting started

Passport must be initialized using passport.initialize() middleware. To use login sessions, 
passport.session() middleware is required.

Note that passport.serialize() and passport.deserializeUser() methods must be defined. 
Passport will serialize and deserialize user instances to and from the session

const express = require('express'); 
const session = require('express-session'); 
const passport = require('passport'); 
const cookieParser = require('cookie-parser'); 
const app = express(); 
 
// Required to read cookies 
app.use(cookieParser()); 
 
passport.serializeUser(function(user, next) { 
    // Serialize the user in the session 
    next(null, user); 
}); 
 
passport.deserializeUser(function(user, next) { 
    // Use the previously serialized user 
        next(null, user); 
}); 
 
// Configuring express-session middleware 
app.use(session({ 
    secret: 'The cake is a lie', 
    resave: true, 
    saveUninitialized: true 
})); 
 
// Initializing passport 
app.use(passport.initialize()); 
app.use(passport.session()); 
 
// Starting express server on port 3000 
app.listen(3000);

Local authentication

https://riptutorial.com/ 287



The passport-local module is used to implement a local authentication.

This module lets you authenticate using a username and password in your Node.js 
applications.

Registering the user :

const passport = require('passport'); 
const LocalStrategy = require('passport-local').Strategy; 
 
// A named strategy is used since two local strategy are used : 
// one for the registration and the other to sign-in 
passport.use('localSignup', new LocalStrategy({ 
    // Overriding defaults expected parameters, 
    // which are 'username' and 'password' 
    usernameField: 'email', 
    passwordField: 'password', 
    passReqToCallback: true // allows us to pass back the entire request to the callback    . 
}, 
function(req, email, password, next) { 
    // Check in database if user is already registered 
    findUserByEmail(email, function(user) { 
        // If email already exists, abort registration process and 
        // pass 'false' to the callback 
        if (user) return next(null, false); 
        // Else, we create the user 
        else { 
            // Password must be hashed ! 
            let newUser = createUser(email, password); 
 
            newUser.save(function() { 
                // Pass the user to the callback 
                return next(null, newUser); 
            }); 
        } 
    }); 
});

Logging in the user :

const passport = require('passport'); 
const LocalStrategy = require('passport-local').Strategy; 
 
passport.use('localSignin', new LocalStrategy({ 
    usernameField : 'email', 
    passwordField : 'password', 
}, 
function(email, password, next) { 
    // Find the user 
    findUserByEmail(email, function(user) { 
        // If user is not found, abort signing in process 
        // Custom messages can be provided in the verify callback 
        // to give the user more details concerning the failed authentication 
        if (!user) 
            return next(null, false, {message: 'This e-mail address is not associated with any 
account.'}); 
        // Else, we check if password is valid 
        else { 

https://riptutorial.com/ 288



            // If password is not correct, abort signing in process 
            if (!isPasswordValid(password)) return next(null, false); 
            // Else, pass the user to callback 
            else return next(null, user); 
        } 
    }); 
});

Creating routes :

// ... 
app.use(passport.initialize()); 
app.use(passport.session()); 
 
// Sign-in route 
// Passport strategies are middlewares 
app.post('/login', passport.authenticate('localSignin', { 
    successRedirect: '/me', 
    failureRedirect: '/login' 
}); 
 
// Sign-up route 
app.post('/register', passport.authenticate('localSignup', { 
    successRedirect: '/', 
    failureRedirect: '/signup' 
}); 
 
// Call req.logout() to log out 
app.get('/logout', function(req, res) { 
    req.logout(); 
    res.redirect('/'); 
}); 
 
app.listen(3000);

Facebook authentication

The passport-facebook module is used to implement a Facebook authentication. In this 
example, if the user does not exist on sign-in, he is created.

Implementing strategy :

const passport = require('passport'); 
const FacebookStrategy = require('passport-facebook').Strategy; 
 
// Strategy is named 'facebook' by default 
passport.use({ 
    clientID: 'yourclientid', 
    clientSecret: 'yourclientsecret', 
    callbackURL: '/auth/facebook/callback' 
}, 
// Facebook will send a token and user's profile 
function(token, refreshToken, profile, next) { 
    // Check in database if user is already registered 
    findUserByFacebookId(profile.id, function(user) { 
        // If user exists, returns his data to callback 
        if (user) return next(null, user); 

https://riptutorial.com/ 289



        // Else, we create the user 
        else { 
            let newUser = createUserFromFacebook(profile, token); 
 
            newUser.save(function() { 
                // Pass the user to the callback 
                return next(null, newUser); 
            }); 
        } 
    }); 
});

Creating routes :

// ... 
app.use(passport.initialize()); 
app.use(passport.session()); 
 
// Authentication route 
app.get('/auth/facebook', passport.authenticate('facebook', { 
    // Ask Facebook for more permissions 
    scope : 'email' 
})); 
 
// Called after Facebook has authenticated the user 
app.get('/auth/facebook/callback', 
    passport.authenticate('facebook', { 
        successRedirect : '/me', 
        failureRedirect : '/' 
})); 
 
 
//... 
 
app.listen(3000);

Simple Username-Password Authentication

In your routes/index.js

Here user is the model for the userSchema

router.post('/login', function(req, res, next) { 
    if (!req.body.username || !req.body.password) { 
        return res.status(400).json({ 
            message: 'Please fill out all fields' 
        }); 
    } 
 
    passport.authenticate('local', function(err, user, info) { 
        if (err) { 
            console.log("ERROR : " + err); 
            return next(err); 
        } 
 
        if(user) ( 

https://riptutorial.com/ 290



            console.log("User Exists!") 
            //All the data of the user can be accessed by user.x 
            res.json({"success" : true}); 
            return; 
        } else { 
            res.json({"success" : false}); 
            console.log("Error" + errorResponse()); 
            return; 
        } 
    })(req, res, next); 
});

Google Passport authentication

We have simple module available in npm for goggle authetication name passport-google-
oauth20

Consider the following example In this example have created a folder namely config having the 
passport.js and google.js file in the root directory. In your app.js include the following

var express = require('express'); 
var session = require('express-session'); 
var passport = require('./config/passport'); // path where the passport file placed 
var app = express(); 
passport(app);

// other code to initailize the server , error handle

In the passport.js file in the config folder include the following code

var passport = require  ('passport'), 
google = require('./google'), 
User = require('./../model/user'); // User is the  mongoose model 
 
module.exports = function(app){ 
  app.use(passport.initialize()); 
  app.use(passport.session()); 
  passport.serializeUser(function(user, done){ 
      done(null, user); 
  }); 
  passport.deserializeUser(function (user, done) { 
     done(null, user); 
  }); 
  google(); 
};

In the google.js file in the same config folder include following

var passport = require('passport'), 
GoogleStrategy = require('passport-google-oauth20').Strategy, 
User = require('./../model/user'); 
module.exports = function () { 
passport.use(new GoogleStrategy({ 
        clientID: 'CLIENT ID', 
        clientSecret: 'CLIENT SECRET', 

https://riptutorial.com/ 291



        callbackURL: "http://localhost:3000/auth/google/callback" 
    }, 
    function(accessToken, refreshToken, profile, cb) { 
        User.findOne({ googleId : profile.id }, function (err, user) { 
            if(err){ 
                return cb(err, false, {message : err}); 
            }else { 
                if (user != '' && user != null) { 
                    return cb(null, user, {message : "User "}); 
                } else { 
                    var username  = profile.displayName.split(' '); 
                    var userData = new User({ 
                        name : profile.displayName, 
                        username : username[0], 
                        password : username[0], 
                        facebookId : '', 
                        googleId : profile.id, 
                    }); 
                    // send email to user just in case required to send the newly created 
                    // credentails to user for future login without using google login 
                    userData.save(function (err, newuser) { 
                        if (err) { 
                            return cb(null, false, {message : err + " !!! Please try again"}); 
                        }else{ 
                            return cb(null, newuser); 
                        } 
                    }); 
                } 
            } 
        }); 
      } 
  )); 
};

Here in this example, if user is not in DB then creating a new user in DB for local reference using 
the field name googleId in user model.

Read Passport integration online: https://riptutorial.com/node-js/topic/7666/passport-integration

https://riptutorial.com/ 292

https://riptutorial.com/node-js/topic/7666/passport-integration


Chapter 81: passport.js

Introduction

Passport is a popular authorisation module for node. In simple words it handles all the 
authorisation requests on your app by users. Passport supports over 300 strategies so that you 
can easily integrate login with Facebook / Google or any other social network using it. The strategy 
that we will discuss here is the Local where you authenticate an user using your own database of 
registered users( using username and password).

Examples

Example of LocalStrategy in passport.js

var passport = require('passport'); 
var LocalStrategy = require('passport-local').Strategy; 
 
passport.serializeUser(function(user, done) { //In serialize user you decide what to store in 
the session. Here I'm storing the user id only. 
  done(null, user.id); 
}); 
 
passport.deserializeUser(function(id, done) { //Here you retrieve all the info of the user 
from the session storage using the user id stored in the session earlier using serialize user. 
  db.findById(id, function(err, user) { 
    done(err, user); 
    }); 
}); 
 
passport.use(new LocalStrategy(function(username, password, done) { 
    db.findOne({'username':username},function(err,student){ 
        if(err)return done(err,{message:message});//wrong roll_number or password; 
        var pass_retrieved = student.pass_word; 
        bcrypt.compare(password, pass_retrieved, function(err3, correct) { 
          if(err3){ 
            message = [{"msg": "Incorrect Password!"}]; 
            return done(null,false,{message:message});  // wrong password 
          } 
          if(correct){ 
              return done(null,student); 
          } 
        }); 
    }); 
})); 
 
app.use(session({ secret: 'super secret' })); //to make passport remember the user on other 
pages too.(Read about session store. I used express-sessions.) 
app.use(passport.initialize()); 
app.use(passport.session()); 
 
app.post('/',passport.authenticate('local',{successRedirect:'/users' failureRedirect: '/'}), 
    function(req,res,next){ 
});

https://riptutorial.com/ 293



Read passport.js online: https://riptutorial.com/node-js/topic/8812/passport-js

https://riptutorial.com/ 294

https://riptutorial.com/node-js/topic/8812/passport-js


Chapter 82: Performance challenges

Examples

Processing long running queries with Node

Since Node is single-threaded, there is a need of workaround if it comes to a long-running 
calculations.

Note: this is "ready to run" example. Just, don't forget to get jQuery and install the required 
modules.

Main logic of this example:

Client sends request to the server.1. 
Server starts the routine in separate node instance and sends immediate response back with 
related task ID.

2. 

Client continiously sends checks to a server for status updates of the given task ID.3. 

Project structure:

    project 
    │   package.json 
    │   index.html 
    │ 
    ├───js 
    │      main.js 
    │      jquery-1.12.0.min.js 
    │ 
    └───srv 
        │    app.js 
        ├─── models 
        │      task.js 
        └─── tasks 
               data-processor.js

app.js:

var express     = require('express'); 
var app         = express(); 
var http        = require('http').Server(app); 
var mongoose    = require('mongoose'); 
var bodyParser  = require('body-parser'); 
 
var childProcess= require('child_process'); 
 
var Task        = require('./models/task'); 
 
app.use(bodyParser.urlencoded({ extended: true })); 
app.use(bodyParser.json()); 
 
app.use(express.static(__dirname + '/../')); 

https://riptutorial.com/ 295



 
app.get('/', function(request, response){ 
    response.render('index.html'); 
}); 
 
//route for the request itself 
app.post('/long-running-request', function(request, response){ 
    //create new task item for status tracking 
    var t = new Task({ status: 'Starting ...' }); 
 
    t.save(function(err, task){ 
        //create new instance of node for running separate task in another thread 
        taskProcessor = childProcess.fork('./srv/tasks/data-processor.js'); 
 
        //process the messages comming from the task processor 
        taskProcessor.on('message', function(msg){ 
            task.status = msg.status; 
            task.save(); 
        }.bind(this)); 
 
        //remove previously openned node instance when we finished 
        taskProcessor.on('close', function(msg){ 
            this.kill(); 
        }); 
 
        //send some params to our separate task 
        var params = { 
            message: 'Hello from main thread' 
        }; 
 
        taskProcessor.send(params); 
        response.status(200).json(task); 
    }); 
}); 
 
//route to check is the request is finished the calculations 
app.post('/is-ready', function(request, response){ 
    Task 
        .findById(request.body.id) 
        .exec(function(err, task){ 
            response.status(200).json(task); 
        }); 
}); 
 
mongoose.connect('mongodb://localhost/test'); 
http.listen('1234');

task.js:

var mongoose    = require('mongoose'); 
 
var taskSchema = mongoose.Schema({ 
    status: { 
        type: String 
    } 
}); 
 
mongoose.model('Task', taskSchema); 
 
module.exports  = mongoose.model('Task');

https://riptutorial.com/ 296



data-processor.js:

process.on('message', function(msg){ 
    init = function(){ 
        processData(msg.message); 
    }.bind(this)(); 
 
    function processData(message){ 
        //send status update to the main app 
        process.send({ status: 'We have started processing your data.' }); 
 
        //long calculations .. 
        setTimeout(function(){ 
            process.send({ status: 'Done!' }); 
 
            //notify node, that we are done with this task 
            process.disconnect(); 
        }, 5000); 
    } 
}); 
 
process.on('uncaughtException',function(err){ 
    console.log("Error happened: " + err.message + "\n" + err.stack + ".\n"); 
    console.log("Gracefully finish the routine."); 
});

index.html:

<!DOCTYPE html> 
<html> 
    <head> 
        <script src="./js/jquery-1.12.0.min.js"></script> 
        <script src="./js/main.js"></script> 
    </head> 
    <body> 
        <p>Example of processing long-running node requests.</p> 
        <button id="go" type="button">Run</button> 
 
        <br /> 
 
        <p>Log:</p> 
        <textarea id="log" rows="20" cols="50"></textarea> 
    </body> 
</html>

main.js:

$(document).on('ready', function(){ 
 
    $('#go').on('click', function(e){ 
        //clear log 
        $("#log").val(''); 
 
        $.post("/long-running-request", {some_params: 'params' }) 
            .done(function(task){ 
                $("#log").val( $("#log").val() + '\n' + task.status); 
 
                //function for tracking the status of the task 

https://riptutorial.com/ 297



                function updateStatus(){ 
                    $.post("/is-ready", {id: task._id }) 
                        .done(function(response){ 
                            $("#log").val( $("#log").val() + '\n' + response.status); 
 
                            if(response.status != 'Done!'){ 
                                checkTaskTimeout = setTimeout(updateStatus, 500); 
                            } 
                        }); 
                } 
 
                //start checking the task 
                var checkTaskTimeout = setTimeout(updateStatus, 100); 
            }); 
    }); 
});

package.json:

{ 
  "name": "nodeProcessor", 
  "dependencies": { 
    "body-parser": "^1.15.2", 
    "express": "^4.14.0", 
    "html": "0.0.10", 
    "mongoose": "^4.5.5" 
  } 
}

Disclaimer: this example is intended to give you basic idea. To use it in production environment, it 
needs improvements.

Read Performance challenges online: https://riptutorial.com/node-js/topic/6325/performance-
challenges

https://riptutorial.com/ 298

https://riptutorial.com/node-js/topic/6325/performance-challenges
https://riptutorial.com/node-js/topic/6325/performance-challenges


Chapter 83: PostgreSQL integration

Examples

Connect To PostgreSQL

Using PostgreSQLnpm module.  
 
install dependency from npm  

npm  install pg --save

Now you have to create a PostgreSQL connection, which you can later query.

Assume you Database_Name = students, Host = localhost and DB_User= postgres

var pg = require("pg") 
var connectionString = "pg://postgres:postgres@localhost:5432/students"; 
var client = new pg.Client(connectionString); 
client.connect();

Query with Connection Object

If you want to use connection object for query database you can use this sample code.

var queryString = "SELECT name, age FROM students " ; 
var query = client.query(queryString); 
 
query.on("row", (row, result)=> { 
result.addRow(row); 
}); 
 
query.on("end", function (result) { 
//LOGIC 
});

Read PostgreSQL integration online: https://riptutorial.com/node-js/topic/7706/postgresql-
integration

https://riptutorial.com/ 299

https://riptutorial.com/node-js/topic/7706/postgresql-integration
https://riptutorial.com/node-js/topic/7706/postgresql-integration


Chapter 84: Project Structure

Introduction

The structure of nodejs project is influenced by the personal preferences, project's architecture 
and module injection strategy being used.Also on event based arc' which uses dynamic module 
instantiation mechanism. To have a MVC structure it is imperative to separate out the server side 
and client side source code as the client side code will probably be minimized and sent to browser 
and is public in its basic nature. And the server side or back-end will provide API to perform CRUD 
operations

Remarks

The project above uses browserify and vue.js modules as application base view and minification 
libs. So the project structure may changes minutely based on which mvc framework you use e.g. 
The build directory in public will need to contain all the mvc code. You can have a task which does 
this for you .

Examples

A simple nodejs application with MVC and API

The first major distinction is between the dynamically generated directories which will be 
used for hosting and source directories.

•

The source directories will have a config file or folder depending on the amount of 
configuration you may have . This includes the environment configuration and business logic 
configuration which you may choose to put inside config directory.

•

 |-- Config 
        |-- config.json 
        |-- appConfig 
            |-- pets.config 
            |-- payment.config

Now the most vital directories where we distinguish between the server side/backend and 
the frontend modules . The 2 directories server and webapp represent the backend and 
frontend respectively which we can choose to put inside a source directory viz. src.

You can go with different names as per personal choice for server or webapp 
depending on what makes sense for you. Make sure you dont want to make it too 
long or to complex as it is in the end internal project structure.

•

Inside the server directory you can have the controller ,the App.js/index.js which will be you 
main nodejs file and start point .The server dir. can also have the dto dir which holds all the 
data transfer objects which will be usd by API controllers.

•

https://riptutorial.com/ 300



 |-- server 
      |-- dto 
          |-- pet.js 
          |-- payment.js 
      |-- controller 
          |-- PetsController.js 
          |-- PaymentController.js 
      |-- App.js

The webapp directory can be divided into two major parts public and mvc , this is again 
influenced by what build strategy you want to use. We are using browserfiy the build the 
MVC part of webapp and minimize the contents from mvc directory simply put.

|-- webapp |-- public |-- mvc

•

Now the public directory can contain all the static resources,images,css(you can have saas 
files as well) and most importantly the HTML files .

•

|-- public 
    |-- build  // will contianed minified scripts(mvc) 
    |-- images 
        |-- mouse.jpg 
        |-- cat.jpg 
    |-- styles 
        |-- style.css 
    |-- views 
        |-- petStore.html 
        |-- paymentGateway.html 
        |-- header.html 
        |-- footer.html 
    |-- index.html

The mvc directory will contain the front-end logic including the models,the view controllers 
and any other utils modules you may need as part of UI. Also the index.js or shell.js 
whichever may suite you is part of this directory as well.

 |-- mvc 
     |-- controllers 
         |-- Dashborad.js 
         |-- Help.js 
         |-- Login.js 
     |-- utils 
     |-- index.js

•

So in conclusion the entire project structure will look like below.And a simple build task like gulp 
browserify will minify the mvc scripts and publish in public directory. We can then provide this 
public directory as static resource via express.use(satic('public' )) api.

    |-- node_modules 
    |-- src 
        |-- server 
            |-- controller 
            |-- App.js   // node app 
        |-- webapp 

https://riptutorial.com/ 301

http://browserify.org/


            |-- public 
                |-- styles 
                |-- images 
                |-- index.html 
            |-- mvc 
                |-- controller 
                |-- shell.js  // mvc shell 
    |-- config 
    |-- Readme.md 
    |-- .gitignore 
    |-- package.json

Read Project Structure online: https://riptutorial.com/node-js/topic/9935/project-structure

https://riptutorial.com/ 302

https://riptutorial.com/node-js/topic/9935/project-structure


Chapter 85: Push notifications

Introduction

So if you wanna make web app notification I suggest you to use Push.js or SoneSignal framework 
for Web/mobile app.

Push is the fastest way to get up and running with Javascript notifications. A fairly new addition to 
the official specification, the Notification API allows modern browsers such as Chrome, Safari, 
Firefox, and IE 9+ to push notifications to a user’s desktop.

You will have to use Socket.io and some backend framework, I will user Express for this example.

Parameters

module/framework description

node.js/express
Simple backe-end framework for Node.js application, very easy to use 
and extremely powerful

Socket.io
Socket.IO enables real-time bidirectional event-based communication. 
It works on every platform, browser or device, focusing equally on 
reliability and speed.

Push.js The world's most versatile desktop notifications framework

OneSignal Just another form off push notifications for Apple devices

Firebase
Firebase is Google's mobile platform that helps you quickly develop 
high-quality apps and grow your business.

Examples

Web notification

First, you will need to install Push.js module.

$ npm install push.js --save

Or import it to your front-end app through CDN

<script src="./push.min.js"></script> <!-- CDN link -->

After you are done with that, you should be good to go. This is how it should look like if u wanna 

https://riptutorial.com/ 303

https://pushjs.org/
https://cdnjs.com/libraries/push.js


make simple notification:

Push.create('Hello World!')

I will assume that you know how to setup Socket.io with your app. Here is some code example of 
my backend app with express:

var app = require('express')(); 
var server = require('http').Server(app); 
var io = require('socket.io')(server); 
 
server.listen(80); 
 
app.get('/', function (req, res) { 
  res.sendfile(__dirname + '/index.html'); 
}); 
 
io.on('connection', function (socket) { 
 
  socket.emit('pushNotification', { success: true, msg: 'hello' }); 
 
});

After your server is all set up, you should be able to move on to front-end stuff. Now all we have to 
do is import Socket.io CDN and add this code to my index.html file:

<script src="../socket.io.js"></script> <!-- CDN link --> 
<script> 
  var socket = io.connect('http://localhost'); 
  socket.on('pushNotification', function (data) { 
    console.log(data); 
    Push.create("Hello world!", { 
        body: data.msg, //this should print "hello" 
        icon: '/icon.png', 
        timeout: 4000, 
        onClick: function () { 
            window.focus(); 
            this.close(); 
        } 
    }); 
  }); 
</script>

There you go, now you should be able to display your notification, this also works on any Android 
device, and if u wanna use Firebase cloud messaging, you can use it with this module, Here is link 
for that example written by Nick (creator of Push.js)

Apple

Keep in mind that this will not work on Apple devices (I didnt test them all), but if you want to make 
push notifications check OneSignal plugin.

Read Push notifications online: https://riptutorial.com/node-js/topic/10892/push-notifications

https://riptutorial.com/ 304

https://socket.io/
https://cdnjs.com/libraries/socket.io
https://firebase.google.com/
https://github.com/Nickersoft/push-fcm-plugin
https://onesignal.com/
https://riptutorial.com/node-js/topic/10892/push-notifications


Chapter 86: Readline

Syntax

const readline = require('readline')•
readline.close()•
readline.pause()•
readline.prompt([preserveCursor])•
readline.question(query, callback)•
readline.resume()•
readline.setPrompt(prompt)•
readline.write(data[, key])•
readline.clearLine(stream, dir)•
readline.clearScreenDown(stream)•
readline.createInterface(options)•
readline.cursorTo(stream, x, y)•
readline.emitKeypressEvents(stream[, interface])•
readline.moveCursor(stream, dx, dy)•

Examples

Line-by-line file reading

const fs = require('fs'); 
const readline = require('readline'); 
 
const rl = readline.createInterface({ 
    input: fs.createReadStream('text.txt') 
}); 
 
// Each new line emits an event - every time the stream receives \r, \n, or \r\n 
rl.on('line', (line) => { 
    console.log(line); 
}); 
 
rl.on('close', () => { 
    console.log('Done reading file'); 
});

Prompting user input via CLI

const readline = require('readline'); 
 
const rl = readline.createInterface({ 
    input: process.stdin, 
    output: process.stdout 
}); 
 
rl.question('What is your name?', (name) => { 

https://riptutorial.com/ 305



    console.log(`Hello ${name}!`); 
 
    rl.close(); 
});

Read Readline online: https://riptutorial.com/node-js/topic/1431/readline

https://riptutorial.com/ 306

https://riptutorial.com/node-js/topic/1431/readline


Chapter 87: Remote Debugging in Node.JS

Examples

NodeJS run configuration

To set up Node remote debugging, simply run the node process with the --debug flag. You can add 
a port on which the debugger should run using --debug=<port>.

When your node process starts up you should see the message

Debugger listening on port <port>

Which will tell you that everything is good to go.

Then you set up the remote debugging target in your specific IDE.

IntelliJ/Webstorm Configuration

Make sure that the NodeJS plugin is enabled1. 
Select your run configurations (screen)2. 

Select + > Node.js Remote Debug3. 

https://riptutorial.com/ 307

http://i.stack.imgur.com/74hst.png


Make sure you enter the port selected above as well as the correct host4. 

Once those are configured simply run the debug target as you normally would and it will stop on 
your breakpoints.

Use the proxy for debugging via port on Linux

If you start your application on Linux, use the proxy for debugging via port, for example:

socat TCP-LISTEN:9958,fork TCP:127.0.0.1:5858 &

Use port 9958 for remote debugging then.

Read Remote Debugging in Node.JS online: https://riptutorial.com/node-js/topic/6335/remote-
debugging-in-node-js

https://riptutorial.com/ 308

http://i.stack.imgur.com/MVlrq.png
http://i.stack.imgur.com/x7Hbu.png
https://riptutorial.com/node-js/topic/6335/remote-debugging-in-node-js
https://riptutorial.com/node-js/topic/6335/remote-debugging-in-node-js


Chapter 88: Require()

Introduction

This documentation focuses on explaining the uses and of the require() statement that NodeJS 
includes in their language.

Require is an import of certain files or packages used with NodeJS's modules. It is used to 
improve code structure and uses. require() is used on files that are installed locally, with a direct 
route from the file that is require'ing.

Syntax

module.exports = {testFunction: testFunction};•
var test_file = require('./testFile.js'); //Let us have a file named testFile•
test_file.testFunction(our_data); //Let testFile have function testFunction•

Remarks

Using require() allows code to be structured in a way similar to Java's use of classes and public 
methods. If a function is .export'ed, it can be require'ed in another file to be used. If a file is not 
.export'ed, it cannot be used in another file.

Examples

Beginning require() use with a function and file

Require is a statement that Node interprets as, in some sense, a getter function. For example, say 
you have a file named analysis.js, and the inside of your file looks like this,

function analyzeWeather(weather_data) { 
  console.log('Weather information for ' + weather_data.time + ': '); 
  console.log('Rainfall: ' + weather_data.precip); 
  console.log('Temperature: ' + weather_data.temp); 
  //More weather_data analysis/printing... 
}

This file contains only the method, analyzeWeather(weather_data). If we want to use this function, it 
must be either used inside of this file, or copied to the file it wants to be used by. However, Node 
has included a very useful tool to help with code and file organization, which is modules.

In order to utilize our function, we must first export the function through a statement at the 
beginning. Our new file looks like this,

module.exports = { 

https://riptutorial.com/ 309

https://nodejs.org/en/
https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
https://nodejs.org/api/modules.html


  analyzeWeather: analyzeWeather 
} 
function analyzeWeather(weather_data) { 
  console.log('Weather information for ' + weather_data.time + ': '); 
  console.log('Rainfall: ' + weather_data.precip); 
  console.log('Temperature: ' + weather_data.temp); 
  //More weather_data analysis/printing... 
}

With this small module.exports statement, our function is now ready for use outside of the file. All 
that is left to do is to use require().

When require'ing a function or file, the syntax is very similar. It is usually done at the beginning of 
the file and set to var's or const's for use throughout the file. For example, we have another file (on 
the same level as analyze.js named handleWeather.js that looks like this,

const analysis = require('./analysis.js'); 
 
weather_data = { 
  time: '01/01/2001', 
  precip: 0.75, 
  temp: 78, 
  //More weather data... 
}; 
analysis.analyzeWeather(weather_data);

In this file, we are using require() to grab our analysis.js file. When used, we just call the variable 
or constant assigned to this require and use whatever function inside that is exported.

Beginning require() use with an NPM package

Node's require is also very helpful when used in tandem with an NPM package. Say, for example, 
you would like to use the NPM package require in a file named getWeather.js. After NPM installing 
your package through your command line (git install request), you are ready to use it. Your 
getWeather.js file might like look this,

var https = require('request'); 
 
//Construct your url variable... 
https.get(url, function(error, response, body) { 
  if (error) { 
    console.log(error); 
  } else { 
    console.log('Response => ' + response); 
    console.log('Body => ' + body); 
  } 
});

When this file is run, it first require's (imports) the package you just installed called request. Inside 
of the request file, there are many functions you now have access to, one of which is called get. In 
the next couple lines, the function is used in order to make an HTTP GET request.

Read Require() online: https://riptutorial.com/node-js/topic/10742/require--

https://riptutorial.com/ 310

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://docs.npmjs.com/how-npm-works/packages
https://www.npmjs.com/package/request
https://docs.npmjs.com/cli/install
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://riptutorial.com/node-js/topic/10742/require--


Chapter 89: Restful API Design: Best 
Practices

Examples

Error Handling: GET all resources

How do you handle errors, rather then log them to the console?

Bad way:

Router.route('/') 
  .get((req, res) => { 
    Request.find((err, r) => { 
      if(err){ 
        console.log(err) 
      } else { 
        res.json(r) 
      } 
    }) 
  }) 
  .post((req, res) => { 
    const request = new Request({ 
      type: req.body.type, 
      info: req.body.info 
    }); 
    request.info.user = req.user._id; 
    console.log("ABOUT TO SAVE REQUEST", request); 
    request.save((err, r) => { 
      if (err) { 
        res.json({ message: 'there was an error saving your r' }); 
      } else { 
        res.json(r); 
      } 
    }); 
  });

Better way:

Router.route('/') 
 .get((req, res) => { 
  Request.find((err, r) => { 
   if(err){ 
    console.log(err) 
  } else { 
    return next(err) 
  } 
}) 
}) 
.post((req, res) => { 
const request = new Request({ 
  type: req.body.type, 
  info: req.body.info 

https://riptutorial.com/ 311



}); 
request.info.user = req.user._id; 
console.log("ABOUT TO SAVE REQUEST", request); 
request.save((err, r) => { 
  if (err) { 
    return next(err) 
  } else { 
    res.json(r); 
  } 
}); 
});

Read Restful API Design: Best Practices online: https://riptutorial.com/node-js/topic/6490/restful-
api-design--best-practices

https://riptutorial.com/ 312

https://riptutorial.com/node-js/topic/6490/restful-api-design--best-practices
https://riptutorial.com/node-js/topic/6490/restful-api-design--best-practices


Chapter 90: Route-Controller-Service 
structure for ExpressJS

Examples

Model-Routes-Controllers-Services Directory Structure

├───models 
│   ├───user.model.js 
├───routes 
│   ├───user.route.js 
├───services 
│   ├───user.service.js 
├───controllers 
│   ├───user.controller.js

For modular code structure the logic should be divided into these directories and files.

Models - The schema definition of the Model

Routes - The API routes maps to the Controllers

Controllers - The controllers handles all the logic behind validating request 
parameters, query, Sending Responses with correct codes.

Services - The services contains the database queries and returning objects or 
throwing errors

This coder will end up writing more codes. But at the end the codes will be much more 
maintainable and seperated.

Model-Routes-Controllers-Services Code Structure

user.model.js

var mongoose = require('mongoose') 
 
const UserSchema  = new mongoose.Schema({ 
    name: String 
}) 
 
const User = mongoose.model('User', UserSchema) 
 
module.exports = User;

https://riptutorial.com/ 313



user.routes.js

var express = require('express'); 
var router = express.Router(); 
 
var UserController = require('../controllers/user.controller') 
 
router.get('/', UserController.getUsers) 
 
module.exports = router;

user.controllers.js

var UserService = require('../services/user.service') 
 
exports.getUsers = async function (req, res, next) { 
    // Validate request parameters, queries using express-validator 
 
    var page = req.params.page ? req.params.page : 1; 
    var limit = req.params.limit ? req.params.limit : 10; 
    try { 
        var users = await UserService.getUsers({}, page, limit) 
        return res.status(200).json({ status: 200, data: users, message: "Succesfully Users 
Retrieved" }); 
    } catch (e) { 
        return res.status(400).json({ status: 400, message: e.message }); 
    } 
}

user.services.js

var User = require('../models/user.model') 
 
exports.getUsers = async function (query, page, limit) { 
 
    try { 
        var users = await User.find(query) 
        return users; 
    } catch (e) { 
        // Log Errors 
        throw Error('Error while Paginating Users') 
    } 
}

Read Route-Controller-Service structure for ExpressJS online: https://riptutorial.com/node-
js/topic/10785/route-controller-service-structure-for-expressjs

https://riptutorial.com/ 314

https://riptutorial.com/node-js/topic/10785/route-controller-service-structure-for-expressjs
https://riptutorial.com/node-js/topic/10785/route-controller-service-structure-for-expressjs


Chapter 91: Routing ajax requests with 
Express.JS

Examples

A simple implementation of AJAX

You should have the basic express-generator template

In app.js, add(you can add it anywhere after var app = express.app()):

app.post(function(req, res, next){ 
    next(); 
});

Now in your index.js file (or its respective match), add:

router.get('/ajax', function(req, res){ 
    res.render('ajax', {title: 'An Ajax Example', quote: "AJAX is great!"}); 
}); 
router.post('/ajax', function(req, res){ 
    res.render('ajax', {title: 'An Ajax Example', quote: req.body.quote}); 
});

Create an ajax.jade / ajax.pug or ajax.ejs file in /views directory, add:

For Jade/PugJS:

extends layout 
script(src="http://code.jquery.com/jquery-3.1.0.min.js") 
script(src="/magic.js") 
h1 Quote: !{quote} 
form(method="post" id="changeQuote") 
    input(type='text', placeholder='Set quote of the day', name='quote') 
    input(type="submit", value="Save")

For EJS:

<script src="http://code.jquery.com/jquery-3.1.0.min.js"></script> 
<script src="/magic.js"></script> 
<h1>Quote: <%=quote%> </h1> 
<form method="post" id="changeQuote"> 
    <input type="text" placeholder="Set quote of the day" name="quote"/> 
    <input type="submit" value="Save"> 
</form>

Now, create a file in /public called magic.js

$(document).ready(function(){ 

https://riptutorial.com/ 315



    $("form#changeQuote").on('submit', function(e){ 
        e.preventDefault(); 
        var data = $('input[name=quote]').val(); 
        $.ajax({ 
            type: 'post', 
            url: '/ajax', 
            data: data, 
            dataType: 'text' 
        }) 
        .done(function(data){ 
            $('h1').html(data.quote); 
        }); 
    }); 
});

And there you have it! When you click Save the quote will change!

Read Routing ajax requests with Express.JS online: https://riptutorial.com/node-
js/topic/6738/routing-ajax-requests-with-express-js

https://riptutorial.com/ 316

https://riptutorial.com/node-js/topic/6738/routing-ajax-requests-with-express-js
https://riptutorial.com/node-js/topic/6738/routing-ajax-requests-with-express-js


Chapter 92: Running node.js as a service

Introduction

Unlike many web servers, Node isn't installed as a service out of the box. But in production, it's 
better to have it run as a dæmon, managed by an init system.

Examples

Node.js as a systemd dæmon

systemd is the de facto init system in most Linux distributions. After Node has been configured to 
run with systemd, it's possible to use the service command to manage it.

First of all, it needs a config file, let's create it. For Debian based distros, it will be in 
/etc/systemd/system/node.service

[Unit] 
Description=My super nodejs app 
 
[Service] 
# set the working directory to have consistent relative paths 
WorkingDirectory=/var/www/app 
 
# start the server file (file is relative to WorkingDirectory here) 
ExecStart=/usr/bin/node serverCluster.js 
 
# if process crashes, always try to restart 
Restart=always 
 
# let 500ms between the crash and the restart 
RestartSec=500ms 
 
# send log tot syslog here (it doesn't compete with other log config in the app itself) 
StandardOutput=syslog 
StandardError=syslog 
 
# nodejs process name in syslog 
SyslogIdentifier=nodejs 
 
# user and group starting the app 
User=www-data 
Group=www-data 
 
# set the environement (dev, prod…) 
Environment=NODE_ENV=production 
 
 
[Install] 
# start node at multi user system level (= sysVinit runlevel 3) 
WantedBy=multi-user.target

It's now possible to respectively start, stop and restart the app with:

https://riptutorial.com/ 317



service node start 
service node stop 
service node restart

To tell systemd to automatically start node on boot, just type: systemctl enable node.

That's all, node now runs as a dæmon.

Read Running node.js as a service online: https://riptutorial.com/node-js/topic/9258/running-node-
js-as-a-service

https://riptutorial.com/ 318

https://riptutorial.com/node-js/topic/9258/running-node-js-as-a-service
https://riptutorial.com/node-js/topic/9258/running-node-js-as-a-service


Chapter 93: Securing Node.js applications

Examples

Preventing Cross Site Request Forgery (CSRF)

CSRF is an attack which forces end user to execute unwanted actions on a web application in 
which he/she is currently authenticated.

It can happen because cookies are sent with every request to a website - even when those 
requests come from a different site.

We can use csurf module for creating csrf token and validating it.

Example

var express = require('express') 
var cookieParser = require('cookie-parser')    //for cookie parsing 
var csrf = require('csurf')    //csrf module 
var bodyParser = require('body-parser')    //for body parsing 
 
// setup route middlewares 
var csrfProtection = csrf({ cookie: true }) 
var parseForm = bodyParser.urlencoded({ extended: false }) 
 
// create express app 
var app = express() 
 
// parse cookies 
app.use(cookieParser()) 
 
app.get('/form', csrfProtection, function(req, res) { 
  // generate and pass the csrfToken to the view 
  res.render('send', { csrfToken: req.csrfToken() }) 
}) 
 
app.post('/process', parseForm, csrfProtection, function(req, res) { 
  res.send('data is being processed') 
})

So, when we access GET /form, it will pass the csrf token csrfToken to the view.

Now, inside the view, set the csrfToken value as the value of a hidden input field named _csrf.

e.g. for handlebar templates

<form action="/process" method="POST"> 
    <input type="hidden" name="_csrf" value="{{csrfToken}}"> 
    Name: <input type="text" name="name"> 
    <button type="submit">Submit</button> 
</form>

https://riptutorial.com/ 319



e.g. for jade templates

form(action="/process" method="post") 
    input(type="hidden", name="_csrf", value=csrfToken) 
 
    span Name: 
    input(type="text", name="name", required=true) 
    br 
 
    input(type="submit")

e.g. for ejs templates

<form action="/process" method="POST"> 
    <input type="hidden" name="_csrf" value="<%= csrfToken %>"> 
    Name: <input type="text" name="name"> 
    <button type="submit">Submit</button> 
</form>

SSL/TLS in Node.js

If you choose to handle SSL/TLS in your Node.js application, consider that you are also 
responsible for maintaining SSL/TLS attack prevention at this point. In many server-client 
architectures, SSL/TLS terminates on a reverse proxy, both to reduce application complexity and 
reduce the scope of security configuration.

If your Node.js application should handle SSL/TLS, it can be secured by loading the key and cert 
files.

If your certificate provider requires a certificate authority (CA) chain, it can be added in the ca 
option as an array. A chain with multiple entries in a single file must be split into multiple files and 
entered in the same order into the array as Node.js does not currently support multiple ca entries 
in one file. An example is provided in the code below for files 1_ca.crt and 2_ca.crt. If the ca array 
is required and not set properly, client browsers may display messages that they could not verify 
the authenticity of the certificate.

Example

const https = require('https'); 
const fs = require('fs'); 
 
const options = { 
  key: fs.readFileSync('privatekey.pem'), 
  cert: fs.readFileSync('certificate.pem'), 
  ca: [fs.readFileSync('1_ca.crt'), fs.readFileSync('2_ca.crt')] 
}; 
 
https.createServer(options, (req, res) => { 
  res.writeHead(200); 
  res.end('hello world\n'); 
}).listen(8000);

https://riptutorial.com/ 320



Using HTTPS

The minimal setup for an HTTPS server in Node.js would be something like this :

const https = require('https'); 
const fs = require('fs'); 
 
const httpsOptions = { 
    key: fs.readFileSync('path/to/server-key.pem'), 
    cert: fs.readFileSync('path/to/server-crt.pem') 
}; 
 
const app = function (req, res) { 
  res.writeHead(200); 
  res.end("hello world\n"); 
} 
 
https.createServer(httpsOptions, app).listen(4433);

If you also want to support http requests, you need to make just this small modification:

const http = require('http'); 
const https = require('https'); 
const fs = require('fs'); 
 
const httpsOptions = { 
    key: fs.readFileSync('path/to/server-key.pem'), 
    cert: fs.readFileSync('path/to/server-crt.pem') 
}; 
 
const app = function (req, res) { 
  res.writeHead(200); 
  res.end("hello world\n"); 
} 
 
http.createServer(app).listen(8888); 
https.createServer(httpsOptions, app).listen(4433);

Setting up an HTTPS server

Once you have node.js installed on your system, just follow the procedure below to get a basic 
web server running with support for both HTTP and HTTPS!

Step 1 : Build a Certificate Authority

create the folder where you want to store your key & certificate :

mkdir conf

1. 

go to that directory :

cd conf

2. 

https://riptutorial.com/ 321



grab this ca.cnf file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https-authorized-clients/master/keys/ca.cnf

3. 

create a new certificate authority using this configuration :

openssl req -new -x509 -days 9999 -config ca.cnf -keyout ca-key.pem -out ca-cert.pem

4. 

now that we have our certificate authority in ca-key.pem and ca-cert.pem, let's generate a 
private key for the server :

openssl genrsa -out key.pem 4096

5. 

grab this server.cnf file to use as a configuration shortcut :

wget https://raw.githubusercontent.com/anders94/https-authorized-
clients/master/keys/server.cnf

6. 

generate the certificate signing request using this configuration :

openssl req -new -config server.cnf -key key.pem -out csr.pem

7. 

sign the request :

openssl x509 -req -extfile server.cnf -days 999 -passin "pass:password" -in csr.pem -CA ca-
cert.pem -CAkey ca-key.pem -CAcreateserial -out cert.pem

8. 

Step 2 : Install your certificate as a root certificate

copy your certificate to your root certificates' folder :

sudo cp ca-crt.pem /usr/local/share/ca-certificates/ca-crt.pem

1. 

update CA store :

sudo update-ca-certificates

2. 

Secure express.js 3 Application

The configuration to make a secure connection using express.js (Since version 3):

var fs = require('fs'); 
var http = require('http'); 
var https = require('https'); 
var privateKey  = fs.readFileSync('sslcert/server.key', 'utf8'); 
var certificate = fs.readFileSync('sslcert/server.crt', 'utf8'); 
 
// Define your key and cert 

https://riptutorial.com/ 322



 
var credentials = {key: privateKey, cert: certificate}; 
var express = require('express'); 
var app = express(); 
 
// your express configuration here 
 
var httpServer = http.createServer(app); 
var httpsServer = https.createServer(credentials, app); 
 
// Using port 8080 for http and 8443 for https 
 
httpServer.listen(8080); 
httpsServer.listen(8443);

In that way you provide express middleware to the native http/https server

If you want your app running on ports below 1024, you will need to use sudo command (not 
recommended) or use a reverse proxy (e.g. nginx, haproxy).

Read Securing Node.js applications online: https://riptutorial.com/node-js/topic/3473/securing-
node-js-applications

https://riptutorial.com/ 323

https://riptutorial.com/node-js/topic/3473/securing-node-js-applications
https://riptutorial.com/node-js/topic/3473/securing-node-js-applications


Chapter 94: Send Web Notification

Examples

Send Web notification using GCM ( Google Cloud Messaging System)

Such Example is knowing wide spreading among PWAs (Progressive Web Applications) and in 
this example we're going to send a simple Backend like notification using NodeJS and ES6

Install Node-GCM Module : npm install node-gcm1. 

Install Socket.io : npm install socket.io2. 

Create a GCM Enabled application using Google Console.3. 

Grabe your GCM Application Id (we will need it later on)4. 

Grabe your GCM Application Secret code.5. 

Open Your favorite code editor and add the following code :

 'use strict'; 
 
 const express = require('express'); 
 const app = express(); 
 const gcm = require('node-gcm'); 
 app.io = require('socket.io')(); 
 
 // [*] Configuring our GCM Channel. 
 const sender = new gcm.Sender('Project Secret'); 
 const regTokens = []; 
 let message = new gcm.Message({ 
     data: { 
         key1: 'msg1' 
     } 
 }); 
 
 // [*] Configuring our static files. 
 app.use(express.static('public/')); 
 
 // [*] Configuring Routes. 
 app.get('/', (req, res) => { 
     res.sendFile(__dirname + '/public/index.html'); 
 }); 
 
 // [*] Configuring our Socket Connection. 
 app.io.on('connection', socket => { 
     console.log('we have a new connection ...'); 
     socket.on('new_user', (reg_id) => { 
         // [*] Adding our user notification registration token to our list typically 
hided in a secret place. 
         if (regTokens.indexOf(reg_id) === -1) { 
             regTokens.push(reg_id); 
 

6. 

https://riptutorial.com/ 324

https://console.cloud.google.com/


             // [*] Sending our push messages 
             sender.send(message, { 
                 registrationTokens: regTokens 
             }, (err, response) => { 
                 if (err) console.error('err', err); 
                 else console.log(response); 
             }); 
         } 
     }) 
 }); 
 
 module.exports = app

PS : I'm using here a special hack in order to make Socket.io works with Express 
because simply it doesn't work outside of the box.

Now Create a .json file and name it : Manifest.json, open it and past the following :

{ 
    "name": "Application Name", 
    "gcm_sender_id": "GCM Project ID" 
}

Close it and save in your application ROOT directory.

PS : the Manifest.json file needs to be in root directory or it won't work.

In the code above I'm doing the following :

I seted up and sent a normal index.html page that will use socket.io also.1. 
I'm listening on a connection event fired from the front-end aka my index.html page (it will 
be fired once a new client successfully connected to our pre-defined link)

2. 

I'm sending a special token know's as the registration token from my index.html via 
socket.io new_user event, such token will be our user unique passcode and each code is 
generated usually from a supporting browser for the Web notification API (read more here.

3. 

I'm simply using the node-gcm module to send my notification which will be handled and 
shown later on using Service Workers`.

4. 

This is from NodeJS point of view. in other examples I will show how we can send custom data, 
icons ..etc in our push message.

PS : you can find the full working demo over here.

Read Send Web Notification online: https://riptutorial.com/node-js/topic/6333/send-web-notification

https://riptutorial.com/ 325

https://developer.mozilla.org/en/docs/Web/API/notification
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://github.com/houssem-yahiaoui/webpush-notification
https://riptutorial.com/node-js/topic/6333/send-web-notification


Chapter 95: Sending a file stream to client

Examples

Using fs And pipe To Stream Static Files From The Server

A good VOD (Video On Demand) service should start with the basics. Lets say you have a 
directory on your server that is not publicly accessible, yet through some sort of portal or paywall 
you want to allow users to access your media.

var movie = path.resolve('./public/' + req.params.filename); 
 
        fs.stat(movie, function (err, stats) { 
 
            var range = req.headers.range; 
 
            if (!range) { 
 
                return res.sendStatus(416); 
 
            } 
 
            //Chunk logic here 
            var positions = range.replace(/bytes=/, "").split("-"); 
            var start = parseInt(positions[0], 10); 
            var total = stats.size; 
            var end = positions[1] ? parseInt(positions[1], 10) : total - 1; 
            var chunksize = (end - start) + 1; 
 
            res.writeHead(206, { 
 
                'Transfer-Encoding': 'chunked', 
 
                "Content-Range": "bytes " + start + "-" + end + "/" + total, 
 
                "Accept-Ranges": "bytes", 
 
                "Content-Length": chunksize, 
 
                "Content-Type": mime.lookup(req.params.filename) 
 
            }); 
 
            var stream = fs.createReadStream(movie, { start: start, end: end, autoClose: true 
}) 
 
                .on('end', function () { 
 
                    console.log('Stream Done'); 
 
                }) 
 
                .on("error", function (err) { 
 
                    res.end(err); 
 

https://riptutorial.com/ 326



                }) 
 
                .pipe(res, { end: true }); 
 
        });

The above snippet is a basic outline for how you would like to stream your video to a client. The 
chunk logic depends on a variety of factors, including network traffic and latency. It is important to 
balance chuck size vs. quantity.

Finally, the .pipe call lets node.js know to keep a connection open with the server and to send 
additional chunks as needed.

Streaming Using fluent-ffmpeg

You can also use flent-ffmpeg to convert .mp4 files to .flv files, or other types:

res.contentType('flv');

    var pathToMovie = './public/' + req.params.filename; 
 
    var proc = ffmpeg(pathToMovie) 
 
        .preset('flashvideo') 
 
        .on('end', function () { 
 
            console.log('Stream Done'); 
 
        }) 
 
        .on('error', function (err) { 
 
            console.log('an error happened: ' + err.message); 
 
            res.send(err.message); 
 
        }) 
 
        .pipe(res, { end: true }); 

Read Sending a file stream to client online: https://riptutorial.com/node-js/topic/6994/sending-a-
file-stream-to-client

https://riptutorial.com/ 327

https://riptutorial.com/node-js/topic/6994/sending-a-file-stream-to-client
https://riptutorial.com/node-js/topic/6994/sending-a-file-stream-to-client


Chapter 96: Sequelize.js

Examples

Installation

Make sure that you first have Node.js and npm installed. Then install sequelize.js with npm

npm install --save sequelize

You will also need to install supported database Node.js modules. You only need to install the one 
you are using 
 
For MYSQL and Mariadb

npm install --save mysql

For PostgreSQL

npm install --save pg pg-hstore

For SQLite

 npm install --save sqlite

For MSSQL

npm install --save tedious

Once you have you set up installed you can include and create a new Sequalize instance like so.

ES5 syntax

var Sequelize = require('sequelize'); 
var sequelize = new Sequelize('database', 'username', 'password');

ES6 stage-0 Babel syntax

import Sequelize from 'sequelize'; 
const sequelize = new Sequelize('database', 'username', 'password');

You now have an instance of sequelize available. You could if you so feel inclined call it a different 
name such as

var db = new Sequelize('database', 'username', 'password');

https://riptutorial.com/ 328



or

var database = new Sequelize('database', 'username', 'password');

that part is your prerogative. Once you have this installed you can use it inside of your application 
as per the API documentation http://docs.sequelizejs.com/en/v3/api/sequelize/

Your next step after install would be to set up your own model

Defining Models

There are two ways to define models in sequelize; with sequelize.define(...), or 
sequelize.import(...). Both functions return a sequelize model object.

1. sequelize.define(modelName, attributes, 
[options])

This is the way to go if you'd like to define all your models in one file, or if you want to have extra 
control of your model definition.

/* Initialize Sequelize */ 
const config = { 
    username: "database username", 
    password: "database password", 
    database: "database name", 
    host: "database's host URL", 
    dialect: "mysql" // Other options are postgres, sqlite, mariadb and mssql. 
} 
var Sequelize = require("sequelize"); 
var sequelize = new Sequelize(config); 
 
/* Define Models */ 
sequelize.define("MyModel", { 
    name: Sequelize.STRING, 
    comment: Sequelize.TEXT, 
    date: { 
        type: Sequelize.DATE, 
        allowNull: false 
    } 
});

For the documentation and more examples, check out the doclets documentation, or 
sequelize.com's documentation.

2. sequelize.import(path)

If your model definitions are broken into a file for each, then import is your friend. In the file where 

https://riptutorial.com/ 329

http://docs.sequelizejs.com/en/v3/api/sequelize/
http://docs.sequelizejs.com/en/v3/docs/getting-started/#your-first-model
https://doclets.io/sequelize/sequelize/master#dl-Sequelize-define
http://docs.sequelizejs.com/en/v3/docs/models-definition/


you initialize Sequelize, you need to call import like so:

/* Initialize Sequelize */ 
// Check previous code snippet for initialization 
 
/* Define Models */ 
sequelize.import("./models/my_model.js"); // The path could be relative or absolute

Then in your model definition files, your code will look something like this:

module.exports = function(sequelize, DataTypes) { 
    return sequelize.define("MyModel", { 
        name: DataTypes.STRING, 
        comment: DataTypes.TEXT, 
        date: { 
            type: DataTypes.DATE, 
            allowNull: false 
        } 
    }); 
};

For more information on how to use import, check out sequelize's express example on GitHub.

Read Sequelize.js online: https://riptutorial.com/node-js/topic/7705/sequelize-js

https://riptutorial.com/ 330

https://github.com/sequelize/express-example/tree/master/models
https://riptutorial.com/node-js/topic/7705/sequelize-js


Chapter 97: Simple REST based CRUD API

Examples

REST API for CRUD in Express 3+

var express = require("express"), 
    bodyParser = require("body-parser"), 
    server = express(); 
 
//body parser for parsing request body 
server.use(bodyParser.json()); 
server.use(bodyParser.urlencoded({ extended: true })); 
 
//temperary store for `item` in memory 
var itemStore = []; 
 
//GET all items 
server.get('/item', function (req, res) { 
    res.json(itemStore); 
}); 
 
//GET the item with specified id 
server.get('/item/:id', function (req, res) { 
    res.json(itemStore[req.params.id]); 
}); 
 
//POST new item 
server.post('/item', function (req, res) { 
    itemStore.push(req.body); 
    res.json(req.body); 
}); 
 
//PUT edited item in-place of item with specified id 
server.put('/item/:id', function (req, res) { 
    itemStore[req.params.id] = req.body 
    res.json(req.body); 
}); 
 
//DELETE item with specified id 
server.delete('/item/:id', function (req, res) { 
    itemStore.splice(req.params.id, 1) 
    res.json(req.body); 
}); 
 
//START SERVER 
server.listen(3000, function () { 
    console.log("Server running"); 
})

Read Simple REST based CRUD API online: https://riptutorial.com/node-js/topic/5850/simple-rest-
based-crud-api

https://riptutorial.com/ 331

https://riptutorial.com/node-js/topic/5850/simple-rest-based-crud-api
https://riptutorial.com/node-js/topic/5850/simple-rest-based-crud-api


Chapter 98: Socket.io communication

Examples

"Hello world!" with socket messages.

Install node modules

npm install express 
npm install socket.io

Node.js server

const express = require('express'); 
const app = express(); 
const server = app.listen(3000,console.log("Socket.io Hello World server started!")); 
const io = require('socket.io')(server); 
 
io.on('connection', (socket) => { 
    //console.log("Client connected!"); 
    socket.on('message-from-client-to-server', (msg) => { 
        console.log(msg); 
    }) 
    socket.emit('message-from-server-to-client', 'Hello World!'); 
});

Browser client

<!DOCTYPE html> 
<html lang="en"> 
  <head> 
    <meta charset="UTF-8"> 
    <title>Hello World with Socket.io</title> 
  </head> 
  <body> 
    <script src="https://cdn.socket.io/socket.io-1.4.5.js"></script> 
    <script> 
      var socket = io("http://localhost:3000"); 
      socket.on("message-from-server-to-client", function(msg) { 
          document.getElementById('message').innerHTML = msg; 
      }); 
      socket.emit('message-from-client-to-server', 'Hello World!'); 
    </script> 
    <p>Socket.io Hello World client started!</p> 
    <p id="message"></p> 
  </body> 
</html>

Read Socket.io communication online: https://riptutorial.com/node-js/topic/4261/socket-io-
communication

https://riptutorial.com/ 332

https://riptutorial.com/node-js/topic/4261/socket-io-communication
https://riptutorial.com/node-js/topic/4261/socket-io-communication


Chapter 99: Synchronous vs Asynchronous 
programming in nodejs

Examples

Using async

The async package provides functions for asynchronous code.

Using the auto function you can define asynchronous relations between two or more functions:

var async = require('async'); 
 
async.auto({ 
    get_data: function(callback) { 
        console.log('in get_data'); 
        // async code to get some data 
        callback(null, 'data', 'converted to array'); 
    }, 
    make_folder: function(callback) { 
        console.log('in make_folder'); 
        // async code to create a directory to store a file in 
        // this is run at the same time as getting the data 
        callback(null, 'folder'); 
    }, 
    write_file: ['get_data', 'make_folder', function(results, callback) { 
        console.log('in write_file', JSON.stringify(results)); 
        // once there is some data and the directory exists, 
        // write the data to a file in the directory 
        callback(null, 'filename'); 
    }], 
    email_link: ['write_file', function(results, callback) { 
        console.log('in email_link', JSON.stringify(results)); 
        // once the file is written let's email a link to it... 
        // results.write_file contains the filename returned by write_file. 
        callback(null, {'file':results.write_file, 'email':'user@example.com'}); 
    }] 
}, function(err, results) { 
    console.log('err = ', err); 
    console.log('results = ', results); 
});

This code could have been made synchronously, by just calling the get_data, make_folder, 
write_file and email_link in the correct order. Async keeps track of the results for you, and if an 
error occurred (first parameter of callback unequal to null) it stops the execution of the other 
functions.

Read Synchronous vs Asynchronous programming in nodejs online: https://riptutorial.com/node-
js/topic/8287/synchronous-vs-asynchronous-programming-in-nodejs

https://riptutorial.com/ 333

https://www.npmjs.com/package/async
http://caolan.github.io/async/docs.html#auto
https://riptutorial.com/node-js/topic/8287/synchronous-vs-asynchronous-programming-in-nodejs
https://riptutorial.com/node-js/topic/8287/synchronous-vs-asynchronous-programming-in-nodejs


Chapter 100: TCP Sockets

Examples

A simple TCP server

// Include Nodejs' net module. 
const Net = require('net'); 
// The port on which the server is listening. 
const port = 8080; 
 
// Use net.createServer() in your code. This is just for illustration purpose. 
// Create a new TCP server. 
const server = new Net.Server(); 
// The server listens to a socket for a client to make a connection request. 
// Think of a socket as an end point. 
server.listen(port, function() { 
    console.log(`Server listening for connection requests on socket localhost:${port}`.); 
}); 
 
// When a client requests a connection with the server, the server creates a new 
// socket dedicated to that client. 
server.on('connection', function(socket) { 
    console.log('A new connection has been established.'); 
 
    // Now that a TCP connection has been established, the server can send data to 
    // the client by writing to its socket. 
    socket.write('Hello, client.'); 
 
    // The server can also receive data from the client by reading from its socket. 
    socket.on('data', function(chunk) { 
        console.log(`Data received from client: ${chunk.toString()`.}); 
    }); 
 
    // When the client requests to end the TCP connection with the server, the server 
    // ends the connection. 
    socket.on('end', function() { 
        console.log('Closing connection with the client'); 
    }); 
 
    // Don't forget to catch error, for your own sake. 
    socket.on('error', function(err) { 
        console.log(`Error: ${err}`); 
    }); 
});

A simple TCP client

// Include Nodejs' net module. 
const Net = require('net'); 
// The port number and hostname of the server. 
const port = 8080; 
const host = 'localhost'; 
 
// Create a new TCP client. 

https://riptutorial.com/ 334



const client = new Net.Socket(); 
// Send a connection request to the server. 
client.connect({ port: port, host: host }), function() { 
    // If there is no error, the server has accepted the request and created a new 
    // socket dedicated to us. 
    console.log('TCP connection established with the server.'); 
 
    // The client can now send data to the server by writing to its socket. 
    client.write('Hello, server.'); 
}); 
 
// The client can also receive data from the server by reading from its socket. 
client.on('data', function(chunk) { 
    console.log(`Data received from the server: ${chunk.toString()}.`); 
 
    // Request an end to the connection after the data has been received. 
    client.end(); 
}); 
 
client.on('end', function() { 
    console.log('Requested an end to the TCP connection'); 
});

Read TCP Sockets online: https://riptutorial.com/node-js/topic/6545/tcp-sockets

https://riptutorial.com/ 335

https://riptutorial.com/node-js/topic/6545/tcp-sockets


Chapter 101: Template frameworks

Examples

Nunjucks

Server-side engine with block inheritance, autoescaping, macros, asynchronous control, and 
more. Heavily inspired by jinja2, very similar to Twig (php).

Docs - http://mozilla.github.io/nunjucks/  
Install - npm i nunjucks 

Basic usage with Express below. 
 
app.js

var express = require ('express'); 
var nunjucks  = require('nunjucks'); 
 
var app = express(); 
app.use(express.static('/public')); 
 
// Apply nunjucks and add custom filter and function (for example). 
var env = nunjucks.configure(['views/'], { // set folders with templates 
    autoescape: true, 
    express: app 
}); 
env.addFilter('myFilter', function(obj, arg1, arg2) { 
    console.log('myFilter', obj, arg1, arg2); 
    // Do smth with obj 
    return obj; 
}); 
env.addGlobal('myFunc', function(obj, arg1) { 
    console.log('myFunc', obj, arg1); 
    // Do smth with obj 
    return obj; 
}); 
 
app.get('/', function(req, res){ 
    res.render('index.html', {title: 'Main page'}); 
}); 
 
app.get('/foo', function(req, res){ 
    res.locals.smthVar = 'This is Sparta!'; 
    res.render('foo.html', {title: 'Foo page'}); 
}); 
 
app.listen(3000, function() { 
    console.log('Example app listening on port 3000...'); 
});

/views/index.html

https://riptutorial.com/ 336

http://mozilla.github.io/nunjucks/
http://expressjs.com/


<html> 
<head> 
    <title>Nunjucks example</title> 
</head> 
<body> 
{% block content %} 
{{title}} 
{% endblock %} 
</body> 
</html>

/views/foo.html

{% extends "index.html" %} 
 
{# This is comment #} 
{% block content %} 
    <h1>{{title}}</h1> 
    {# apply custom function and next build-in and custom filters #} 
    {{ myFunc(smthVar) | lower | myFilter(5, 'abc') }} 
{% endblock %}

Read Template frameworks online: https://riptutorial.com/node-js/topic/5885/template-frameworks

https://riptutorial.com/ 337

https://riptutorial.com/node-js/topic/5885/template-frameworks


Chapter 102: Uninstalling Node.js

Examples

Completely uninstall Node.js on Mac OSX

In Terminal on your Mac operating system, enter the following 2 commands:

lsbom -f -l -s -pf /var/db/receipts/org.nodejs.pkg.bom | while read f; do  sudo rm 
/usr/local/${f}; done 
 
sudo rm -rf /usr/local/lib/node /usr/local/lib/node_modules /var/db/receipts/org.nodejs.*

Uninstall Node.js on Windows

To uninstall Node.js on Windows, use Add or Remove Programs like this:

Open Add or Remove Programs from the start menu.1. 
Search for Node.js.2. 

Windows 10:

Click Node.js.3. 
Click Uninstall.4. 
Click the new Uninstall button.5. 

Windows 7-8.1:

Click the Uninstall button under Node.js.3. 

Read Uninstalling Node.js online: https://riptutorial.com/node-js/topic/2821/uninstalling-node-js

https://riptutorial.com/ 338

https://riptutorial.com/node-js/topic/2821/uninstalling-node-js


Chapter 103: Unit testing frameworks

Examples

Mocha synchronous

describe('Suite Name', function() { 
  describe('#method()', function() { 
    it('should run without an error', function() { 
      expect([ 1, 2, 3 ].length).to.be.equal(3) 
    }) 
  }) 
})

Mocha asynchronous (callback)

var expect = require("chai").expect; 
describe('Suite Name', function() { 
  describe('#method()', function() { 
    it('should run without an error', function(done) { 
      testSomething(err => { 
        expect(err).to.not.be.equal(null) 
        done() 
      }) 
    }) 
  }) 
})

Mocha asynchronous (Promise)

describe('Suite Name', function() { 
  describe('#method()', function() { 
    it('should run without an error', function() { 
      return doSomething().then(result => { 
         expect(result).to.be.equal('hello world') 
      }) 
    }) 
  }) 
})

Mocha Asynchronous (async/await)

const { expect } = require('chai') 
 
describe('Suite Name', function() { 
  describe('#method()', function() { 
    it('should run without an error', async function() { 
      const result = await answerToTheUltimateQuestion() 
      expect(result).to.be.equal(42) 
    }) 
  }) 

https://riptutorial.com/ 339



})

Read Unit testing frameworks online: https://riptutorial.com/node-js/topic/6731/unit-testing-
frameworks

https://riptutorial.com/ 340

https://riptutorial.com/node-js/topic/6731/unit-testing-frameworks
https://riptutorial.com/node-js/topic/6731/unit-testing-frameworks


Chapter 104: Use Cases of Node.js

Examples

HTTP server

const http = require('http'); 
 
console.log('Starting server...'); 
var config = { 
    port: 80, 
    contentType: 'application/json; charset=utf-8' 
}; 
// JSON-API server on port 80 
 
var server = http.createServer(); 
server.listen(config.port); 
server.on('error', (err) => { 
    if (err.code == 'EADDRINUSE') console.error('Port '+ config.port +' is already in use'); 
    else console.error(err.message); 
}); 
server.on('request', (request, res) => { 
    var remoteAddress = request.headers['x-forwarded-for'] || 
request.connection.remoteAddress; // Client address 
    console.log(remoteAddress +' '+ request.method +' '+ request.url); 
 
    var out = {}; 
    // Here you can change output according to `request.url` 
    out.test = request.url; 
    res.writeHead(200, { 
        'Content-Type': config.contentType 
    }); 
    res.end(JSON.stringify(out)); 
}); 
server.on('listening', () => { 
    c.info('Server is available: http://localhost:'+ config.port); 
});

Console with command prompt

const process = require('process'); 
const rl = require('readline').createInterface(process.stdin, process.stdout); 
 
rl.pause(); 
console.log('Something long is happening here...'); 
 
var cliConfig = { 
    promptPrefix: ' > ' 
} 
 
/* 
    Commands recognition 
    BEGIN 
*/ 
var commands = { 

https://riptutorial.com/ 341



    eval: function(arg) { // Try typing in console: eval 2 * 10 ^ 3 + 2 ^ 4 
        arg = arg.join(' '); 
        try { console.log(eval(arg)); } 
        catch (e) { console.log(e); } 
    }, 
    exit: function(arg) { 
        process.exit(); 
    } 
}; 
rl.on('line', (str) => { 
    rl.pause(); 
    var arg = str.trim().match(/([^"]+)|("(?:[^"\\]|\\.)+")/g); // Applying regular expression 
for removing all spaces except for what between double quotes: 
http://stackoverflow.com/a/14540319/2396907 
    if (arg) { 
        for (let n in arg) { 
            arg[n] = arg[n].replace(/^\"|\"$/g, ''); 
        } 
        var commandName = arg[0]; 
        var command = commands[commandName]; 
        if (command) { 
            arg.shift(); 
            command(arg); 
        } 
        else console.log('Command "'+ commandName +'" doesn\'t exist'); 
    } 
    rl.prompt(); 
}); 
/* 
    END OF 
    Commands recognition 
*/ 
 
rl.setPrompt(cliConfig.promptPrefix); 
rl.prompt();

Read Use Cases of Node.js online: https://riptutorial.com/node-js/topic/7703/use-cases-of-node-js

https://riptutorial.com/ 342

https://riptutorial.com/node-js/topic/7703/use-cases-of-node-js


Chapter 105: Using Browserfiy to resolve 
'required' error with browsers

Examples

Example - file.js

In this example we have a file called file.js.

Let's assume that you have to parse an URL using JavaScript and NodeJS querystring module.

To accomplish this all you have to do is to insert the following statement in your file:

const querystring = require('querystring'); 
var ref = querystring.parse("foo=bar&abc=xyz&abc=123");

What is this snippet doing?

Well, first, we create a querystring module which provides utilities for parsing and formatting URL 
query strings. It can be accessed using:

const querystring = require('querystring'); 

Then, we parse a URL using the .parse() method. It parses a URL query string (str) into a 
collection of key and value pairs.

For example, the query string 'foo=bar&abc=xyz&abc=123' is parsed into:

{  foo: 'bar',  abc: ['xyz', '123']   }

Unfortunately, Browsers don't have the require method defined, but Node.js does.

Install Browserfy

With Browserify you can write code that uses require in the same way that you would use it in 
Node. So, how do you solve this? It's simple.

First install node, which ships with npm. Then do:1. 

npm install -g browserify

Change into the directory in which your file.js is and Install our querystring module with npm:2. 

https://riptutorial.com/ 343



npm install querystring

Note: If you don't change in the specific directory the command will fail because it can't find the file 
which contains the module.

Now recursively bundle up all the required modules starting at file.js into a single file called 
bundle.js (or whatever you like to name it) with the browserify command:

3. 

browserify file.js -o bundle.js

Browserify parses the Abstract Syntax Tree for require() calls to traverse the entire dependency 
graph of your

FinallyDrop a single tag into your html and you're done!4. 

<script src="bundle.js"></script>

What happens is that you get a combination of your old .js file (file.js that is) and your newly 
created bundle.js file. Those two files are merged into one single file.

Important

Please keep in mind that if you want to make any changes to your file.js and will not 
affect the behaviour of your program. Your changes will only take effect if you edit 
the newly created bundle.js

What does that mean?

This means that if you want to edit file.js for any reasons, the changes will not have any effects. 
You really have to edit bundle.js since it is a merge of bundle.js and file.js.

Read Using Browserfiy to resolve 'required' error with browsers online: https://riptutorial.com/node-
js/topic/7123/using-browserfiy-to-resolve--required--error-with-browsers

https://riptutorial.com/ 344

https://riptutorial.com/node-js/topic/7123/using-browserfiy-to-resolve--required--error-with-browsers
https://riptutorial.com/node-js/topic/7123/using-browserfiy-to-resolve--required--error-with-browsers


Chapter 106: Using IISNode to host Node.js 
Web Apps in IIS

Remarks

Virtual Directory / Nested Application with 
Views Pitfall

If you're going to be using Express to render views using a View Engine, you'll need to pass the 
virtualDirPath value in to your views

`res.render('index', { virtualDirPath: virtualDirPath });`

The reason for doing this is to make your hyperlinks to other views host by your app and static 
resource paths to know where the site is being hosted without needing to modify all views after 
deployment. This is one of the more annoying and tedious pitfalls of using Virtual Directories with 
IISNode.

Versions

All of the examples above work with

Express v4.x•
IIS 7.x/8.x•
Socket.io v1.3.x or greater•

Examples

Getting Started

IISNode allows Node.js Web Apps to be hosted on IIS 7/8 just like a .NET application would. Of 
course, you can self host your node.exe process on Windows but why do that when you can just 
run your app in IIS.

IISNode will handle scaling over multiple cores, process manageement of node.exe, and auto-
recycle your IIS Application whenever your app is updated, just to name a few of its benefits.

Requirements

IISNode does have a few requirements before you can host your Node.js app in IIS.

https://riptutorial.com/ 345

https://github.com/tjanczuk/iisnode
https://tomasz.janczuk.org/2011/08/hosting-nodejs-applications-in-iis-on.html


Node.js must be installed on the IIS host, 32-bit or 64-bit, either are supported.1. 
IISNode installed x86 or x64, this should match the bitness of your IIS Host.2. 
The Microsoft URL-Rewrite Module for IIS installed on your IIS host.

This is key, otherwise requests to your Node.js app won't function as expected.•
3. 

A Web.config in the root folder of your Node.js app.4. 
IISNode configuration via an iisnode.yml file or an <iisnode> element within your Web.config.5. 

Basic Hello World Example using Express

To get this example working, you'll need to create an IIS 7/8 app on your IIS host and add the 
directory containing the Node.js Web App as the Physical Directory. Ensure that your 
Application/Application Pool Identity can access the Node.js install. This example uses the Node.js 
64-bit installation.

Project Strucure

This is the basic project structure of a IISNode/Node.js Web app. It looks almost identical to any 
non-IISNode Web App except for the addition of the Web.config.

- /app_root 
  - package.json 
  - server.js 
  - Web.config

server.js - Express Application

const express = require('express'); 
const server = express(); 
 
// We need to get the port that IISNode passes into us 
// using the PORT environment variable, if it isn't set use a default value 
const port = process.env.PORT || 3000; 
 
// Setup a route at the index of our app 
server.get('/', (req, res) => { 
    return res.status(200).send('Hello World'); 
}); 
 
server.listen(port, () => { 
    console.log(`Listening on ${port}`); 
});

Configuration & Web.config

The Web.config is just like any other IIS Web.config except the following two things must be present, 
URL <rewrite><rules> and an IISNode <handler>. Both of these elements are children of the 
<system.webServer> element.

https://riptutorial.com/ 346

https://github.com/azure/iisnode/releases/download/v0.2.21/iisnode-full-v0.2.21-x86.msi
https://github.com/azure/iisnode/releases/download/v0.2.21/iisnode-full-v0.2.21-x64.msi
http://www.iis.net/downloads/microsoft/url-rewrite


Configuration

You can configure IISNode by using a iisnode.yml file or by adding the <iisnode> element as a 
child of <system.webServer> in your Web.config. Both of these configuration can be used in 
conjunction with one another however, in this case, Web.config will need to specify the iisnode.yml 
file AND any configuration conflicts will be take from the iisnode.yml file instead. This configuration 
overriding cannot happen the other way around.

IISNode Handler

In order for IIS to know that server.js contains our Node.js Web App we need to explicitly tell it 
that. We can do this by adding the IISNode <handler> to the <handlers> element.

<handlers> 
  <add name="iisnode" path="server.js" verb="*" modules="iisnode"/> 
</handlers>

URL-Rewrite Rules

The final part of the configuration is ensuring that traffic intended for our Node.js app coming into 
our IIS instance is being directed to IISNode. Without URL rewrite rules, we would need to visit our 
app by going to http://<host>/server.js and even worse, when trying to request a resource 
supplied by server.js you'll get a 404. This is why URL rewriting is necessary for IISNode web 
apps.

<rewrite> 
    <rules> 
        <!-- First we consider whether the incoming URL matches a physical file in the /public 
folder --> 
        <rule name="StaticContent" patternSyntax="Wildcard"> 
            <action type="Rewrite" url="public/{R:0}" logRewrittenUrl="true"/> 
            <conditions> 
                <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true"/> 
            </conditions> 
            <match url="*.*"/> 
        </rule> 
 
        <!-- All other URLs are mapped to the Node.js application entry point --> 
        <rule name="DynamicContent"> 
            <conditions> 
                <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="True"/> 
            </conditions> 
            <action type="Rewrite" url="server.js"/> 
        </rule> 
    </rules> 
</rewrite>

This is a working Web.config file for this example, setup for a 64-bit Node.js install.

That's it, now visit your IIS Site and see your Node.js application working.

https://riptutorial.com/ 347

https://raw.githubusercontent.com/tjanczuk/iisnode/master/src/samples/configuration/iisnode.yml
https://github.com/tjanczuk/iisnode/blob/master/src/samples/configuration/web.config#L11
https://github.com/tjanczuk/iisnode/blob/master/src/samples/configuration/web.config#L105-L111
https://github.com/tjanczuk/iisnode/blob/master/src/samples/configuration/web.config#L105-L111
https://github.com/tjanczuk/iisnode/blob/master/src/samples/configuration/web.config#L105-L111
https://gist.github.com/pbaio/f63918181d8d7f8ee1d2
https://gist.github.com/pbaio/f63918181d8d7f8ee1d2
https://gist.github.com/pbaio/f63918181d8d7f8ee1d2


Using an IIS Virtual Directory or Nested Application via

Using a Virtual Directory or Nested Application in IIS is a common scenario and most likely one 
that you'll want to take advantage of when using IISNode.

IISNode doesn't provide direct support for Virtual Directories or Nested Applications via 
configuration so to achieve this we'll need to take advantage of a feature of IISNode that isn't part 
of the configuration and is much lesser known. All children of the <appSettings> element with the 
Web.config are added to the process.env object as properties using the appSetting key.

Lets create a Virtual Directory in our <appSettings>

<appSettings> 
  <add key="virtualDirPath" value="/foo" /> 
</appSettings>

Within our Node.js App we can access the virtualDirPath setting

console.log(process.env.virtualDirPath); // prints /foo

Now that we can use the <appSettings> element for configuration, lets take advantage of that and 
use it in our server code.

// Access the virtualDirPath appSettings and give it a default value of '/' 
// in the event that it doesn't exist or isn't set 
var virtualDirPath = process.env.virtualDirPath || '/'; 
 
// We also want to make sure that our virtualDirPath 
// always starts with a forward slash 
if (!virtualDirPath.startsWith('/', 0)) 
  virtualDirPath = '/' + virtualDirPath; 
 
// Setup a route at the index of our app 
server.get(virtualDirPath, (req, res) => { 
    return res.status(200).send('Hello World'); 
});

We can use the virtualDirPath with our static resources as well

// Public Directory 
server.use(express.static(path.join(virtualDirPath, 'public'))); 
// Bower 
server.use('/bower_components', express.static(path.join(virtualDirPath, 
'bower_components')));

Lets put all of that together

const express = require('express'); 
const server = express(); 
 
const port = process.env.PORT || 3000; 
 

https://riptutorial.com/ 348



// Access the virtualDirPath appSettings and give it a default value of '/' 
// in the event that it doesn't exist or isn't set 
var virtualDirPath = process.env.virtualDirPath || '/'; 
 
// We also want to make sure that our virtualDirPath 
// always starts with a forward slash 
if (!virtualDirPath.startsWith('/', 0)) 
  virtualDirPath = '/' + virtualDirPath; 
 
// Public Directory 
server.use(express.static(path.join(virtualDirPath, 'public'))); 
// Bower 
server.use('/bower_components', express.static(path.join(virtualDirPath, 
'bower_components'))); 
 
// Setup a route at the index of our app 
server.get(virtualDirPath, (req, res) => { 
    return res.status(200).send('Hello World'); 
}); 
 
server.listen(port, () => { 
    console.log(`Listening on ${port}`); 
});

Using Socket.io with IISNode

To get Socket.io working with IISNode, the only changes necessary when not using a Virtual 
Directory/Nested Application are within the Web.config.

Since Socket.io sends requests starting with /socket.io, IISNode needs to communicate to IIS that 
these should also be handled IISNode and aren't just static file requests or other traffic. This 
requires a different <handler> than standard IISNode apps.

<handlers> 
    <add name="iisnode-socketio" path="server.js" verb="*" modules="iisnode" /> 
</handlers>

In addition to the changes to the <handlers> we also need to add an additional URL rewrite rule. 
The rewrite rule sends all /socket.io traffic to our server file where the Socket.io server is running.

<rule name="SocketIO" patternSyntax="ECMAScript"> 
    <match url="socket.io.+"/> 
    <action type="Rewrite" url="server.js"/> 
</rule>

If you are using IIS 8, you'll need to disable your webSockets setting in your Web.config in addition 
to adding the above handler and rewrite rules. This is unnecessary in IIS 7 since there is no 
webSocket support.

<webSocket enabled="false" />

Read Using IISNode to host Node.js Web Apps in IIS online: https://riptutorial.com/node-
js/topic/6003/using-iisnode-to-host-node-js-web-apps-in-iis

https://riptutorial.com/ 349

https://riptutorial.com/node-js/topic/6003/using-iisnode-to-host-node-js-web-apps-in-iis
https://riptutorial.com/node-js/topic/6003/using-iisnode-to-host-node-js-web-apps-in-iis


Chapter 107: Using Streams

Parameters

Parameter Definition

Readable 
Stream

type of stream where data can be read from

Writable Stream type of stream where data can be written to

Duplex Stream type of stream that is both readable and writeable

Transform 
Stream

type of duplex stream that can transform data as it is being read and then 
written

Examples

Read Data from TextFile with Streams

I/O in node is asynchronous, so interacting with the disk and network involves passing callbacks to 
functions. You might be tempted to write code that serves up a file from disk like this:

var http = require('http'); 
var fs = require('fs'); 
 
var server = http.createServer(function (req, res) { 
    fs.readFile(__dirname + '/data.txt', function (err, data) { 
        res.end(data); 
    }); 
}); 
server.listen(8000);

This code works but it's bulky and buffers up the entire data.txt file into memory for every request 
before writing the result back to clients. If data.txt is very large, your program could start eating a 
lot of memory as it serves lots of users concurrently, particularly for users on slow connections.

The user experience is poor too because users will need to wait for the whole file to be buffered 
into memory on your server before they can start receiving any contents.

Luckily both of the (req, res) arguments are streams, which means we can write this in a much 
better way using fs.createReadStream() instead of fs.readFile():

var http = require('http'); 
var fs = require('fs'); 
 
var server = http.createServer(function (req, res) { 

https://riptutorial.com/ 350



    var stream = fs.createReadStream(__dirname + '/data.txt'); 
    stream.pipe(res); 
}); 
server.listen(8000);

Here .pipe() takes care of listening for 'data' and 'end' events from the fs.createReadStream(). This 
code is not only cleaner, but now the data.txt file will be written to clients one chunk at a time 
immediately as they are received from the disk.

Piping streams

Readable streams can be "piped," or connected, to writable streams. This makes data flow from 
the source stream to the destination stream without much effort.

var fs = require('fs') 
 
var readable = fs.createReadStream('file1.txt') 
var writable = fs.createWriteStream('file2.txt') 
 
readable.pipe(writable) // returns writable

When writable streams are also readable streams, i.e. when they're duplex streams, you can 
continue piping it to other writable streams.

var zlib = require('zlib') 
 
fs.createReadStream('style.css') 
  .pipe(zlib.createGzip()) // The returned object, zlib.Gzip, is a duplex stream. 
  .pipe(fs.createWriteStream('style.css.gz')

Readable streams can also be piped into multiple streams.

var readable = fs.createReadStream('source.css') 
readable.pipe(zlib.createGzip()).pipe(fs.createWriteStream('output.css.gz')) 
readable.pipe(fs.createWriteStream('output.css')

Note that you must pipe to the output streams synchronously (at the same time) before any data 
'flows'. Failure to do so might lead to incomplete data being streamed.

Also note that stream objects can emit error events; be sure to responsibly handle these events 
on every stream, as needed:

var readable = fs.createReadStream('file3.txt') 
var writable = fs.createWriteStream('file4.txt') 
readable.pipe(writable) 
readable.on('error', console.error) 
writable.on('error', console.error)

Creating your own readable/writable stream

We will see stream objects being returned by modules like fs etc but what if we want to create our 

https://riptutorial.com/ 351



own streamable object.

To create Stream object we need to use the stream module provided by NodeJs

    var fs = require("fs"); 
    var stream = require("stream").Writable; 
 
    /* 
     *  Implementing the write function in writable stream class. 
     *  This is the function which will be used when other stream is piped into this 
     *  writable stream. 
     */ 
    stream.prototype._write = function(chunk, data){ 
        console.log(data); 
    } 
 
    var customStream = new stream(); 
 
    fs.createReadStream("am1.js").pipe(customStream);

This will give us our own custom writable stream. we can implement anything within the _write 
function. Above method works in NodeJs 4.x.x version but in NodeJs 6.x ES6 introduced classes 
therefore syntax have changed. Below is the code for 6.x version of NodeJs

    const Writable = require('stream').Writable; 
 
    class MyWritable extends Writable { 
      constructor(options) { 
        super(options); 
      } 
 
      _write(chunk, encoding, callback) { 
        console.log(chunk); 
      } 
    }

Why Streams?

Lets examine the following two examples for reading a file's contents:

The first one, which uses an async method for reading a file, and providing a callback function 
which is called once the file is fully read into the memory:

fs.readFile(`${__dirname}/utils.js`, (err, data) => { 
  if (err) { 
    handleError(err); 
  } else { 
    console.log(data.toString()); 
  } 
})

And the second, which uses streams in order to read the file's content, piece by piece:

var fileStream = fs.createReadStream(`${__dirname}/file`); 

https://riptutorial.com/ 352



var fileContent = ''; 
fileStream.on('data', data => { 
  fileContent += data.toString(); 
}) 
 
fileStream.on('end', () => { 
  console.log(fileContent); 
}) 
 
fileStream.on('error', err => { 
  handleError(err) 
})

It's worth mentioning that both examples do the exact same thing. What's the difference then?

The first one is shorter and looks more elegant•
The second lets you do some processing on the file while it is being read (!)•

When the files you deal with are small then there is no real effect when using streams, but what 
happens when the file is big? (so big that it takes 10 seconds to read it into memory)

Without streams you'll be waiting, doing absolutely nothing (unless your process does other stuff), 
until the 10 seconds pass and the file is fully read, and only then you can start processing the file.

With streams, you get the file's contents piece by piece, right when they're available - and that 
lets you process the file while it is being read.

The above example does not illustrate how streams can be utilized for work that cannot be done 
when going the callback fashion, so lets look at another example:

I would like to download a gzip file, unzip it and save its content to the disk. Given the file's url this 
is what's need to be done:

Download the file•
Unzip the file•
Save it to disk•

Here's a [small file][1], which is stored in my S3 storage. The following code does the above in the 
callback fashion.

var startTime = Date.now() 
s3.getObject({Bucket: 'some-bucket', Key: 'tweets.gz'}, (err, data) => { 
  // here, the whole file was downloaded 
 
  zlib.gunzip(data.Body, (err, data) => { 
    // here, the whole file was unzipped 
 
    fs.writeFile(`${__dirname}/tweets.json`, data, err => { 
      if (err) console.error(err) 
 
      // here, the whole file was written to disk 
      var endTime = Date.now() 
      console.log(`${endTime - startTime} milliseconds`) // 1339 milliseconds 

https://riptutorial.com/ 353



    }) 
  }) 
}) 
 
// 1339 milliseconds

This is how it looks using streams:

s3.getObject({Bucket: 'some-bucket', Key: 'tweets.gz'}).createReadStream() 
  .pipe(zlib.createGunzip()) 
  .pipe(fs.createWriteStream(`${__dirname}/tweets.json`)); 
 
// 1204 milliseconds

Yep, it's not faster when dealing with small files - the tested file weights 80KB. Testing this on a 
bigger file, 71MB gzipped (382MB unzipped), shows that the streams version is much faster

It took 20925 milliseconds to download 71MB, unzip it and then write 382MB to disk - using the 
callback fashion.

•

In comparison, it took 13434 milliseconds to do the same when using the streams version 
(35% faster, for a not-so-big file)

•

Read Using Streams online: https://riptutorial.com/node-js/topic/2974/using-streams

https://riptutorial.com/ 354

https://riptutorial.com/node-js/topic/2974/using-streams


Chapter 108: Using WebSocket's with 
Node.JS

Examples

Installing WebSocket's

There are a few way's to install WebSocket's to your project. Here are some example's:

npm install --save ws

or inside your package.json using:

"dependencies": { 
  "ws": "*" 
},

Adding WebSocket's to your file's

To add ws to your file's simply use:

var ws = require('ws');

Using WebSocket's and WebSocket Server's

To open a new WebSocket, simply add something like:

var WebSocket = require("ws"); 
var ws = new WebSocket("ws://host:8080/OptionalPathName); 
// Continue on with your code...

Or to open a server, use:

var WebSocketServer = require("ws").Server; 
var ws = new WebSocketServer({port: 8080, path: "OptionalPathName"});

A Simple WebSocket Server Example

var WebSocketServer = require('ws').Server 
, wss = new WebSocketServer({ port: 8080 }); // If you want to add a path as well, use path: 
"PathName" 
 
wss.on('connection', function connection(ws) { 
  ws.on('message', function incoming(message) { 
    console.log('received: %s', message); 
  }); 

https://riptutorial.com/ 355



 
  ws.send('something'); 
});

Read Using WebSocket's with Node.JS online: https://riptutorial.com/node-js/topic/6106/using-
websocket-s-with-node-js

https://riptutorial.com/ 356

https://riptutorial.com/node-js/topic/6106/using-websocket-s-with-node-js
https://riptutorial.com/node-js/topic/6106/using-websocket-s-with-node-js


Chapter 109: Web Apps With Express

Introduction

Express is a minimal and flexible Node.js web application framework, providing a robust set of 
features for building web applications.

The official website of Express is expressjs.com. The source can be found on GitHub.

Syntax

app.get(path [, middleware], callback[, callback...])•
app.put(path [, middleware], callback[, callback...])•
app.post(path [, middleware], callback[, callback...])•
app['delete'](path [, middleware], callback[, callback...])•
app.use(path [, middleware], callback[, callback...])•
app.use(callback)•

Parameters

Parameter Details

path Specifies the path portion or the URL that the given callback will handle.

middleware
One or more functions which will be called before the callback. Essentially a 
chaining of multiple callback functions. Useful for more specific handling for 
example authorization or error handling.

callback
A function that will be used to handle requests to the specified path. It will be 
called like callback(request, response, next), where request, response, and next 
are described below.

callback 
request

An object encapsulating details about the HTTP request that the callback is 
being called to handle.

response An object that is used to specify how the server should respond to the request.

next
A callback that passes control on to the next matching route. It accepts an 
optional error object.

Examples

Getting Started

https://riptutorial.com/ 357

http://expressjs.com
https://github.com/strongloop/express


You will first need to create a directory, access it in your shell and install Express using npm by 
running npm install express --save

Create a file and name it app.js and add the following code which creates a new Express server 
and adds one endpoint to it (/ping) with the app.get method:

const express = require('express'); 
 
const app = express(); 
 
app.get('/ping', (request, response) => { 
    response.send('pong'); 
}); 
 
app.listen(8080, 'localhost');

To run your script use the following command in your shell:

> node app.js

Your application will accept connections on localhost port 8080. If the hostname argument to 
app.listen is omitted, then server will accept connections on the machine's IP address as well as 
localhost. If port value is 0, the operating system will assign an available port.

Once your script is running, you can test it in a shell to confirm that you get the expected 
response, "pong", from the server:

> curl http://localhost:8080/ping 
pong

You can also open a web browser, navigate to the url http://localhost:8080/ping to view the output

Basic routing

First create an express app:

const express = require('express'); 
const app = express();

Then you can define routes like this:

app.get('/someUri', function (req, res, next) {})

That structure works for all HTTP methods, and expects a path as the first argument, and a 
handler for that path, which receives the request and response objects. So, for the basic HTTP 
methods, these are the routes

// GET www.domain.com/myPath 
app.get('/myPath', function (req, res, next) {}) 
 

https://riptutorial.com/ 358

http://www.riptutorial.com/node-js/topic/482/npm
http://localhost:8080/ping


// POST www.domain.com/myPath 
app.post('/myPath', function (req, res, next) {}) 
 
// PUT www.domain.com/myPath 
app.put('/myPath', function (req, res, next) {}) 
 
// DELETE www.domain.com/myPath 
app.delete('/myPath', function (req, res, next) {})

You can check the complete list of supported verbs here. If you want to define the same behavior 
for a route and all HTTP methods, you can use:

app.all('/myPath', function (req, res, next) {}) 

or

app.use('/myPath', function (req, res, next) {})

or

app.use('*', function (req, res, next) {}) 
 
// * wildcard will route for all paths

You can chain your route definitions for a single path

app.route('/myPath') 
  .get(function (req, res, next) {}) 
  .post(function (req, res, next) {}) 
  .put(function (req, res, next) {})

You can also add functions to any HTTP method. They will run before the final callback and take 
the parameters (req, res, next) as arguments.

// GET www.domain.com/myPath 
app.get('/myPath', myFunction, function (req, res, next) {})

Your final callbacks can be stored in an external file to avoid putting too much code in one file:

// other.js 
exports.doSomething = function(req, res, next) {/* do some stuff */};

And then in the file containing your routes:

const other = require('./other.js'); 
app.get('/someUri', myFunction, other.doSomething);

This will make your code much cleaner.

Getting info from the request

https://riptutorial.com/ 359

http://expressjs.com/en/4x/api.html#app.METHOD


To get info from the requesting url (notice that req is the request object in the handler function of 
routes). Consider this route definition /settings/:user_id and this particular example 
/settings/32135?field=name

// get the full path 
req.originalUrl // => /settings/32135?field=name 
 
// get the user_id param 
req.params.user_id // => 32135 
 
// get the query value of the field 
req.query.field // => 'name'

You can also get headers of the request, like this

req.get('Content-Type') 
// "text/plain"

To simplify getting other info you can use middlewares. For example, to get the body info of the 
request, you can use the body-parser middleware, which will transform raw request body into 
usable format.

var app = require('express')(); 
var bodyParser = require('body-parser'); 
 
app.use(bodyParser.json()); // for parsing application/json 
app.use(bodyParser.urlencoded({ extended: true })); // for parsing application/x-www-form-
urlencoded

Now suppose a request like this

PUT /settings/32135 
{ 
  "name": "Peter" 
}

You can access the posted name like this

req.body.name 
// "Peter"

In a similar way, you can access cookies from the request, you also need a middleware like 
cookie-parser

req.cookies.name

Modular express application

To make express web application modular use router factories:

Module:

https://riptutorial.com/ 360

https://github.com/expressjs/body-parser
https://github.com/expressjs/cookie-parser?_ga=1.220663448.1060402334.1435240424


// greet.js 
const express = require('express'); 
 
module.exports = function(options = {}) { // Router factory 
    const router = express.Router(); 
 
    router.get('/greet', (req, res, next) => { 
        res.end(options.greeting); 
    }); 
 
    return router; 
};

Application:

// app.js 
const express = require('express'); 
const greetMiddleware = require('./greet.js'); 
 
express() 
    .use('/api/v1/', greetMiddleware({ greeting:'Hello world' })) 
    .listen(8080);

This will make your application modular, customisable and your code reusable.

When accessing http://<hostname>:8080/api/v1/greet the output will be Hello world

More complicated example

Example with services that shows middleware factory advantages.

Module:

// greet.js 
const express = require('express'); 
 
module.exports = function(options = {}) { // Router factory 
    const router = express.Router(); 
    // Get controller 
    const {service} = options; 
 
    router.get('/greet', (req, res, next) => { 
        res.end( 
            service.createGreeting(req.query.name || 'Stranger') 
        ); 
    }); 
 
    return router; 
};

Application:

// app.js 
const express = require('express'); 

https://riptutorial.com/ 361



const greetMiddleware = require('./greet.js'); 
 
class GreetingService { 
    constructor(greeting = 'Hello') { 
        this.greeting = greeting; 
    } 
 
    createGreeting(name) { 
        return `${this.greeting}, ${name}!`; 
    } 
} 
 
express() 
    .use('/api/v1/service1', greetMiddleware({ 
        service: new GreetingService('Hello'), 
    })) 
    .use('/api/v1/service2', greetMiddleware({ 
        service: new GreetingService('Hi'), 
    })) 
    .listen(8080);

When accessing http://<hostname>:8080/api/v1/service1/greet?name=World the output will be Hello, 
World and accessing http://<hostname>:8080/api/v1/service2/greet?name=World the output will be Hi, 
World.

Using a Template Engine

Using a Template Engine

The following code will setup Jade as template engine. (Note: Jade has been renamed to pug as of 
December 2015.)

const express = require('express');  //Imports the express module 
const app = express();  //Creates an instance of the express module 
 
const PORT = 3000; //Randomly chosen port 
 
app.set('view engine','jade'); //Sets jade as the View Engine / Template Engine 
app.set('views','src/views'); //Sets the directory where all the views (.jade files) are 
stored. 
 
//Creates a Root Route 
app.get('/',function(req, res){ 
    res.render('index');  //renders the index.jade file into html and returns as a response. 
The render function optionally takes the data to pass to the view. 
}); 
 
//Starts the Express server with a callback 
app.listen(PORT, function(err) { 
    if (!err) { 
        console.log('Server is running at port', PORT); 
    } else { 
        console.log(JSON.stringify(err)); 
    } 
});

https://riptutorial.com/ 362



Similarly, other Template Engines could be used too such as Handlebars(hbs) or ejs. Remember to 
npm install the Template Engine too. For Handlebars we use hbs package, for Jade we have a 
jade package and for EJS, we have an ejs package.

EJS Template Example

With EJS (like other express templates), you can run server code and access your server 
variables from you HTML. 
In EJS it's done using "<%" as start tag and "%>" as end tag, variables passed as the render params 
can be accessed using <%=var_name%> 
For instance, if you have supplies array in your server code  
you can loop over it using

<h1><%= title %></h1> 
   <ul> 
<% for(var i=0; i<supplies.length; i++) { %> 
    <li> 
        <a href='supplies/<%= supplies[i] %>'> 
            <%= supplies[i] %> 
        </a> 
    </li> 
<% } %>

As you can see in the example every time you switch between server side code and HTML you 
need to close the current EJS tag and open a new one later, here we wanted to create li inside 
the for command so we needed to close our EJS tag at the end of the for and create new tag just 
for the curly brackets  
another example  
if we want to put input default version to be a variable from the server side we use <%=  
for example:

 Message:<br> 
<input type="text" value="<%= message %>" name="message" required>

Here the message variable passed from your server side will be the default value of your input, 
please be noticed that if you didn't pass message variable from your server side, EJS will throw an 
exception. You can pass parameters using res.render('index', {message: message}); (for ejs file 
called index.ejs). 
 
In the EJS tags you can also use if , while or any other javascript command you want.

JSON API with ExpressJS

var express = require('express'); 
var cors = require('cors'); // Use cors module for enable Cross-origin resource sharing 
 
var app = express(); 
app.use(cors()); // for all routes 
 

https://riptutorial.com/ 363



var port = process.env.PORT || 8080; 
 
app.get('/', function(req, res) { 
    var info = { 
        'string_value': 'StackOverflow', 
        'number_value': 8476 
    } 
    res.json(info); 
 
    // or 
    /* res.send(JSON.stringify({ 
        string_value: 'StackOverflow', 
        number_value: 8476 
    })) */ 
 
  //you can add a status code to the json response 
   /* res.status(200).json(info) */ 
}) 
 
app.listen(port, function() { 
    console.log('Node.js listening on port ' + port) 
})

On http://localhost:8080/ output object

{ 
    string_value: "StackOverflow", 
    number_value: 8476 
}

Serving static files

When building a webserver with Express it's often required to serve a combination of dynamic 
content and static files.

For example, you may have index.html and script.js which are static files kept in the file system.

It is common to use folder named 'public' to have static files. In this case the folder structure may 
look like:

project root 
├── server.js 
├── package.json 
└── public 
    ├── index.html 
    └── script.js

This is how to configure Express to serve static files:

const express = require('express'); 
const app = express(); 
 
app.use(express.static('public'));

https://riptutorial.com/ 364



Note: once the folder is configured, index.html, script.js and all the files in the "public" folder will be 
available in at the root path (you must not specify /public/ in the url). This is because, express 
looks up for the files relative to the static folder configured. You can specify virtual path prefix as 
shown below:

app.use('/static', express.static('public'));

will make the resources available under the /static/ prefix.

Multiple folders

It is possible to define multiple folders at the same time:

app.use(express.static('public')); 
app.use(express.static('images')); 
app.use(express.static('files'));

When serving the resources Express will examine the folder in definition order. In case of files with 
the same name, the one in the first matching folder will be served.

Named routes in Django-style

One big problem is that valuable named routes is not supported by Express out of the box. 
Solution is to install supported third-party package, for example express-reverse:

npm install express-reverse

Plug it in your project:

var app = require('express')(); 
require('express-reverse')(app);

Then use it like:

app.get('test', '/hello', function(req, res) { 
  res.end('hello'); 
});

The downside of this approach is that you cant use route Express module as shown in Advanced 
router usage. The workaround is to pass your app as a parameter to you router factory:

require('./middlewares/routing')(app);

And use it like:

module.exports = (app) => { 
    app.get('test', '/hello', function(req, res) { 
      res.end('hello'); 

https://riptutorial.com/ 365

https://github.com/dizlexik/express-reverse
http://www.riptutorial.com/node-js/example/4433/modular-express-application
http://www.riptutorial.com/node-js/example/4433/modular-express-application


    }); 
};

You can figure it out from now on, how define functions to merge it with specified custom 
namespaces and point at appropriate controllers.

Error Handling

Basic Error Handling

By default, Express will look for an 'error' view in the /views directory to render. Simply create the 
'error' view and place it in the views directory to handle errors. Errors are written with the error 
message, status and stack trace, for example:

views/error.pug

html 
  body 
      h1= message 
      h2= error.status 
      p= error.stack

Advanced Error Handling

Define your error-handling middleware functions at the very end of the middleware function stack. 
These have four arguments instead of three (err, req, res, next) for example:

app.js

// catch 404 and forward to error handler 
app.use(function(req, res, next) { 
    var err = new Error('Not Found'); 
    err.status = 404; 
 
    //pass error to the next matching route. 
    next(err); 
}); 
 
// handle error, print stacktrace 
app.use(function(err, req, res, next) { 
    res.status(err.status || 500); 
 
    res.render('error', { 
        message: err.message, 
        error: err 
    }); 
});

You can define several error-handling middleware functions, just as you would with regular 
middleware functions.

Using middleware and the next callback

https://riptutorial.com/ 366



Express passes a next callback to every route handler and middleware function that can be used 
to break logic for single routes across multiple handlers. Calling next() with no arguments tells 
express to continue to the next matching middleware or route handler. Calling next(err) with an 
error will trigger any error handler middleware. Calling next('route') will bypass any subsequent 
middleware on the current route and jump to the next matching route. This allows domain logic to 
be decoupled into reusable components that are self-contained, simpler to test, and easier to 
maintain and change.

Multiple matching routes

Requests to /api/foo or to /api/bar will run the initial handler to look up the member and then pass 
control to the actual handler for each route.

app.get('/api', function(req, res, next) { 
  // Both /api/foo and /api/bar will run this 
  lookupMember(function(err, member) { 
    if (err) return next(err); 
    req.member = member; 
    next(); 
  }); 
}); 
 
app.get('/api/foo', function(req, res, next) { 
  // Only /api/foo will run this 
  doSomethingWithMember(req.member); 
}); 
 
app.get('/api/bar', function(req, res, next) { 
  // Only /api/bar will run this 
  doSomethingDifferentWithMember(req.member); 
});

Error handler

Error handlers are middleware with the signature function(err, req, res, next). They could be set 
up per route (e.g. app.get('/foo', function(err, req, res, next)) but typically, a single error 
handler that renders an error page is sufficient.

app.get('/foo', function(req, res, next) { 
  doSomethingAsync(function(err, data) { 
    if (err) return next(err); 
    renderPage(data); 
  }); 
}); 
 
// In the case that doSomethingAsync return an error, this special 
// error handler middleware will be called with the error as the 
// first parameter. 
app.use(function(err, req, res, next) { 
  renderErrorPage(err); 
});

Middleware

https://riptutorial.com/ 367



Each of the functions above is actually a middleware function that is run whenever a request 
matches the route defined, but any number of middleware functions can be defined on a single 
route. This allows middleware to be defined in separate files and common logic to be reused 
across multiple routes.

app.get('/bananas', function(req, res, next) { 
  getMember(function(err, member) { 
    if (err) return next(err); 
    // If there's no member, don't try to look 
    // up data. Just go render the page now. 
    if (!member) return next('route'); 
    // Otherwise, call the next middleware and fetch 
    // the member's data. 
    req.member = member; 
    next(); 
  }); 
}, function(req, res, next) { 
  getMemberData(req.member, function(err, data) { 
    if (err) return next(err); 
    // If this member has no data, don't bother 
    // parsing it. Just go render the page now. 
    if (!data) return next('route'); 
    // Otherwise, call the next middleware and parse 
    // the member's data. THEN render the page. 
    req.member.data = data; 
    next(); 
  }); 
}, function(req, res, next) { 
  req.member.parsedData = parseMemberData(req.member.data); 
  next(); 
}); 
 
app.get('/bananas', function(req, res, next) { 
  renderBananas(req.member); 
});

In this example, each middleware function would be either in it's own file or in a variable elsewhere 
in the file so that it could be reused in other routes.

Error handling

Basic docs can be found here

app.get('/path/:id(\\d+)', function (req, res, next) { // please note: "next" is passed 
    if (req.params.id == 0) // validate param 
        return next(new Error('Id is 0')); // go to first Error handler, see below 
 
    // Catch error on sync operation 
    var data; 
    try { 
        data = JSON.parse('/file.json'); 
    } catch (err) { 
        return next(err); 
    } 
 
    // If some critical error then stop application 
    if (!data) 

https://riptutorial.com/ 368

http://expressjs.com/en/guide/error-handling.html


        throw new Error('Smth wrong'); 
 
    // If you need send extra info to Error handler 
    // then send custom error (see Appendix B) 
    if (smth) 
        next(new MyError('smth wrong', arg1, arg2)) 
 
    // Finish request by res.render or res.end 
    res.status(200).end('OK'); 
}); 
 
// Be sure: order of app.use have matter 
// Error handler 
app.use(function(err, req, res, next)) { 
    if (smth-check, e.g. req.url != 'POST') 
        return next(err); // go-to Error handler 2. 
 
    console.log(req.url, err.message); 
 
    if (req.xhr) // if req via ajax then send json else render error-page 
        res.json(err); 
    else 
        res.render('error.html', {error: err.message}); 
}); 
 
// Error handler 2 
app.use(function(err, req, res, next)) { 
    // do smth here e.g. check that error is MyError 
    if (err instanceof MyError) { 
        console.log(err.message, err.arg1, err.arg2); 
    } 
    ... 
    res.end(); 
});

Appendix A

// "In Express, 404 responses are not the result of an error, 
// so the error-handler middleware will not capture them." 
// You can change it. 
app.use(function(req, res, next) { 
    next(new Error(404)); 
});

Appendix B

// How to define custom error 
var util = require('util'); 
... 
function MyError(message, arg1, arg2) { 
    this.message = message; 
    this.arg1 = arg1; 
    this.arg2 = arg2; 
    Error.captureStackTrace(this, MyError); 
} 
util.inherits(MyError, Error); 
MyError.prototype.name = 'MyError';

https://riptutorial.com/ 369



Hook: How to execute code before any req and after any res

app.use() and middleware can be used for "before" and a combination of the close and finish 
events can be used for "after".

app.use(function (req, res, next) { 
    function afterResponse() { 
        res.removeListener('finish', afterResponse); 
        res.removeListener('close', afterResponse); 
 
        // actions after response 
    } 
    res.on('finish', afterResponse); 
    res.on('close', afterResponse); 
 
    // action before request 
    // eventually calling `next()` 
    next(); 
}); 
... 
app.use(app.router);

An example of this is the logger middleware, which will append to the log after the response by 
default.

Just make sure this "middleware" is used before app.router as order does matter.

Original post is here

Handling POST Requests

Just like you handle get requests in Express with app.get method, you can use app.post method to 
handle post requests.

But before you can handle POST requests, you will need to use the body-parser middleware. It 
simply parses the body of POST, PUT, DELETE and other requests.

Body-Parser middleware parses the body of the request and turns it into an object available in 
req.body

var bodyParser = require('body-parser'); 
 
const express = require('express'); 
 
const app = express(); 
 
// Parses the body for POST, PUT, DELETE, etc. 
app.use(bodyParser.json()); 
 
app.use(bodyParser.urlencoded({ extended: true })); 
 
app.post('/post-data-here', function(req, res, next){ 
 
    console.log(req.body); // req.body contains the parsed body of the request. 

https://riptutorial.com/ 370

https://nodejs.org/api/http.html#http_event_close_1
https://nodejs.org/api/stream.html#stream_event_finish
http://www.senchalabs.org/connect/logger.html
http://stackoverflow.com/questions/20175806/before-and-after-hooks-for-a-request-in-express-to-be-executed-before-any-req-a


 
}); 
 
app.listen(8080, 'localhost');

Setting cookies with cookie-parser

The following is an example for setting and reading cookies using the cookie-parser module:

var express = require('express'); 
var cookieParser = require('cookie-parser'); // module for parsing cookies 
var app = express(); 
app.use(cookieParser()); 
 
app.get('/setcookie', function(req, res){ 
    // setting cookies 
    res.cookie('username', 'john doe', { maxAge: 900000, httpOnly: true }); 
    return res.send('Cookie has been set'); 
}); 
 
app.get('/getcookie', function(req, res) { 
    var username = req.cookies['username']; 
    if (username) { 
        return res.send(username); 
    } 
 
    return res.send('No cookie found'); 
}); 
 
app.listen(3000);

Custom middleware in Express

In Express, you can define middlewares that can be used for checking requests or setting some 
headers in response.

app.use(function(req, res, next){ });    // signature

Example

The following code adds user to the request object and pass the control to the next matching 
route.

var express = require('express'); 
var app = express(); 
 
//each request will pass through it 
app.use(function(req, res, next){ 
    req.user = 'testuser'; 
    next();    // it will pass the control to next matching route 
}); 
 
app.get('/', function(req, res){ 
    var user = req.user; 

https://riptutorial.com/ 371

https://github.com/expressjs/cookie-parser


    console.log(user); // testuser 
    return res.send(user); 
}); 
 
app.listen(3000);

Error handling in Express

In Express, you can define unified error handler for handling errors occurred in application. Define 
then handler at the end of all routes and logic code.

Example

var express = require('express'); 
var app = express(); 
 
//GET /names/john 
app.get('/names/:name', function(req, res, next){ 
    if (req.params.name == 'john'){ 
        return res.send('Valid Name'); 
    } else{ 
        next(new Error('Not valid name'));    //pass to error handler 
    } 
}); 
 
//error handler 
app.use(function(err, req, res, next){ 
    console.log(err.stack);    // e.g., Not valid name 
    return res.status(500).send('Internal Server Occured'); 
}); 
 
app.listen(3000);

Adding Middleware

Middleware functions are functions that have access to the request object (req), the response 
object (res), and the next middleware function in the application’s request-response cycle.

Middleware functions can execute any code, make changes to res and req objects, end response 
cycle and call next middleware.

Very common example of middleware is cors module. To add CORS support, simply install it, 
require it and put this line:

app.use(cors());

before any routers or routing functions.

Hello World

Here we create a basic hello world server using Express. Routes:

https://riptutorial.com/ 372



'/'•
'/wiki'•

And for rest will give "404" , i.e. page not found.

'use strict'; 
 
const port = process.env.PORT || 3000; 
 
var app = require('express')(); 
    app.listen(port); 
 
app.get('/',(req,res)=>res.send('HelloWorld!')); 
app.get('/wiki',(req,res)=>res.send('This is wiki page.')); 
app.use((req,res)=>res.send('404-PageNotFound'));

Note: We have put 404 route as the last route as Express stacks routes in order and processes 
them for each request sequentially.

Read Web Apps With Express online: https://riptutorial.com/node-js/topic/483/web-apps-with-
express

https://riptutorial.com/ 373

https://riptutorial.com/node-js/topic/483/web-apps-with-express
https://riptutorial.com/node-js/topic/483/web-apps-with-express


Chapter 110: Windows authentication under 
node.js

Remarks

There are several other Active Directory APIS, such as activedirectory2 and adldap.

Examples

Using activedirectory

The example below is taken from the full docs, available here (GitHub) or here (NPM).

Installation

npm install --save activedirectory

Usage

// Initialize 
var ActiveDirectory = require('activedirectory'); 
var config = { 
    url: 'ldap://dc.domain.com', 
    baseDN: 'dc=domain,dc=com' 
}; 
var ad = new ActiveDirectory(config); 
var username = 'john.smith@domain.com'; 
var password = 'password'; 
// Authenticate 
ad.authenticate(username, password, function(err, auth) { 
    if (err) { 
        console.log('ERROR: '+JSON.stringify(err)); 
        return; 
    } 
    if (auth) { 
        console.log('Authenticated!'); 
    } 
    else { 
        console.log('Authentication failed!'); 
    } 
});

Read Windows authentication under node.js online: https://riptutorial.com/node-
js/topic/10612/windows-authentication-under-node-js

https://riptutorial.com/ 374

https://www.npmjs.com/package/activedirectory2
https://www.npmjs.com/package/adldap
https://github.com/gheeres/node-activedirectory
https://npmdoc.github.io/node-npmdoc-activedirectory/build/apidoc.html
https://riptutorial.com/node-js/topic/10612/windows-authentication-under-node-js
https://riptutorial.com/node-js/topic/10612/windows-authentication-under-node-js


Chapter 111: Yarn Package Manager

Introduction

Yarn is a package manager for Node.js, similar to npm. While sharing a lot of common ground, 
there are some key differences between Yarn and npm.

Examples

Yarn Installation

This example explains the different methods to install Yarn for your OS.

macOS

Homebrew

brew update 
brew install yarn

MacPorts

sudo port install yarn

Adding Yarn to your PATH

Add the following to your preferred shell profile (.profile, .bashrc, .zshrc etc)

export PATH="$PATH:`yarn global bin`"

Windows

Installer

First, install Node.js if it is not already installed.

Download the Yarn installer as an .msi from the Yarn website.

Chocolatey

https://riptutorial.com/ 375

https://yarnpkg.com
https://yarnpkg.com/en/docs/install


choco install yarn

Linux

Debian / Ubuntu

Ensure Node.js is installed for your distro, or run the following

curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash - 
sudo apt-get install -y nodejs

Configure the YarnPkg repository

curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add - 
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee 
/etc/apt/sources.list.d/yarn.list

Install Yarn

sudo apt-get update && sudo apt-get install yarn

CentOS / Fedora / RHEL

Install Node.js if not already installed

curl --silent --location https://rpm.nodesource.com/setup_6.x | bash -

Install Yarn

sudo wget https://dl.yarnpkg.com/rpm/yarn.repo -O /etc/yum.repos.d/yarn.repo 
sudo yum install yarn

Arch

Install Yarn via AUR.

Example using yaourt:

yaourt -S yarn

Solus

sudo eopkg install yarn

https://riptutorial.com/ 376



All Distributions

Add the following to your preferred shell profile (.profile, .bashrc, .zshrc etc)

export PATH="$PATH:`yarn global bin`"

Alternative Method of Installation

Shell script

curl -o- -L https://yarnpkg.com/install.sh | bash

or specify a version to install

curl -o- -L https://yarnpkg.com/install.sh | bash -s -- --version [version]

Tarball

cd /opt 
wget https://yarnpkg.com/latest.tar.gz 
tar zvxf latest.tar.gz

Npm

If you already have npm installed, simply run

npm install -g yarn

Post Install

Check the installed version of Yarn by running

yarn --version

Creating a basic package

The yarn init command will walk you through the creation of a package.json file to configure some 
information about your package. This is similar to the npm init command in npm.

Create and navigate to a new directory to hold your package, and then run yarn init

https://riptutorial.com/ 377



mkdir my-package && cd my-package 
yarn init

Answer the questions that follow in the CLI

question name (my-package): my-package 
question version (1.0.0): 
question description: A test package 
question entry point (index.js): 
question repository url: 
question author: StackOverflow Documentation 
question license (MIT): 
success Saved package.json 
�  Done in 27.31s.

This will generate a package.json file similar to the following

{ 
  "name": "my-package", 
  "version": "1.0.0", 
  "description": "A test package", 
  "main": "index.js", 
  "author": "StackOverflow Documentation", 
  "license": "MIT" 
}

Now lets try adding a dependency. The basic syntax for this is yarn add [package-name]

Run the following to install ExpressJS

yarn add express

This will add a dependencies section to your package.json, and add ExpressJS

"dependencies": { 
    "express": "^4.15.2" 
}

Install package with Yarn

Yarn uses the same registry that npm does. That means that every package that is a available on 
npm is the same on Yarn.

To install a package, run yarn add package.

If you need a specific version of the package, you can use yarn add package@version.

If the version you need to install has been tagged, you can use yarn add package@tag.

Read Yarn Package Manager online: https://riptutorial.com/node-js/topic/9441/yarn-package-
manager

https://riptutorial.com/ 378

https://riptutorial.com/node-js/topic/9441/yarn-package-manager
https://riptutorial.com/node-js/topic/9441/yarn-package-manager


Credits

S. 
No

Chapters Contributors

1
Getting started with 
Node.js

4444, Abdelaziz Mokhnache, Abhishek Jain, Adam, 
Aeolingamenfel, Alessandro Trinca Tornidor, Aljoscha Meyer, 
Amila Sampath, Ankit Gomkale, Ankur Anand, arcs, Aule, B 
Thuy, baranskistad, Bundit J., Chandra Sekhar, Chezzwizz, 
Christopher Ronning, Community, Craig Ayre, David Gatti, 
Djizeus, Florian Hämmerle, Franck Dernoncourt, 
ganesshkumar, George Aidonidis, Harangue, hexacyanide, Iain 
Reid, Inanc Gumus, Jason, Jasper, Jeremy Banks, John 
Slegers, JohnnyCoder, Joshua Kleveter, KolesnichenkoDS, 
krishgopinath, Léo Martin, Majid, Marek Skiba, Matt Bush, 
Meinkraft, Michael Irigoyen, Mikhail, Milan Laslop, ndugger, 
Nick, olegzhermal, Peter Mortensen, RamenChef, Reborn, 
Rishikesh Chandra, Shabin Hashim, Shiven, Sibeesh Venu, 
sigfried, SteveLacy, Susanne Oberhauser, thefourtheye, 
theunexpected1, Tomás Cañibano, user2314737, Volodymyr 
Sichka, xam, zurfyx

2
Arduino 
communication with 
nodeJs

sBanda

3 async.js
David Knipe, devnull69, DrakaSAN, F. Kauder, jerry, lsampaio, 
Shriganesh Kolhe, Sky, walid

4 Async/Await
Cami Rodriguez, Cody G., cyanbeam, Dave, David Xu, Dom 
Vinyard, m_callens, Manuel, nomanbinhussein, Toni Villena

5
Asynchronous 
programming

Ala Eddine JEBALI, cyanbeam, Florian Hämmerle, H. 
Pauwelyn, John, Marek Skiba, Native Coder, omgimanerd, 
slowdeath007

6
Autoreload on 
changes

ch4nd4n, Dean Rather, Jonas S, Joshua Kleveter, Nivesh, 
Sanketh Katta, zurfyx

7 Avoid callback hell tyehia

8 Bluebird Promises David Xu

9 Callback to Promise Clement JACOB, Michael Buen, Sanketh Katta

10
Cassandra 
Integration

Vsevolod Goloviznin

https://riptutorial.com/ 379

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5192846/abdelaziz-mokhnache
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/5690396/adam
https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/4745878/aljoscha-meyer
https://riptutorial.com/contributor/5284288/amila-sampath
https://riptutorial.com/contributor/804721/ankit-gomkale
https://riptutorial.com/contributor/3027001/ankur-anand
https://riptutorial.com/contributor/3137109/arcs
https://riptutorial.com/contributor/1402230/aule
https://riptutorial.com/contributor/6767721/b-thuy
https://riptutorial.com/contributor/6767721/b-thuy
https://riptutorial.com/contributor/6568784/baranskistad
https://riptutorial.com/contributor/7086430/bundit-j-
https://riptutorial.com/contributor/1213738/chandra-sekhar
https://riptutorial.com/contributor/712316/chezzwizz
https://riptutorial.com/contributor/2898801/christopher-ronning
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5153111/craig-ayre
https://riptutorial.com/contributor/1049894/david-gatti
https://riptutorial.com/contributor/817766/djizeus
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/1184750/ganesshkumar
https://riptutorial.com/contributor/5263105/george-aidonidis
https://riptutorial.com/contributor/1008741/harangue
https://riptutorial.com/contributor/1380918/hexacyanide
https://riptutorial.com/contributor/4000053/iain-reid
https://riptutorial.com/contributor/4000053/iain-reid
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/545332/jason
https://riptutorial.com/contributor/3836926/jasper
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1058612/johnnycoder
https://riptutorial.com/contributor/4581977/joshua-kleveter
https://riptutorial.com/contributor/4977168/kolesnichenkods
https://riptutorial.com/contributor/1217785/krishgopinath
https://riptutorial.com/contributor/5677183/leo-martin
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/6539301/matt-bush
https://riptutorial.com/contributor/3927621/meinkraft
https://riptutorial.com/contributor/542517/michael-irigoyen
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/7164302/milan-laslop
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/2639721/nick
https://riptutorial.com/contributor/3553463/olegzhermal
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3605712/reborn
https://riptutorial.com/contributor/5644413/rishikesh-chandra
https://riptutorial.com/contributor/1109178/shabin-hashim
https://riptutorial.com/contributor/3543416/shiven
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/4613549/sigfried
https://riptutorial.com/contributor/1041104/stevelacy
https://riptutorial.com/contributor/480393/susanne-oberhauser
https://riptutorial.com/contributor/1903116/thefourtheye
https://riptutorial.com/contributor/1079817/theunexpected1
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5333324/volodymyr-sichka
https://riptutorial.com/contributor/5333324/volodymyr-sichka
https://riptutorial.com/contributor/3593217/xam
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/8143718/sbanda
https://riptutorial.com/contributor/2064808/david-knipe
https://riptutorial.com/contributor/1030974/devnull69
https://riptutorial.com/contributor/2587646/drakasan
https://riptutorial.com/contributor/6608382/f--kauder
https://riptutorial.com/contributor/2404065/jerry
https://riptutorial.com/contributor/2321500/lsampaio
https://riptutorial.com/contributor/4420424/shriganesh-kolhe
https://riptutorial.com/contributor/4446093/sky
https://riptutorial.com/contributor/1268937/walid
https://riptutorial.com/contributor/2226401/cami-rodriguez
https://riptutorial.com/contributor/2446254/cody-g-
https://riptutorial.com/contributor/1149962/cyanbeam
https://riptutorial.com/contributor/3438226/dave
https://riptutorial.com/contributor/2633527/david-xu
https://riptutorial.com/contributor/4533572/dom-vinyard
https://riptutorial.com/contributor/4533572/dom-vinyard
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/6192780/manuel
https://riptutorial.com/contributor/2679630/nomanbinhussein
https://riptutorial.com/contributor/5810474/toni-villena
https://riptutorial.com/contributor/1343790/ala-eddine-jebali
https://riptutorial.com/contributor/1149962/cyanbeam
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/2066736/john
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/6301910/native-coder
https://riptutorial.com/contributor/5792737/omgimanerd
https://riptutorial.com/contributor/7868639/slowdeath007
https://riptutorial.com/contributor/486920/ch4nd4n
https://riptutorial.com/contributor/14966/dean-rather
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/4581977/joshua-kleveter
https://riptutorial.com/contributor/2680461/nivesh
https://riptutorial.com/contributor/1047268/sanketh-katta
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/7610111/tyehia
https://riptutorial.com/contributor/2633527/david-xu
https://riptutorial.com/contributor/1288680/clement-jacob
https://riptutorial.com/contributor/11432/michael-buen
https://riptutorial.com/contributor/1047268/sanketh-katta
https://riptutorial.com/contributor/4251546/vsevolod-goloviznin


11 CLI Ze Rubeus

12
Client-server 
communication

Zoltán Schmidt

13 Cluster Module
Benjamin, Florian Hämmerle, Kid Binary, MayorMonty, Mukesh 
Sharma, riyadhalnur, Vsevolod Goloviznin

14 Connect to Mongodb FabianCook, Nainesh Raval, Shriganesh Kolhe

15

Creating a Node.js 
Library that Supports 
Both Promises and 
Error-First Callbacks

Dave

16
Creating API's with 
Node.js

Mukesh Sharma

17 csv parser in node js aisflat439

18
Database (MongoDB 
with Mongoose)

zurfyx

19
Debugging Node.js 
application

4444, Alister Norris, Ankur Anand, H. Pauwelyn, Matthew 
Shanley

20
Deliver HTML or any 
other sort of file

Himani Agrawal, RamenChef, user2314737

21
Dependency 
Injection

Niroshan Ranapathi

22
Deploying Node.js 
application without 
downtime.

gentlejo

23
Deploying Node.js 
applications in 
production

Apidcloud, Brett Jackson, Community, Cristian Boariu, 
duncanhall, Florian Hämmerle, guleria, haykam, KlwntSingh, 
Mad Scientist, MatthieuLemoine, Mukesh Sharma, raghu, 
sjmarshy, tverdohleb, tyehia

24
ECMAScript 2015 
(ES6) with Node.js

David Xu, Florian Hämmerle, Osama Bari

25 Environment
Chris, Freddie Coleman, KlwntSingh, Louis Barranqueiro, 
Mikhail, sBanda

26 Event Emitters
DrakaSAN, Duly Kinsky, Florian Hämmerle, jamescostian, 
MindlessRanger, Mothman

https://riptutorial.com/ 380

https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/2320153/zoltan-schmidt
https://riptutorial.com/contributor/2823898/benjamin
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/3042856/kid-binary
https://riptutorial.com/contributor/2016735/mayormonty
https://riptutorial.com/contributor/2100197/mukesh-sharma
https://riptutorial.com/contributor/2100197/mukesh-sharma
https://riptutorial.com/contributor/2738732/riyadhalnur
https://riptutorial.com/contributor/4251546/vsevolod-goloviznin
https://riptutorial.com/contributor/1174869/fabiancook
https://riptutorial.com/contributor/7749877/nainesh-raval
https://riptutorial.com/contributor/4420424/shriganesh-kolhe
https://riptutorial.com/contributor/3438226/dave
https://riptutorial.com/contributor/2100197/mukesh-sharma
https://riptutorial.com/contributor/2049247/aisflat439
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1432509/alister-norris
https://riptutorial.com/contributor/3027001/ankur-anand
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/3858/matthew-shanley
https://riptutorial.com/contributor/3858/matthew-shanley
https://riptutorial.com/contributor/5027503/himani-agrawal
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5051423/niroshan-ranapathi
https://riptutorial.com/contributor/889158/gentlejo
https://riptutorial.com/contributor/1643749/apidcloud
https://riptutorial.com/contributor/1541138/brett-jackson
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/174349/cristian-boariu
https://riptutorial.com/contributor/3252835/duncanhall
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/620039/guleria
https://riptutorial.com/contributor/5513988/haykam
https://riptutorial.com/contributor/4276650/klwntsingh
https://riptutorial.com/contributor/347857/mad-scientist
https://riptutorial.com/contributor/4712818/matthieulemoine
https://riptutorial.com/contributor/2100197/mukesh-sharma
https://riptutorial.com/contributor/3559733/raghu
https://riptutorial.com/contributor/293465/sjmarshy
https://riptutorial.com/contributor/1154423/tverdohleb
https://riptutorial.com/contributor/7610111/tyehia
https://riptutorial.com/contributor/2633527/david-xu
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/4398444/osama-bari
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/3297820/freddie-coleman
https://riptutorial.com/contributor/4276650/klwntsingh
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/8143718/sbanda
https://riptutorial.com/contributor/2587646/drakasan
https://riptutorial.com/contributor/1705189/duly-kinsky
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/1561059/jamescostian
https://riptutorial.com/contributor/3873452/mindlessranger
https://riptutorial.com/contributor/6624106/mothman


27 Eventloop Kelum Senanayake

28 Exception handling KlwntSingh, Nivesh, riyadhalnur, sBanda, sjmarshy, topheman

29
Executing files or 
commands with 
Child Processes

guleria, hexacyanide, iSkore

30
Exporting and 
Consuming Modules

Aminadav, Craig Ayre, cyanbeam, devnull69, DrakaSAN, 
Fenton, Florian Hämmerle, hexacyanide, Jason, jdrydn, 
Loufylouf, Louis Barranqueiro, m02ph3u5, Marek Skiba, 
MrWhiteNerdy, MSB, Pedro Otero, Shabin Hashim, tkone, uzaif

31
Exporting and 
Importing Module in 
node.js

AndrewLeonardi, Bharat, commonSenseCode, James 
Billingham, Oliver, sharif.io, Shog9

32 File upload Aikon Mogwai, Iceman, Mikhail, walid

33 Filesystem I/O

4444, Accepted Answer, Aeolingamenfel, Christophe Marois, 
Craig Ayre, DrakaSAN, Duly Kinsky, Florian Hämmerle, 
gnerkus, Harshal Bhamare, hexacyanide, jakerella, Julien 
CROUZET, Louis Barranqueiro, midnightsyntax, Mikhail, peteb, 
Shiven, still_learning, Tim Jones, Tropic, Vsevolod Goloviznin, 
Zanon

34
Getting started with 
Nodes profiling

damitj07

35 Good coding style Ajitej Kaushik, RamenChef

36 Graceful Shutdown RamenChef, Sathish

37 grunt Naeem Shaikh, Waterscroll

38 Hack signal

39
Handling POST 
request in Node.js

Manas Jayanth

40
How modules are 
loaded

RamenChef, umesh

41 http Ahmed Metwally

Alister Norris, Aminadav, Anh Cao, asherbar, Batsu, Buzut, 
Chance Snow, Chezzwizz, Dmitriy Borisov, Florian Hämmerle, 
GilZ, guleria, hexacyanide, HungryCoder, Inanc Gumus, Jacek 
Labuda, John Vincent Jardin, Josh, KahWee Teng, Maciej 
Rostański, mmhyamin, Naing Lin Aung, NuSkooler, Shabin 

42 Installing Node.js

https://riptutorial.com/ 381

https://riptutorial.com/contributor/1699937/kelum-senanayake
https://riptutorial.com/contributor/4276650/klwntsingh
https://riptutorial.com/contributor/2680461/nivesh
https://riptutorial.com/contributor/2738732/riyadhalnur
https://riptutorial.com/contributor/8143718/sbanda
https://riptutorial.com/contributor/293465/sjmarshy
https://riptutorial.com/contributor/2733488/topheman
https://riptutorial.com/contributor/620039/guleria
https://riptutorial.com/contributor/1380918/hexacyanide
https://riptutorial.com/contributor/4863783/iskore
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/5153111/craig-ayre
https://riptutorial.com/contributor/1149962/cyanbeam
https://riptutorial.com/contributor/1030974/devnull69
https://riptutorial.com/contributor/2587646/drakasan
https://riptutorial.com/contributor/75525/fenton
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/1380918/hexacyanide
https://riptutorial.com/contributor/545332/jason
https://riptutorial.com/contributor/5291686/jdrydn
https://riptutorial.com/contributor/2531068/loufylouf
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/890537/m02ph3u5
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/5573701/mrwhitenerdy
https://riptutorial.com/contributor/2910269/msb
https://riptutorial.com/contributor/3307454/pedro-otero
https://riptutorial.com/contributor/1109178/shabin-hashim
https://riptutorial.com/contributor/269581/tkone
https://riptutorial.com/contributor/3786332/uzaif
https://riptutorial.com/contributor/6222152/andrewleonardi
https://riptutorial.com/contributor/3849075/bharat
https://riptutorial.com/contributor/4031815/commonsensecode
https://riptutorial.com/contributor/743957/james-billingham
https://riptutorial.com/contributor/743957/james-billingham
https://riptutorial.com/contributor/1925689/oliver
https://riptutorial.com/contributor/1540689/sharif-io
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/6121703/aikon-mogwai
https://riptutorial.com/contributor/6237235/iceman
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/1268937/walid
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/6628341/accepted-answer
https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/1558527/christophe-marois
https://riptutorial.com/contributor/5153111/craig-ayre
https://riptutorial.com/contributor/2587646/drakasan
https://riptutorial.com/contributor/1705189/duly-kinsky
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/2259144/gnerkus
https://riptutorial.com/contributor/6340602/harshal-bhamare
https://riptutorial.com/contributor/1380918/hexacyanide
https://riptutorial.com/contributor/1985406/jakerella
https://riptutorial.com/contributor/465243/julien-crouzet
https://riptutorial.com/contributor/465243/julien-crouzet
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/278354/midnightsyntax
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/2980607/peteb
https://riptutorial.com/contributor/3543416/shiven
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/284480/tim-jones
https://riptutorial.com/contributor/5498412/tropic
https://riptutorial.com/contributor/4251546/vsevolod-goloviznin
https://riptutorial.com/contributor/1476885/zanon
https://riptutorial.com/contributor/5617140/damitj07
https://riptutorial.com/contributor/5300410/ajitej-kaushik
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2685083/sathish
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/5354188/waterscroll
https://riptutorial.com/contributor/6404493/signal
https://riptutorial.com/contributor/2065736/manas-jayanth
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/7040389/umesh
https://riptutorial.com/contributor/2080069/ahmed-metwally
https://riptutorial.com/contributor/1432509/alister-norris
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/1766225/anh-cao
https://riptutorial.com/contributor/2016436/asherbar
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/1717735/buzut
https://riptutorial.com/contributor/1363247/chance-snow
https://riptutorial.com/contributor/712316/chezzwizz
https://riptutorial.com/contributor/5104100/dmitriy-borisov
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/1597872/gilz
https://riptutorial.com/contributor/620039/guleria
https://riptutorial.com/contributor/1380918/hexacyanide
https://riptutorial.com/contributor/383912/hungrycoder
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/3505299/jacek-labuda
https://riptutorial.com/contributor/3505299/jacek-labuda
https://riptutorial.com/contributor/1174135/john-vincent-jardin
https://riptutorial.com/contributor/446039/josh
https://riptutorial.com/contributor/91127/kahwee-teng
https://riptutorial.com/contributor/7994013/maciej-rostanski
https://riptutorial.com/contributor/7994013/maciej-rostanski
https://riptutorial.com/contributor/7994013/maciej-rostanski
https://riptutorial.com/contributor/3060426/mmhyamin
https://riptutorial.com/contributor/706939/naing-lin-aung
https://riptutorial.com/contributor/132064/nuskooler
https://riptutorial.com/contributor/1109178/shabin-hashim


Hashim, Siddharth Srivastva, Sveratum, tandrewnichols, 
user2314737, user6939352, V1P3R, victorkohl

43
Interacting with 
Console

ScientiaEtVeritas

44
Keep a node 
application 
constantly running

Alex Logan, Bearington, cyanbeam, Himani Agrawal, Mikhail, 
mscdex, optimus, pietrovismara, RamenChef, Sameer 
Srivastava, somebody, Taylor Swanson

45 Koa Framework v2 David Xu

46 Lodash M1kstur

47
Loopback - REST 
Based connector

Roopesh

48 metalsmith RamenChef, vsjn3290ckjnaoij2jikndckjb

49 Mongodb integration cyanbeam, FabianCook, midnightsyntax

50
MongoDB 
Integration for 
Node.js/Express.js

William Carron

51 Mongoose Library
Alex Logan, manuerumx, Mikhail, Naeem Shaikh, Qiong Wu, 
Simplans, Will

52 MSSQL Intergration damitj07

53 Multithreading arcs

54
Mysql Connection 
Pool

KlwntSingh

55 MySQL integration

Aminadav, Andrés Encarnación, Florian Hämmerle, Ivan 
Schwarz, jdrydn, JohnnyCoder, Kapil Vats, KlwntSingh, Marek 
Skiba, Rafael Gadotti Bachovas, RamenChef, Simplans, 
Sorangwala Abbasali, surjikal

56 N-API Parham Alvani

57 Node JS Localization Osama Bari

58
Node server without 
framework

Hasan A Yousef, Taylor Ackley

59
Node.js (express.js) 
with angular.js 
Sample code

sigfried

https://riptutorial.com/ 382

https://riptutorial.com/contributor/1109178/shabin-hashim
https://riptutorial.com/contributor/1001562/siddharth-srivastva
https://riptutorial.com/contributor/3871521/sveratum
https://riptutorial.com/contributor/1437845/tandrewnichols
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/6939352/user6939352
https://riptutorial.com/contributor/4731240/v1p3r
https://riptutorial.com/contributor/2772643/victorkohl
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/1000737/bearington
https://riptutorial.com/contributor/1149962/cyanbeam
https://riptutorial.com/contributor/5027503/himani-agrawal
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/2050455/mscdex
https://riptutorial.com/contributor/3690529/optimus
https://riptutorial.com/contributor/3142367/pietrovismara
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3705518/sameer-srivastava
https://riptutorial.com/contributor/3705518/sameer-srivastava
https://riptutorial.com/contributor/3323231/somebody
https://riptutorial.com/contributor/1112127/taylor-swanson
https://riptutorial.com/contributor/2633527/david-xu
https://riptutorial.com/contributor/1420173/m1kstur
https://riptutorial.com/contributor/7616306/roopesh
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5918874/vsjn3290ckjnaoij2jikndckjb
https://riptutorial.com/contributor/1149962/cyanbeam
https://riptutorial.com/contributor/1174869/fabiancook
https://riptutorial.com/contributor/278354/midnightsyntax
https://riptutorial.com/contributor/4508990/william-carron
https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/1757214/manuerumx
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/493726/qiong-wu
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/5617140/damitj07
https://riptutorial.com/contributor/3137109/arcs
https://riptutorial.com/contributor/4276650/klwntsingh
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/5339201/andres-encarnacion
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/4836810/ivan-schwarz
https://riptutorial.com/contributor/4836810/ivan-schwarz
https://riptutorial.com/contributor/5291686/jdrydn
https://riptutorial.com/contributor/1058612/johnnycoder
https://riptutorial.com/contributor/1360732/kapil-vats
https://riptutorial.com/contributor/4276650/klwntsingh
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/1735789/rafael-gadotti-bachovas
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/6637668/sorangwala-abbasali
https://riptutorial.com/contributor/635947/surjikal
https://riptutorial.com/contributor/4242097/parham-alvani
https://riptutorial.com/contributor/4398444/osama-bari
https://riptutorial.com/contributor/2441637/hasan-a-yousef
https://riptutorial.com/contributor/3946099/taylor-ackley
https://riptutorial.com/contributor/4613549/sigfried


60
Node.JS and 
MongoDB.

midnightsyntax, RamenChef, Satyam S

61
Node.js Architecture 
& Inner Workings

Ivan Hristov

62

Node.js code for 
STDIN and STDOUT 
without using any 
library

Syam Pradeep

63
Node.js Design 
Fundamental

Ankur Anand, pietrovismara

64
Node.js Error 
Management

Karlen

65 Node.js Performance Florian Hämmerle, Inanc Gumus

66
Node.js v6 New 
Features and 
Improvement

creyD, DominicValenciana, KlwntSingh

67 Node.js with CORS Buzut

68 Node.JS with ES6 Inanc Gumus, xam, ymz, zurfyx

69 Node.js with Oracle oliolioli

70
NodeJS Beginner 
Guide

Niroshan Ranapathi

71 NodeJS Frameworks dthree

72 Nodejs History Kelum Senanayake

73 NodeJs Routing parlad neupane

74 NodeJS with Redis evalsocket

Abhishek Jain, AJS, Amreesh Tyagi, Ankur Anand, Asaf 
Manassen, Ates Goral, ccnokes, CD.., Cristian Cavalli, David 
G., DrakaSAN, Eric Fortin, Everettss, Explosion Pills, Florian 
Hämmerle, George Bailey, hexacyanide, HungryCoder, Ionică 
Bizău, James Taylor, João Andrade, John Slegers, Jojodmo, 
Josh, Kid Binary, Loufylouf, m02ph3u5, Matt, Matthew Harwood
, Mehdi El Fadil, Mikhail, Mindsers, Nick, notgiorgi, num8er, 
oscarm, Pete TNT, Philipp Flenker, Pieter Herroelen, Pyloid, 
QoP, Quill, Rafal Wiliński, RamenChef, Ratan Kumar, 
RationalDev, rdegges, refaelos, Rizowski, Shiven, Skanda, 

75 npm

https://riptutorial.com/ 383

https://riptutorial.com/contributor/278354/midnightsyntax
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5704901/satyam-s
https://riptutorial.com/contributor/1363231/ivan-hristov
https://riptutorial.com/contributor/3933588/syam-pradeep
https://riptutorial.com/contributor/3027001/ankur-anand
https://riptutorial.com/contributor/3142367/pietrovismara
https://riptutorial.com/contributor/2050499/karlen
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/7454177/creyd
https://riptutorial.com/contributor/5111850/dominicvalenciana
https://riptutorial.com/contributor/4276650/klwntsingh
https://riptutorial.com/contributor/1717735/buzut
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/3593217/xam
https://riptutorial.com/contributor/4062197/ymz
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/3741067/oliolioli
https://riptutorial.com/contributor/5051423/niroshan-ranapathi
https://riptutorial.com/contributor/1730638/dthree
https://riptutorial.com/contributor/1699937/kelum-senanayake
https://riptutorial.com/contributor/4719725/parlad-neupane
https://riptutorial.com/contributor/5873766/evalsocket
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/2955102/ajs
https://riptutorial.com/contributor/2028364/amreesh-tyagi
https://riptutorial.com/contributor/3027001/ankur-anand
https://riptutorial.com/contributor/1637386/asaf-manassen
https://riptutorial.com/contributor/1637386/asaf-manassen
https://riptutorial.com/contributor/23501/ates-goral
https://riptutorial.com/contributor/1397311/ccnokes
https://riptutorial.com/contributor/139300/cd--
https://riptutorial.com/contributor/2689974/cristian-cavalli
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2587646/drakasan
https://riptutorial.com/contributor/109960/eric-fortin
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/454533/explosion-pills
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/1380918/hexacyanide
https://riptutorial.com/contributor/383912/hungrycoder
https://riptutorial.com/contributor/1420197/ionica-bizau
https://riptutorial.com/contributor/1420197/ionica-bizau
https://riptutorial.com/contributor/1420197/ionica-bizau
https://riptutorial.com/contributor/1944335/james-taylor
https://riptutorial.com/contributor/330920/joao-andrade
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/446039/josh
https://riptutorial.com/contributor/3042856/kid-binary
https://riptutorial.com/contributor/2531068/loufylouf
https://riptutorial.com/contributor/890537/m02ph3u5
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/1191635/matthew-harwood
https://riptutorial.com/contributor/1006854/mehdi-el-fadil
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/3701067/mindsers
https://riptutorial.com/contributor/2639721/nick
https://riptutorial.com/contributor/5341953/notgiorgi
https://riptutorial.com/contributor/3706693/num8er
https://riptutorial.com/contributor/440243/oscarm
https://riptutorial.com/contributor/2138943/pete-tnt
https://riptutorial.com/contributor/592744/philipp-flenker
https://riptutorial.com/contributor/951667/pieter-herroelen
https://riptutorial.com/contributor/1760315/pyloid
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/5267551/rafal-wilinski
https://riptutorial.com/contributor/5267551/rafal-wilinski
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1080407/ratan-kumar
https://riptutorial.com/contributor/2800482/rationaldev
https://riptutorial.com/contributor/194175/rdegges
https://riptutorial.com/contributor/343263/refaelos
https://riptutorial.com/contributor/1162192/rizowski
https://riptutorial.com/contributor/3543416/shiven
https://riptutorial.com/contributor/1587206/skanda


Sorangwala Abbasali, still_learning, subbu, the12, tlo, Un3qual, 
uzaif, VladNeacsu, Vsevolod Goloviznin, Wasabi Fan, Yerko 
Palma

76
nvm - Node Version 
Manager

cyanbeam, guleria, John Vincent Jardin, Luis González, 
pranspach, Shog9, Tushar Gupta

77 OAuth 2.0 tyehia

78 package.json

Ankur Anand, Asaf Manassen, Chance Snow, efeder, Eric 
Smekens, Florian Hämmerle, Jaylem Chaudhari, Kornel, lauriys
, mezzode, OzW, RamenChef, Robbie, Shabin Hashim, 
Simplans, SteveLacy, Sven 31415, Tomás Cañibano, 
user6939352, V1P3R, victorkohl

79
Parsing command 
line arguments

yrtimiD

80 Passport integration
Ankit Rana, Community, Léo Martin, M. A. Cordeiro, Rupali 
Pemare, shikhar bansal

81 passport.js Red

82
Performance 
challenges

Antenka, SteveLacy

83
PostgreSQL 
integration

Niroshan Ranapathi

84 Project Structure damitj07

85 Push notifications Mario Rozic

86 Readline 4444, Craig Ayre, Florian Hämmerle, peteb

87
Remote Debugging 
in Node.JS

Rick, VooVoo

88 Require() Philip Cornelius Glover

89
Restful API Design: 
Best Practices

fresh5447, nilakantha singh deo

90
Route-Controller-
Service structure for 
ExpressJS

nomanbinhussein

91
Routing ajax 
requests with 
Express.JS

RamenChef, SynapseTech

https://riptutorial.com/ 384

https://riptutorial.com/contributor/6637668/sorangwala-abbasali
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/3398960/subbu
https://riptutorial.com/contributor/6407868/the12
https://riptutorial.com/contributor/1306877/tlo
https://riptutorial.com/contributor/3067217/un3qual
https://riptutorial.com/contributor/3786332/uzaif
https://riptutorial.com/contributor/2039855/vladneacsu
https://riptutorial.com/contributor/4251546/vsevolod-goloviznin
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/3178237/yerko-palma
https://riptutorial.com/contributor/3178237/yerko-palma
https://riptutorial.com/contributor/1149962/cyanbeam
https://riptutorial.com/contributor/620039/guleria
https://riptutorial.com/contributor/1174135/john-vincent-jardin
https://riptutorial.com/contributor/3750462/luis-gonzalez
https://riptutorial.com/contributor/1504668/pranspach
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/2224265/tushar-gupta
https://riptutorial.com/contributor/7610111/tyehia
https://riptutorial.com/contributor/3027001/ankur-anand
https://riptutorial.com/contributor/1637386/asaf-manassen
https://riptutorial.com/contributor/1363247/chance-snow
https://riptutorial.com/contributor/2872106/efeder
https://riptutorial.com/contributor/1002833/eric-smekens
https://riptutorial.com/contributor/1002833/eric-smekens
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/6597177/jaylem-chaudhari
https://riptutorial.com/contributor/27009/kornel
https://riptutorial.com/contributor/112534/lauriys
https://riptutorial.com/contributor/6102253/mezzode
https://riptutorial.com/contributor/3488179/ozw
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/459517/robbie
https://riptutorial.com/contributor/1109178/shabin-hashim
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/1041104/stevelacy
https://riptutorial.com/contributor/2619666/sven-31415
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/6939352/user6939352
https://riptutorial.com/contributor/4731240/v1p3r
https://riptutorial.com/contributor/2772643/victorkohl
https://riptutorial.com/contributor/2452381/yrtimid
https://riptutorial.com/contributor/4877428/ankit-rana
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5677183/leo-martin
https://riptutorial.com/contributor/5645571/m--a--cordeiro
https://riptutorial.com/contributor/7342110/rupali-pemare
https://riptutorial.com/contributor/7342110/rupali-pemare
https://riptutorial.com/contributor/4111052/shikhar-bansal
https://riptutorial.com/contributor/5053119/red
https://riptutorial.com/contributor/186298/antenka
https://riptutorial.com/contributor/1041104/stevelacy
https://riptutorial.com/contributor/5051423/niroshan-ranapathi
https://riptutorial.com/contributor/5617140/damitj07
https://riptutorial.com/contributor/5243162/mario-rozic
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5153111/craig-ayre
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/2980607/peteb
https://riptutorial.com/contributor/1091402/rick
https://riptutorial.com/contributor/6919770/voovoo
https://riptutorial.com/contributor/8161432/philip-cornelius-glover
https://riptutorial.com/contributor/3389981/fresh5447
https://riptutorial.com/contributor/4353189/nilakantha-singh-deo
https://riptutorial.com/contributor/2679630/nomanbinhussein
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2946880/synapsetech


92
Running node.js as a 
service

Buzut

93
Securing Node.js 
applications

akinjide, devnull69, Florian Hämmerle, John Slegers, Mukesh 
Sharma, Pauly Garcia, Peter G, pranspach, RamenChef, 
Simplans

94
Send Web 
Notification

Houssem Yahiaoui

95
Sending a file stream 
to client

Beshoy Hanna

96 Sequelize.js Fikra, Niroshan Ranapathi, xam

97
Simple REST based 
CRUD API

Iceman

98
Socket.io 
communication

Forivin, N.J.Dawson

99

Synchronous vs 
Asynchronous 
programming in 
nodejs

Craig Ayre, Veger

100 TCP Sockets B Thuy

101
Template 
frameworks

Aikon Mogwai

102 Uninstalling Node.js John Vincent Jardin, RamenChef, snuggles08, Trevor Clarke

103
Unit testing 
frameworks

David Xu, Florian Hämmerle, skiilaa

104
Use Cases of 
Node.js

vintproykt

105
Using Browserfiy to 
resolve 'required' 
error with browsers

Big Dude

106
Using IISNode to 
host Node.js Web 
Apps in IIS

peteb

107 Using Streams
cyanbeam, Duly Kinsky, efeder, johni, KlwntSingh, Max, Ze 
Rubeus

https://riptutorial.com/ 385

https://riptutorial.com/contributor/1717735/buzut
https://riptutorial.com/contributor/6045122/akinjide
https://riptutorial.com/contributor/1030974/devnull69
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2100197/mukesh-sharma
https://riptutorial.com/contributor/2100197/mukesh-sharma
https://riptutorial.com/contributor/6728192/pauly-garcia
https://riptutorial.com/contributor/4504895/peter-g
https://riptutorial.com/contributor/1504668/pranspach
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/1849644/houssem-yahiaoui
https://riptutorial.com/contributor/1913371/beshoy-hanna
https://riptutorial.com/contributor/4932544/fikra
https://riptutorial.com/contributor/5051423/niroshan-ranapathi
https://riptutorial.com/contributor/3593217/xam
https://riptutorial.com/contributor/6237235/iceman
https://riptutorial.com/contributor/2879085/forivin
https://riptutorial.com/contributor/6468937/n-j-dawson
https://riptutorial.com/contributor/5153111/craig-ayre
https://riptutorial.com/contributor/246263/veger
https://riptutorial.com/contributor/6767721/b-thuy
https://riptutorial.com/contributor/6121703/aikon-mogwai
https://riptutorial.com/contributor/1174135/john-vincent-jardin
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3078446/snuggles08
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/2633527/david-xu
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/7395882/skiilaa
https://riptutorial.com/contributor/2396907/vintproykt
https://riptutorial.com/contributor/598477/big-dude
https://riptutorial.com/contributor/2980607/peteb
https://riptutorial.com/contributor/1149962/cyanbeam
https://riptutorial.com/contributor/1705189/duly-kinsky
https://riptutorial.com/contributor/2872106/efeder
https://riptutorial.com/contributor/3454745/johni
https://riptutorial.com/contributor/4276650/klwntsingh
https://riptutorial.com/contributor/189572/max
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/4232386/ze-rubeus


108
Using WebSocket's 
with Node.JS

Rowan Harley

109
Web Apps With 
Express

Aikon Mogwai, Alex Logan, alexi2, Andres C. Viesca, Aph, Asaf 
Manassen, Batsu, bekce, brianmearns, Community, Craig Ayre, 
Daniel Verem, devnull69, Everettss, Florian Hämmerle, H. 
Pauwelyn, Inanc Gumus, jemiloii, Kid Binary, kunerd, Marek 
Skiba, Mikhail, Mohit Gangrade, Mukesh Sharma, Naeem 
Shaikh, Niklas, Nivesh, noob, Ojen, Pasha Rumkin, Paul, Rafal 
Wiliński, Shabin Hashim, SteveLacy, tandrewnichols, Taylor 
Ackley, themole, tverdohleb, Vsevolod Goloviznin, xims, Yerko 
Palma

110
Windows 
authentication under 
node.js

CJ Harries

111
Yarn Package 
Manager

Andrew Brooke, skiilaa

https://riptutorial.com/ 386

https://riptutorial.com/contributor/4905262/rowan-harley
https://riptutorial.com/contributor/6121703/aikon-mogwai
https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/6060774/alexi2
https://riptutorial.com/contributor/4655076/andres-c--viesca
https://riptutorial.com/contributor/3083488/aph
https://riptutorial.com/contributor/1637386/asaf-manassen
https://riptutorial.com/contributor/1637386/asaf-manassen
https://riptutorial.com/contributor/1029516/batsu
https://riptutorial.com/contributor/506813/bekce
https://riptutorial.com/contributor/1141093/brianmearns
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5153111/craig-ayre
https://riptutorial.com/contributor/5428438/daniel-verem
https://riptutorial.com/contributor/1030974/devnull69
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/630496/jemiloii
https://riptutorial.com/contributor/3042856/kid-binary
https://riptutorial.com/contributor/2689033/kunerd
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/3736538/mohit-gangrade
https://riptutorial.com/contributor/2100197/mukesh-sharma
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/4342875/niklas
https://riptutorial.com/contributor/2680461/nivesh
https://riptutorial.com/contributor/1079901/noob
https://riptutorial.com/contributor/1334542/ojen
https://riptutorial.com/contributor/884491/pasha-rumkin
https://riptutorial.com/contributor/53788/paul
https://riptutorial.com/contributor/5267551/rafal-wilinski
https://riptutorial.com/contributor/5267551/rafal-wilinski
https://riptutorial.com/contributor/5267551/rafal-wilinski
https://riptutorial.com/contributor/1109178/shabin-hashim
https://riptutorial.com/contributor/1041104/stevelacy
https://riptutorial.com/contributor/1437845/tandrewnichols
https://riptutorial.com/contributor/3946099/taylor-ackley
https://riptutorial.com/contributor/3946099/taylor-ackley
https://riptutorial.com/contributor/3899944/themole
https://riptutorial.com/contributor/1154423/tverdohleb
https://riptutorial.com/contributor/4251546/vsevolod-goloviznin
https://riptutorial.com/contributor/1539384/xims
https://riptutorial.com/contributor/3178237/yerko-palma
https://riptutorial.com/contributor/3178237/yerko-palma
https://riptutorial.com/contributor/2877698/cj-harries
https://riptutorial.com/contributor/2278598/andrew-brooke
https://riptutorial.com/contributor/7395882/skiilaa

	About
	Chapter 1: Getting started with Node.js
	Remarks
	Versions
	Examples
	Hello World HTTP server
	Hello World command line
	Installing and Running Node.js

	Running a Node Program
	Deploying your application online
	Debugging Your NodeJS Application


	Debugging natively
	Hello World with Express
	Hello World basic routing
	TLS Socket: server and client

	How to Create a Key and Certificate
	Important!
	TLS Socket Server
	TLS Socket Client
	Hello World in the REPL
	Core modules

	All core modules at-a-glance
	How to get a basic HTTPS web server up and running!
	Step 1 : Build a Certificate Authority
	Step 2 : Install your certificate as a root certificate
	Step 3 : Starting your node server

	Chapter 2: Arduino communication with nodeJs
	Introduction
	Examples
	Node Js communication with Arduino via serialport

	Node js code
	Arduino code
	Starting Up

	Chapter 3: async.js
	Syntax
	Examples
	Parallel : multi-tasking


	Call async.parallel() with an object
	Resolving multiple values
	Series : independent mono-tasking

	Call async.series() with an object
	Waterfall : dependent mono-tasking
	async.times(To handle for loop in better way)
	async.each(To handle array of data efficiently)
	async.series(To handle events one by one)

	Chapter 4: Async/Await
	Introduction
	Examples
	Async Functions with Try-Catch Error Handling
	Comparison between Promises and Async/Await
	Progression from Callbacks
	Stops execution at await


	Chapter 5: Asynchronous programming
	Introduction
	Syntax
	Examples
	Callback functions


	Callback functions in JavaScript
	Synchronous callbacks.
	Asynchronous callbacks.

	Callback functions in Node.js
	Code example
	Async error handling

	Try catch
	Working possibilities
	Event handlers
	Domains
	Callback hell
	Native Promises


	Chapter 6: Autoreload on changes
	Examples
	Autoreload on source code changes using nodemon


	Installing nodemon globally
	Installing nodemon locally
	Using nodemon
	Browsersync

	Overview
	Installation
	Windows Users

	Basic Usage
	Advanced Usage
	Grunt.js
	Gulp.js

	API
	Chapter 7: Avoid callback hell
	Examples
	Async module
	Async Module


	Chapter 8: Bluebird Promises
	Examples
	Converting nodeback library to Promises
	Functional Promises
	Coroutines (Generators)
	Automatic Resource Disposal (Promise.using)
	Executing in series


	Chapter 9: Callback to Promise
	Examples
	Promisifying a callback
	Manually promisifying a callback
	setTimeout promisified


	Chapter 10: Cassandra Integration
	Examples
	Hello world


	Chapter 11: CLI
	Syntax
	Examples
	Command Line Options


	Chapter 12: Client-server communication
	Examples
	/w Express, jQuery and Jade


	Chapter 13: Cluster Module
	Syntax
	Remarks
	Examples
	Hello World
	Cluster Example


	Chapter 14: Connect to Mongodb
	Introduction
	Syntax
	Examples
	Simple example to Connect mongoDB from Node.JS
	Simple way to Connect mongoDB with core Node.JS


	Chapter 15: Creating a Node.js Library that Supports Both Promises and Error-First Callbacks
	Introduction
	Examples
	Example Module and Corresponding Program using Bluebird


	Chapter 16: Creating API's with Node.js
	Examples
	GET api using Express
	POST api using Express


	Chapter 17: csv parser in node js
	Introduction
	Examples
	Using FS to read in a CSV


	Chapter 18: Database (MongoDB with Mongoose)
	Examples
	Mongoose connection
	Model
	Insert data
	Read data


	Chapter 19: Debugging Node.js application
	Examples
	Core node.js debugger and node inspector


	Using core debugger
	Command reference

	Using Built-in Node inspector
	Using Node inspector
	Chapter 20: Deliver HTML or any other sort of file
	Syntax
	Examples
	Deliver HTML at specified path

	Folder structure
	server.js

	Chapter 21: Dependency Injection
	Examples
	Why Use Dependency Injection


	Chapter 22: Deploying Node.js application without downtime.
	Examples
	Deployment using PM2 without downtime.


	Chapter 23: Deploying Node.js applications in production
	Examples
	Setting NODE_ENV="production"


	Runtime flags
	Dependencies
	Manage app with process manager
	PM2 process manager
	Deployment using PM2
	Deployment using process manager

	Forvever
	Using different Properties/Configuration for different environments like dev, qa, staging etc.
	Taking advantage of clusters


	Chapter 24: ECMAScript 2015 (ES6) with Node.js
	Examples
	const/let declarations
	Arrow functions
	Arrow Function Example
	destructuring
	flow
	ES6 Class


	Chapter 25: Environment
	Examples
	Accessing environment variables
	process.argv command line arguments
	Using different Properties/Configuration for different environments like dev, qa, staging etc.
	Loading environment properties from a "property file"


	Chapter 26: Event Emitters
	Remarks
	Examples
	HTTP Analytics through an Event Emitter
	Basics
	Get the names of the events that are subscribed to
	Get the number of listeners registered to listen for a specific event


	Chapter 27: Eventloop
	Introduction
	Examples
	How the concept of event loop evolved.


	Eventloop in pseudo code
	Example of a single-threaded HTTP server with no event loop
	Example of a multi-threaded HTTP server with no event loop
	Example of a HTTP server with event loop
	Chapter 28: Exception handling
	Examples
	Handling Exception In Node.Js
	Unhanded Exception Management

	Silently Handling Exceptions
	Returning to Initial state
	Errors and Promises


	Chapter 29: Executing files or commands with Child Processes
	Syntax
	Remarks
	Examples
	Spawning a new process to execute a command
	Spawning a shell to execute a command
	Spawning a process to run an executable


	Chapter 30: Exporting and Consuming Modules
	Remarks
	Examples
	Loading and using a module
	Creating a hello-world.js module
	Invalidating the module cache
	Building your own modules
	Every module injected only once
	Module loading from node_modules
	Folder as a module


	Chapter 31: Exporting and Importing Module in node.js
	Examples
	Using a simple module in node.js
	Using Imports In ES6
	Exporting with ES6 syntax


	Chapter 32: File upload
	Examples
	Single File Upload using multer


	Note:
	How to filter upload by extension:
	Using formidable module

	Chapter 33: Filesystem I/O
	Remarks
	Examples
	Writing to a file using writeFile or writeFileSync
	Asynchronously Read from Files

	With Encoding
	Without Encoding
	Relative paths
	Listing Directory Contents with readdir or readdirSync

	Using a generator
	Reading from a file synchronously

	Reading a String
	Deleting a file using unlink or unlinkSync
	Reading a file into a Buffer using streams
	Check Permissions of a File or Directory


	Asynchronously
	Synchronously
	Avoiding race conditions when creating or using an existing directory
	Checking if a file or a directory exists
	Asynchronously
	Synchronously
	Cloning a file using streams
	Copying files by piping streams
	Changing contents of a text file
	Determining the line count of a text file


	app.js
	Reading a file line by line

	app.js
	Chapter 34: Getting started with Nodes profiling
	Introduction
	Remarks
	Examples
	Profiling a simple node application


	Chapter 35: Good coding style
	Remarks
	Examples
	Basic program for signup


	Chapter 36: Graceful Shutdown
	Examples
	Graceful Shutdown - SIGTERM


	Chapter 37: grunt
	Remarks
	Examples
	Introduction To GruntJs
	Installing gruntplugins


	Chapter 38: Hack
	Examples
	Add new extensions to require()


	Chapter 39: Handling POST request in Node.js
	Remarks
	Examples
	Sample node.js server that just handles POST requests


	Chapter 40: How modules are loaded
	Examples
	Global Mode
	Loading modules


	Loading a Folder Module
	Chapter 41: http
	Examples
	http server
	http client


	Chapter 42: Installing Node.js
	Examples
	Install Node.js on Ubuntu


	Using the apt package manager
	Using the latest of specific version (e.g. LTS 6.x) directly from nodesource
	Installing Node.js on Windows
	Using Node Version Manager (nvm)
	Install Node.js From Source with APT package manager
	Installing Node.js on Mac using package manager

	Homebrew
	Macports
	Installing using MacOS X Installer

	Check if Node is installed
	Installing Node.js on Raspberry PI
	Installing with Node Version Manager under Fish Shell with Oh My Fish!
	Install Node.js from source on Centos, RHEL and Fedora
	Installing Node.js with n

	Chapter 43: Interacting with Console
	Syntax
	Examples
	Logging


	Console Module
	console.log
	console.error
	console.time, console.timeEnd

	Process Module
	Formatting
	General
	Font Colors
	Background Colors

	Chapter 44: Keep a node application constantly running
	Examples
	Use PM2 as a process manager

	Useful commands for monitoring the process
	Running and stopping a Forever daemon
	Continuous running with nohup
	Process Mangement with Forever


	Chapter 45: Koa Framework v2
	Examples
	Hello World example
	Handling errors using middleware


	Chapter 46: Lodash
	Introduction
	Examples
	Filter a collection


	Chapter 47: Loopback - REST Based connector
	Introduction
	Examples
	Adding a web based connector


	Chapter 48: metalsmith
	Examples
	Build a simple blog


	Chapter 49: Mongodb integration
	Syntax
	Parameters
	Examples
	Connect to MongoDB
	MongoClient method Connect()
	Insert a document
	Collection method insertOne()
	Read a collection
	Collection method find()
	Update a document
	Collection method updateOne()
	Delete a document
	Collection method deleteOne()
	Delete multiple documents
	Collection method deleteMany()
	Simple connect
	Simple connect, using promises


	Chapter 50: MongoDB Integration for Node.js/Express.js
	Introduction
	Remarks
	Examples
	Installing MongoDB
	Creating a Mongoose Model
	Querying your Mongo Database


	Chapter 51: Mongoose Library
	Examples
	Connect to MongoDB Using Mongoose
	Save Data to MongoDB using Mongoose and Express.js Routes


	Setup
	Code
	Usage
	Find Data in MongoDB Using Mongoose and Express.js Routes

	Setup
	Code
	Usage
	Find Data in MongoDB Using Mongoose, Express.js Routes and $text Operator

	Setup
	Code
	Usage
	Indexes in models.
	Useful Mongoose functions
	find data in mongodb using promises

	Setup
	Code
	Usage
	Chapter 52: MSSQL Intergration
	Introduction
	Remarks
	Examples
	Connecting with SQL via. mssql npm module


	Chapter 53: Multithreading
	Introduction
	Remarks
	Examples
	Cluster
	Child Process


	Chapter 54: Mysql Connection Pool
	Examples
	Using a connection pool without database


	Chapter 55: MySQL integration
	Introduction
	Examples
	Query a connection object with parameters
	Using a connection pool

	a. Running multiple queries at same time
	b. Achieving multi-tenancy on database server with different databases hosted on it.
	Connect to MySQL
	Query a connection object without parameters
	Run a number of queries with a single connection from a pool
	Return the query when an error occurs
	Export Connection Pool


	Chapter 56: N-API
	Introduction
	Examples
	Hello to N-API


	Chapter 57: Node JS Localization
	Introduction
	Examples
	using i18n module to maintains localization in node js app


	Chapter 58: Node server without framework
	Remarks
	Examples
	Framework-less node server
	Overcoming CORS Issues


	Chapter 59: Node.js (express.js) with angular.js Sample code
	Introduction
	Examples
	Creating our project.

	Ok, but how we create the express skeleton project?
	How express works, briefly?
	Installing Pug and updating Express template engine.
	How AngularJS fits in all of this?

	Chapter 60: Node.JS and MongoDB.
	Remarks
	Examples
	Connecting To a Database
	Creating New Collection
	Inserting Documents
	Reading
	Updating

	Methods

	Update()
	UpdateOne
	UpdateMany
	ReplaceOne
	Deleting

	Chapter 61: Node.js Architecture & Inner Workings
	Examples
	Node.js - under the hood
	Node.js - in motion


	Chapter 62: Node.js code for STDIN and STDOUT without using any library
	Introduction
	Examples
	Program


	Chapter 63: Node.js Design Fundamental
	Examples
	The Node.js philosophy


	Chapter 64: Node.js Error Management
	Introduction
	Examples
	Creating Error object
	Throwing Error
	try...catch block


	Chapter 65: Node.js Performance
	Examples
	Event Loop


	Blocking Operation Example
	Non-Blocking IO Operation Example
	Performance Considerations
	Increase maxSockets

	Basics
	Setting your own agent
	Turning off Socket Pooling entirely
	Pitfalls
	Enable gzip

	Chapter 66: Node.js v6 New Features and Improvement
	Introduction
	Examples
	Default Function Parameters
	Rest Parameters
	Spread Operator
	Arrow Functions
	"this" in Arrow Function


	Chapter 67: Node.js with CORS
	Examples
	Enable CORS in express.js


	Chapter 68: Node.JS with ES6
	Introduction
	Examples
	Node ES6 Support and creating a project with Babel
	Use JS es6 on your NodeJS app


	Prerequisites:
	Chapter 69: Node.js with Oracle
	Examples
	Connect to Oracle DB
	Query a connection object without parameters
	Using a local module for easier querying


	Chapter 70: NodeJS Beginner Guide
	Examples
	Hello World !


	Chapter 71: NodeJS Frameworks
	Examples
	Web Server Frameworks

	Express
	Koa
	Command Line Interface Frameworks

	Commander.js
	Vorpal.js

	Chapter 72: Nodejs History
	Introduction
	Examples
	Key events in each year


	2009
	2010
	2011
	2012
	2013
	2014
	2015
	Q1
	Q2
	Q3
	Q4

	2016
	Q1
	Q2
	Q3
	Q4

	Chapter 73: NodeJs Routing
	Introduction
	Remarks
	Examples
	Express Web Server Routing


	Chapter 74: NodeJS with Redis
	Remarks
	Examples
	Getting Started
	Storing Key-Value Pairs
	Some more important operations supported by node_redis.


	Chapter 75: npm
	Introduction
	Syntax
	Parameters
	Examples
	Installing packages


	Introduction
	Installing NPM
	How to install packages
	Installing dependencies
	NPM Behind A Proxy Server
	Scopes and repositories
	Uninstalling packages
	Basic semantic versioning
	Setting up a package configuration
	Publishing a package
	Running scripts
	Removing extraneous packages
	Listing currently installed packages
	Updating npm and packages
	Locking modules to specific versions
	Setting up for globally installed packages
	Linking projects for faster debugging and development
	Help text
	Steps for linking project dependencies
	Steps for linking a global tool
	Problems that may arise

	Chapter 76: nvm - Node Version Manager
	Remarks
	Examples
	Install NVM
	Check NVM version
	Installing an specific Node version
	Using an already installed node version
	Install nvm on Mac OSX

	INSTALLATION PROCESS
	TEST THAT NVM WAS PROPERLY INSTALLED
	Setting alias for node version
	Run any arbitrary command in a subshell with the desired version of node


	Chapter 77: OAuth 2.0
	Examples
	OAuth 2 with Redis Implementation - grant_type: password


	Hope to Help!
	Chapter 78: package.json
	Remarks
	Examples
	Basic project definition
	Dependencies


	devDependencies
	Scripts

	Pre-defined scripts
	User-defined scripts
	Extended project definition
	Exploring package.json

	Chapter 79: Parsing command line arguments
	Examples
	Passing action (verb) and values
	Passing boolean switches


	Chapter 80: Passport integration
	Remarks
	Examples
	Getting started
	Local authentication
	Facebook authentication
	Simple Username-Password Authentication
	Google Passport authentication


	Chapter 81: passport.js
	Introduction
	Examples
	Example of LocalStrategy in passport.js


	Chapter 82: Performance challenges
	Examples
	Processing long running queries with Node


	Chapter 83: PostgreSQL integration
	Examples
	Connect To PostgreSQL
	Query with Connection Object


	Chapter 84: Project Structure
	Introduction
	Remarks
	Examples
	A simple nodejs application with MVC and API


	Chapter 85: Push notifications
	Introduction
	Parameters
	Examples
	Web notification
	Apple


	Chapter 86: Readline
	Syntax
	Examples
	Line-by-line file reading
	Prompting user input via CLI


	Chapter 87: Remote Debugging in Node.JS
	Examples
	NodeJS run configuration
	IntelliJ/Webstorm Configuration
	Use the proxy for debugging via port on Linux


	Chapter 88: Require()
	Introduction
	Syntax
	Remarks
	Examples
	Beginning require() use with a function and file
	Beginning require() use with an NPM package


	Chapter 89: Restful API Design: Best Practices
	Examples
	Error Handling: GET all resources


	Chapter 90: Route-Controller-Service structure for ExpressJS
	Examples
	Model-Routes-Controllers-Services Directory Structure
	Model-Routes-Controllers-Services Code Structure


	user.model.js
	user.routes.js
	user.controllers.js
	user.services.js
	Chapter 91: Routing ajax requests with Express.JS
	Examples
	A simple implementation of AJAX


	Chapter 92: Running node.js as a service
	Introduction
	Examples
	Node.js as a systemd dæmon


	Chapter 93: Securing Node.js applications
	Examples
	Preventing Cross Site Request Forgery (CSRF)
	SSL/TLS in Node.js
	Using HTTPS
	Setting up an HTTPS server

	Step 1 : Build a Certificate Authority
	Step 2 : Install your certificate as a root certificate
	Secure express.js 3 Application


	Chapter 94: Send Web Notification
	Examples
	Send Web notification using GCM ( Google Cloud Messaging System)


	Chapter 95: Sending a file stream to client
	Examples
	Using fs And pipe To Stream Static Files From The Server
	Streaming Using fluent-ffmpeg


	Chapter 96: Sequelize.js
	Examples
	Installation
	Defining Models


	1. sequelize.define(modelName, attributes, [options])
	2. sequelize.import(path)
	Chapter 97: Simple REST based CRUD API
	Examples
	REST API for CRUD in Express 3+


	Chapter 98: Socket.io communication
	Examples
	"Hello world!" with socket messages.


	Chapter 99: Synchronous vs Asynchronous programming in nodejs
	Examples
	Using async


	Chapter 100: TCP Sockets
	Examples
	A simple TCP server
	A simple TCP client


	Chapter 101: Template frameworks
	Examples
	Nunjucks


	Chapter 102: Uninstalling Node.js
	Examples
	Completely uninstall Node.js on Mac OSX
	Uninstall Node.js on Windows


	Chapter 103: Unit testing frameworks
	Examples
	Mocha synchronous
	Mocha asynchronous (callback)
	Mocha asynchronous (Promise)
	Mocha Asynchronous (async/await)


	Chapter 104: Use Cases of Node.js
	Examples
	HTTP server
	Console with command prompt


	Chapter 105: Using Browserfiy to resolve 'required' error with browsers
	Examples
	Example - file.js


	What is this snippet doing?
	Install Browserfy
	Important
	What does that mean?
	Chapter 106: Using IISNode to host Node.js Web Apps in IIS
	Remarks

	Virtual Directory / Nested Application with Views Pitfall
	Versions
	Examples
	Getting Started

	Requirements
	Basic Hello World Example using Express


	Project Strucure
	server.js - Express Application
	Configuration & Web.config
	Configuration
	IISNode Handler
	URL-Rewrite Rules
	Using an IIS Virtual Directory or Nested Application via
	Using Socket.io with IISNode


	Chapter 107: Using Streams
	Parameters
	Examples
	Read Data from TextFile with Streams
	Piping streams
	Creating your own readable/writable stream
	Why Streams?


	Chapter 108: Using WebSocket's with Node.JS
	Examples
	Installing WebSocket's
	Adding WebSocket's to your file's
	Using WebSocket's and WebSocket Server's
	A Simple WebSocket Server Example


	Chapter 109: Web Apps With Express
	Introduction
	Syntax
	Parameters
	Examples
	Getting Started
	Basic routing
	Getting info from the request
	Modular express application


	More complicated example
	Using a Template Engine
	Using a Template Engine
	EJS Template Example
	JSON API with ExpressJS
	Serving static files

	Multiple folders
	Named routes in Django-style
	Error Handling
	Using middleware and the next callback
	Error handling
	Hook: How to execute code before any req and after any res
	Handling POST Requests
	Setting cookies with cookie-parser
	Custom middleware in Express
	Error handling in Express
	Adding Middleware
	Hello World


	Chapter 110: Windows authentication under node.js
	Remarks
	Examples
	Using activedirectory


	Installation
	Usage
	Chapter 111: Yarn Package Manager
	Introduction
	Examples
	Yarn Installation


	macOS
	Homebrew
	MacPorts
	Adding Yarn to your PATH

	Windows
	Installer
	Chocolatey

	Linux
	Debian / Ubuntu
	CentOS / Fedora / RHEL
	Arch
	Solus
	All Distributions

	Alternative Method of Installation
	Shell script
	Tarball
	Npm

	Post Install
	Creating a basic package
	Install package with Yarn

	Credits



